Fast Value Tracking for Deep Reinforcement
Learning

Faming Liang

Purdue University

Reinforcement Learning

As a mathematical model, RL solves sequential decision-making
problems by designing an agent that interacts with the
environment, with the goal of learning an optimal policy that
maximizes the expected total reward for the agent.

Prominent value-based algorithms:
» Temporal-difference (TD) learning (Sutton, 1988)

» State—action—reward—state—action (SARSA) (Sutton & Barto,
2018)

> Q-learning

Traditionally, these methods treat the state value (or Q-value) as a
deterministic function, focusing on calculating point estimates of
model parameters, thereby overlooking the inherent stochasticity in
agent-environment interactions.

Reinforcement Learning

In the context of RL, a fair algorithm should exhibit the features:

(i) Uncertainty quantification: addressing the stochastic nature
of the agent-environment interactions, thereby enhancing the
robustness of the learned policy.

(i) Dynamicity: addressing the dynamics of the
agent-environment interaction system.

(iii) Nonlinear approximation: employing, for example, a deep
neural network to approximate the value function.

(iv) Computational efficiency: scalable with respect to the model
dimension and training sample size.

In RL, it is more suitable to treat values or model parameters as
random variables rather than fixed unknowns, focusing on tracking
dynamic changes rather than achieving point convergence during
the policy learning process.

Kalman Temporal Difference (KTD)

KTD treats values or their parameters as random variables,
focusing on the tracking property of the policy learning process.
KTD conceptualizes RL as a state-space model:

0r = 0t—1 + w,
re = h(xe, 0¢) + e,

where 0; € RP denotes the parameters at time step t with
dimension p, w;y € RP and 7; € R" denote two independent
multivariate Gaussian vectors, x; denotes a set of states and
actions collected at time step t, r: € R” denotes a vector of
rewards, n denotes the number of samples, and h(-,-) can be a
linear or nonlinear function.

Kalman Temporal Difference (KTD)

» h(-) is linear: Kalman filter can be applied.
» h(-) is nonlinear: Unscented Kalman Filter (UKF), Extended
Kalman Filter (EKF).

Both UKF and EKF can be computationally inefficient for
high-dimensional parameter spaces.

Markov Decision Process

The RL procedure can be described by a Markov Decision Process
represented by {S, A, P, r,~v}, where S is set of states, A is a
finite set of actions, P : S x A x S — R is the state transition
probability from state s to state s’ by taking action a, denoted by
P(s'|s, a), r(s,a) is a random reward received from taking action a
at state s, and y € (0, 1) is a discount factor.

At each time step t, the agent observes state s; € S and takes
action a; € A according to policy p with probability P,(als), then
the environment returns a reward r; = r(s;, a;) and a new state
St11 € S.

Markov Decision Process

For a given policy p, the performance is measured by the state
value function V,(s) =E,[> 72,V re|so = s] and the state-action
value function Q,(s,a) = E,[> 12y re|so = s, a0 = a], which are
called V-function and Q-function, respectively.

Both functions satisfy the Bellman equation:

VP(S) = Ep[r(sa a) + ’yvp(SI)L
Qp(s,a) = Ep[r(s,a) + yQp(s’, a)l,
where s’ ~ P(-|s,a), a ~ P,(:|s), a’ ~ P,(-|s’), and the

expectation E,[-] is taken over the transition probability
distribution P for a given policy p.

Kalman Temporal Difference Algorithm

Let s; = (sg),s§2), e ,55"))7—, a; = (agl),ag),...,aﬁ"))T, and

re=(rY, r® . r™)T denote, respectively, a vector of n states,

actions, rewards collected at time step t. Given the Bellman
equation, the function h(x;, ;) in (1) can be expressed as

h(xe, 0;) = Vo (st) — Vo, (se+1), for V-function,
; - Qo, (¢, @) — YQp,(St+1,@+1), for Q-function,

where Xy = {St, a¢, St+1, at+1},

2 n
Vo, (st) == (Va, (stM), vet((l‘) NV, (<2;>>T " o
Qo (s, ac) == (Qo. (s, aM), Qo (sP), D), ..., Qo (s, al™))T.

Kalman Temporal Difference Algorithm: Linearization

The fucntion h(x, 0) is linearized based on the first-order Taylor
expansion:

h(x:,0) ~ h(x¢, fiz—1) + Voh(xt, ﬂt—l)T(e — fit-1),

where [i;_1 denotes the estimator for the mean of 0;_1.

Langevinized Kalman Temporal Difference (LKTD)
algorithm

LKTD reformulates RL as the following state space model:

0, = 0,1 + %V@ log m(0r—1) + we,

(4)

re = h(xe,0:) + ¢,

where wy ~ N(0, €:/p), m(0) represents a prior density function we
impose on 6, and {¢; : t = 1,2,...} is a positive sequence decaying
to zero.

LKTD integrates the KTD and LEnKF algorithm, leading to an
effective algorithm for RL.

LKTD Algorithm

By the state augmentation approach, we define

0
Pt = <£i> o &= h(xe; 0e) + ue, U~ N(O,aa2l,,), (5)
where &; is an n-dimensional vector, and 0 < aa < 1lis a
pre-specified constant.

Based on Langevin dynamics, we can reformulate (4) as

Yt =Pe-1+ %%Vgo log m(¢e—1) + W,
re = Hipi + vi,

where N > 0, Wy ~ N(0, 5 Bt), Bt = €tls, p= p+ nis the
dimension of ¢¢; Hy = (0, 1,) such that Hypr = &;

vi ~ N(0, (1 — a)o?l,), which is independent of W; for all t. We
call N the pseudo-population size, which scales uncertainty of the
estimator of the system.

LKTD Algorithm

» Initialization: Draw 63 € RP drawn from the prior distribution
7(0).
Do the following for t =1,2,..., T:
> Sampling: With policy pg: |, generate a set of n transition
tuples, denoted by z; = (ry, x¢) == {r ,Xt(’) yur
Do the following for k =1,2,...,K:
> Presetting: Set B;x = e ls, Re = 2(1 — a)o?/, and the
Kalman gain matrix K x = Bt,kHtT(HtBt,kHtT + R
> Forecast: Draw Wy« ~ Ny(0, 57 Br,x) and calculate

€k N .
<Pf =i+ tkaV log (7 k—1) + Wt k, (7)

where 7 o = (Of,ly,CT,)T if k=1
> Analysis: Draw v« ~ N,(0, ﬁRt) and calculate

01k = @t i+ Kew(re—Hepl i —ver) = ot +Kew(re—rli). (8)

Convergence theory

Lemma 1
The LKTD algorithm implements a preconditioned SGLD

algorithm, for which
€
Pl =9l S TeVplogm(pialz) + e, (9)

where zy = (r, x¢), Lt = ﬁ(l — K¢H;) is a constant matrix given
@i, e ~ N(0,€e:X;), and the gradient term V, log m(p3_4|z:) is
given by _

Vylogm(ii_1|2:) = % S0, Vi logm(z{”02_1)+ Vs log m(ioi_y).

Convergence theory: On-policy setting

Theorem 2

Consider a SGLD sampler with a polynomailly-decay learning rate
ek = 1% for some w € (0,1). Suppose that the environment is
stationary and regularity conditions hold. Then there exist
constants (Co, C1, G, G3) such that for all K € N, the
2-Wasserstein distance between py and var can be bounded by

Wl) < (12 + Gaao(1= — KN (Gl —K)

)+ 5C0(

1 (l i° K==
(10)

+(c1eé(2£)+ 5Ca(2 KT+ Grenpl(-

1 Bl

where pk(6) denotes the probability law of O,

vn(0) < exp(—BG(0)), G(0) = O(N) is the anti-derivative of
g(0), i.e., VoG(0) = g(8), and c,s denotes a logarithmic Sobolev
constant satisfied by the vys.

Convergence theory: with replay buffer

Theorem 3
Let {0:}]_, be a sequence of updates generated from LKTD with
replay buffer. At each time t, the transition tuple z; is sampled
from the replay buffer #(z;|0F). In addition to the assumptions
in theorem 2, we further assume the following holds:

1. (Lipschitz) [|m(z]0) — m(z|9)[*dz < L||6 — 9|)?;

2. (Integrability) [||G(6,z)|?dz < M and

[11G(0, 2)||°m(z]6)dz < M, V6 € ©.

Then for a bounded test function ¢, the bias of the LKTD can be
bounded as:

[E) — 6| = 0(5%+ Zj; 0, E(-9) = O(—+ Z;; 0 (Zfsé)
(11)

Indoor Escape Environment

For this environment, the state space consists of 100 grids and the
agent's objective is to navigate to the goal positioned at the top
right corner.

r =

Figure 1: Indoor escape environment

Indoor Escape Environment

Algorithm

LKTD: A"= 2500 Ly — — m—Action E
LKTD: 7= 5000 f— — S Action N
LKTD: &' = 10000 o—— ——
SGLD: A =2500 PO w— | —
SGLD: A =5000 | — —
SGLD: A =10000 fpre— S —]
SGHMC: A = 2500 R S —
SGHMC: A = 5000 fre— T —
SGHMC: A = 10000 | — —
oo e
BootDQN ‘—:rf—
QR-DON e — ——
KOVA —— Ly e—|
107 107 1077 107t 100
MSE(G)

Figure 2: Boxplots for MSE(Q,) (for a € {N, E}))

Indoor Escape Environment

Algorithm

LKTD: A"=2500
LKTD: A"=5000
LKTD: A"=10000
DN

BootDQN
QR-DON

KOVA

= Action £ fl
= Action N —i—
--- 95% =l
i
[)
8
—]
— = Al_r T
——— 7
00 01 02 03 04 06 07 08 0 10

0.5
Coverage rate

Figure 3: Boxplots for coverage rates (for a € {N, E}))

Indoor Escape Environment

Action probability Action Probability Action probability

il I R errrTrT e et R DS a N N N .
MLLLLLLLLLi Mo.‘__«_q.t.n.t.u.f ,,,""“'Eiil“i
[RE R RN T oot ettt
crTTTTooT T8 e e ettt
oo ooot B W G i s e e e e A
LLLLLLLLL? B Y _._._,_,_,_.Iiii
[N W W N Y W YW [W W W O N T
crTTT oo T O T 1
oo ood R RE R RN | o o

Figure 4: Mean policy probabilities for the indoor escape environment:
(a) known optimal solution; (b) learned by LKTD; (c) learned by DQN,
failing to explore different policies.

Classical Control Problems

CartPole-v1l

training reward evaluation reward best model reward

o8 To oo 02

oo o2 [10 oo 02

o s o 06
training progress training progress training progress.

Figure 5: CartPole-v1: The left plot shows the cumulative rewards
obtained during the training process, the middle plot shows the testing
performance without random exploration, and the right plot shows the
performance of best model learned up to the time t.

Conclusion

» By redefining the state-space model, we enable SGMCMC
algorithms, such as LKTD and SGLD, to converge to the
accurate posterior distribution under mild conditions.

» Our LKTD algorithm demonstrates greater computational
efficiency and circumvents potential matrix degeneration
issues by eliminating the need for linearization.

» Compared to DQN and its variants, our framework not only

provides more precise point estimates of Q-values but also
generates accurate prediction intervals for value tracking.

References

Frank Shih and Faming Liang (2024). Fast Value
Tracking for Deep Reinforcement Learning. ICLR
2024.

	Introduction

