
1/22

Fast Value Tracking for Deep Reinforcement
Learning

Faming Liang

Purdue University

November 18, 2024

2/22

Reinforcement Learning

As a mathematical model, RL solves sequential decision-making
problems by designing an agent that interacts with the
environment, with the goal of learning an optimal policy that
maximizes the expected total reward for the agent.

Prominent value-based algorithms:

▶ Temporal-difference (TD) learning (Sutton, 1988)

▶ State–action–reward–state–action (SARSA) (Sutton & Barto,
2018)

▶ Q-learning

Traditionally, these methods treat the state value (or Q-value) as a
deterministic function, focusing on calculating point estimates of
model parameters, thereby overlooking the inherent stochasticity in
agent-environment interactions.

3/22

Reinforcement Learning

In the context of RL, a fair algorithm should exhibit the features:

(i) Uncertainty quantification: addressing the stochastic nature
of the agent-environment interactions, thereby enhancing the
robustness of the learned policy.

(ii) Dynamicity: addressing the dynamics of the
agent-environment interaction system.

(iii) Nonlinear approximation: employing, for example, a deep
neural network to approximate the value function.

(iv) Computational efficiency: scalable with respect to the model
dimension and training sample size.

In RL, it is more suitable to treat values or model parameters as
random variables rather than fixed unknowns, focusing on tracking
dynamic changes rather than achieving point convergence during
the policy learning process.

4/22

Kalman Temporal Difference (KTD)

KTD treats values or their parameters as random variables,
focusing on the tracking property of the policy learning process.
KTD conceptualizes RL as a state-space model:

θt = θt−1 + wt ,

rt = h(xt , θt) + ηt ,
(1)

where θt ∈ Rp denotes the parameters at time step t with
dimension p, wt ∈ Rp and ηt ∈ Rn denote two independent
multivariate Gaussian vectors, xt denotes a set of states and
actions collected at time step t, rt ∈ Rn denotes a vector of
rewards, n denotes the number of samples, and h(·, ·) can be a
linear or nonlinear function.

5/22

Kalman Temporal Difference (KTD)

▶ h(·) is linear: Kalman filter can be applied.

▶ h(·) is nonlinear: Unscented Kalman Filter (UKF), Extended
Kalman Filter (EKF).

Both UKF and EKF can be computationally inefficient for
high-dimensional parameter spaces.

6/22

Markov Decision Process

The RL procedure can be described by a Markov Decision Process
represented by {S,A,P, r , γ}, where S is set of states, A is a
finite set of actions, P : S ×A× S → R is the state transition
probability from state s to state s ′ by taking action a, denoted by
P(s ′|s, a), r(s, a) is a random reward received from taking action a
at state s, and γ ∈ (0, 1) is a discount factor.

At each time step t, the agent observes state st ∈ S and takes
action at ∈ A according to policy ρ with probability Pρ(a|s), then
the environment returns a reward rt = r(st , at) and a new state
st+1 ∈ S.

7/22

Markov Decision Process

For a given policy ρ, the performance is measured by the state
value function Vρ(s) = Eρ[

∑∞
t=0 γ

trt |s0 = s] and the state-action
value function Qρ(s, a) = Eρ[

∑∞
t=0 γ

trt |s0 = s, a0 = a], which are
called V -function and Q-function, respectively.

Both functions satisfy the Bellman equation:

Vρ(s) = Eρ[r(s, a) + γVρ(s
′)],

Qρ(s, a) = Eρ[r(s, a) + γQρ(s
′, a′)],

(2)

where s ′ ∼ P(·|s, a), a ∼ Pρ(·|s), a′ ∼ Pρ(·|s ′), and the
expectation Eρ[·] is taken over the transition probability
distribution P for a given policy ρ.

8/22

Kalman Temporal Difference Algorithm

Let st = (s
(1)
t , s

(2)
t , . . . , s

(n)
t)T , at = (a

(1)
t , a

(2)
t , . . . , a

(n)
t)T , and

rt = (r
(1)
t , r

(2)
t , . . . , r

(n)
t)T denote, respectively, a vector of n states,

actions, rewards collected at time step t. Given the Bellman
equation, the function h(xt , θt) in (1) can be expressed as

h(xt , θt) =

{
Vθt (st)− γVθt (st+1), for V -function,

Qθt (st , at)− γQθt (st+1, at+1), for Q-function,

(3)
where xt = {st , at , st+1, at+1},
Vθt (st) := (Vθt (s

(1)
t),Vθt (s

(2)
t), . . . ,Vθt (s

(n)
t))T , and

Qθt (st , at) := (Qθt (s
(1)
t , a

(1)
t), Qθt (s

(2)
t , a

(2)
t), . . . ,Qθt (s

(n)
t , a

(n)
t))T .

9/22

Kalman Temporal Difference Algorithm: Linearization

The fucntion h(x , θ) is linearized based on the first-order Taylor
expansion:

h(xt , θ) ≈ h(xt , µ̂t−1) +∇θh(xt , µ̂t−1)
T (θ − µ̂t−1),

where µ̂t−1 denotes the estimator for the mean of θt−1.

10/22

Langevinized Kalman Temporal Difference (LKTD)
algorithm

LKTD reformulates RL as the following state space model:

θt = θt−1 +
ϵt
2
∇θ log π(θt−1) + wt ,

rt = h(xt , θt) + ηt ,
(4)

where wt ∼ N(0, ϵt Ip), π(θ) represents a prior density function we
impose on θ, and {ϵt : t = 1, 2, . . .} is a positive sequence decaying
to zero.

LKTD integrates the KTD and LEnKF algorithm, leading to an
effective algorithm for RL.

11/22

LKTD Algorithm

By the state augmentation approach, we define

φt =

(
θt
ξt

)
, ξt = h(xt ; θt) + ut , ut ∼ N(0, ασ2In), (5)

where ξt is an n-dimensional vector, and 0 < α < 1 is a
pre-specified constant.
Based on Langevin dynamics, we can reformulate (4) as

φt = φt−1 +
ϵt
2

n

N
∇φ log π(φt−1) + w̃t ,

rt = Htφt + vt ,
(6)

where N > 0, w̃t ∼ N(0, n
N Bt), Bt = ϵt Ip̃, p̃ = p + n is the

dimension of φt ; Ht = (0, In) such that Htφt = ξt ;
vt ∼ N(0, (1− α)σ2In), which is independent of w̃t for all t. We
call N the pseudo-population size, which scales uncertainty of the
estimator of the system.

12/22

LKTD Algorithm

▶ Initialization: Draw θa0 ∈ Rp drawn from the prior distribution
π(θ).
Do the following for t = 1, 2, . . . ,T :
▶ Sampling: With policy ρθa

t−1
, generate a set of n transition

tuples, denoted by zt = (rt , xt) := {r (j)t , x
(j)
t }nj=1.

Do the following for k = 1, 2, . . . ,K:
▶ Presetting: Set Bt,k = ϵt,k Ip̃, Rt = 2(1− α)σ2I , and the

Kalman gain matrix Kt,k = Bt,kH
⊤
t (HtBt,kH

⊤
t + Rt)

−1.
▶ Forecast: Draw w̃t,k ∼ Np(0,

n
N Bt,k) and calculate

φf
t,k = φa

t,k−1 +
ϵt,k
2

n

N ∇φ log π(φa
t,k−1) + w̃t,k , (7)

where φa
t,0 = (θat−1,K

⊤, r⊤t)⊤ if k = 1.
▶ Analysis: Draw vt,k ∼ Nn(0,

n
N Rt) and calculate

φa
t,k = φf

t,k+Kt,k(rt−Htφ
f
t,k−vt,k) = φf

t,k+Kt,k(rt−r ft,k). (8)

13/22

Convergence theory

Lemma 1
The LKTD algorithm implements a preconditioned SGLD
algorithm, for which

φa
t = φa

t−1 +
ϵt
2
Σt∇φ log π(φa

t−1|zt) + et , (9)

where zt = (rt , xt), Σt =
n
N (I − KtHt) is a constant matrix given

φt , et ∼ N(0, ϵtΣt), and the gradient term ∇φ log π(φa
t−1|zt) is

given by

∇φ log π(φa
t−1|zt) = N

n

∑n
i=1∇φ log π(z

(i)
t |φa

t−1)+∇φ log π(φa
t−1).

14/22

Convergence theory: On-policy setting

Theorem 2
Consider a SGLD sampler with a polynomailly-decay learning rate
ϵk = ϵ0

kϖ for some ϖ ∈ (0, 1). Suppose that the environment is
stationary and regularity conditions hold. Then there exist
constants (C0,C1,C2,C3) such that for all K ∈ N, the
2-Wasserstein distance between µK and νN can be bounded by

W2(µK , νN) ≤ (12 + C2ϵ0(
1

1−ϖ
K 1−ϖ))

1
2 · [(C1ϵ

2
0(

2ϖ

2ϖ − 1
) + δC0(

ϵ0
1−ϖ

K 1−ϖ))
1
2

+ (C1ϵ
2
0(

2ϖ

2ϖ − 1
) + δC0(

ϵ0
1−ϖ

K 1−ϖ))
1
4] + C3 exp(−

1

βcLS
(

ϵ0
1−ϖ

K 1−ϖ)),

(10)

where µK (θ) denotes the probability law of θK ,
νN (θ) ∝ exp(−βG(θ)), G(θ) = O(N) is the anti-derivative of
g(θ), i.e., ∇θG(θ) = g(θ), and cLS denotes a logarithmic Sobolev
constant satisfied by the νN .

15/22

Convergence theory: with replay buffer

Theorem 3
Let {θt}Tt=1 be a sequence of updates generated from LKTD with
replay buffer. At each time t, the transition tuple zt is sampled
from the replay buffer π̄(zt |θR

t−1). In addition to the assumptions
in theorem 2, we further assume the following holds:

1. (Lipschitz)
∫
Z |π(z |θ)− π(z |ϑ)|2dz ≤ L∥θ − ϑ∥2;

2. (Integrability)
∫
Z ∥G (θ, z)∥2dz ≤ M and∫

Z ∥G (θ, z)∥2π(z |θ)dz ≤ M, ∀θ ∈ Θ.

Then for a bounded test function ϕ, the bias of the LKTD can be
bounded as:

|Eϕ̂− ϕ̄| = O(
1

ST
+

∑T
t=1 ϵ

2
t

ST
), E(ϕ̂− ϕ̄)2 = O(

1

ST
+

∑T
t=1 ϵ

2
t

S2
T

+
(
∑T

t=1 ϵ
2
t)

2

S2
T

)

(11)

16/22

Indoor Escape Environment

For this environment, the state space consists of 100 grids and the
agent’s objective is to navigate to the goal positioned at the top
right corner.

Figure 1: Indoor escape environment

17/22

Indoor Escape Environment

Figure 2: Boxplots for MSE(Q̂a) (for a ∈ {N,E}))

18/22

Indoor Escape Environment

Figure 3: Boxplots for coverage rates (for a ∈ {N,E}))

19/22

Indoor Escape Environment

Figure 4: Mean policy probabilities for the indoor escape environment:
(a) known optimal solution; (b) learned by LKTD; (c) learned by DQN,
failing to explore different policies.

20/22

Classical Control Problems

Figure 5: CartPole-v1: The left plot shows the cumulative rewards
obtained during the training process, the middle plot shows the testing
performance without random exploration, and the right plot shows the
performance of best model learned up to the time t.

21/22

Conclusion

▶ By redefining the state-space model, we enable SGMCMC
algorithms, such as LKTD and SGLD, to converge to the
accurate posterior distribution under mild conditions.

▶ Our LKTD algorithm demonstrates greater computational
efficiency and circumvents potential matrix degeneration
issues by eliminating the need for linearization.

▶ Compared to DQN and its variants, our framework not only
provides more precise point estimates of Q-values but also
generates accurate prediction intervals for value tracking.

22/22

References

Frank Shih and Faming Liang (2024). Fast Value
Tracking for Deep Reinforcement Learning. ICLR
2024.

	Introduction

