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Deep Learning

During the past decade, Deep Learning has been the engine
powering many successes of machine learning. However, it is still
far from perfect in many aspects:

▶ DNNs are often Over-parameterized

▶ SGD tends to converge to local traps

▶ Uncertainty of the estimate/prediction/decision is not
quantified, leading to some safety issues

▶ · · · · · ·



Bayesian Learning and SGLD

Bayesian statistics is important to machine learning, which
captures uncertainty and leads to safe AI.
For big data problems, traditional MCMC algorithms can become
extremely slow as they typically require a large number of
iterations and a complete scan of the full dataset for each
iteration. To tackle this difficulty, a variety of scalable algorithms
have been developed under the umbrella of subsampling:

▶ Stochastic gradient MCMC

▶ split-and-merge

▶ mini-batch Metropolis-Hastings algorithms

▶ nonreversible Markov process



Stochastic gradient Langevin dynamics (SGLD)

▶ Let XN = (X1,X2, . . ., XN) denote a set of N independent
and identically distributed (iid) observations.

▶ Let L(θ|XN) =
∑N

i=1 log f (xi |θ) + log π(θ) denote the
log-posterior density of a statistical model parameterized by θ,
where f (xi |θ) is the density function of Xi , and π(θ) is the
prior density of θ.

The SGLD algorithm iterates via the equation

θt+1 = θt +
ϵt+1

2
∂θL̂(θt |XN) +

√
ϵt+1τηt+1, ηt+1 ∼ N(0, Id),

(1)
where d is the dimension of θ, Id is a d × d-identity matrix, ϵt+1 is
the step size (also known as the learning rate), τ is the
temperature, and L̂(θ|XN) denotes an estimate of L(θ|XN).



Stochastic Gradient MCMC (SGMCMC)

▶ Stochastic gradient Langevin dynamics (SGLD)

▶ stochastic gradient Hamiltonian Monte Carlo

▶ stochastic gradient thermostats

▶ stochastic gradient Fisher scoring

▶ preconditioned SGLD

Refer to Ma et al. (2015) for a complete framework of these
algorithms.



Attractive Features of SGLD

▶ Their transitional kernel is defined by a stochastic differential
equation with the moving direction guided by the gradient of
the log-target density function.

▶ Only an inaccurate gradient of the log-target density function,
which can be evaluated on a mini-batch of data, is required
for each transition.

These two distinctive features make SGMCMC algorithms highly
scalable, exhibiting similar costs as many stochastic optimization
algorithms.



Difficulties with SGLD

▶ For convex energy functions, SGLD converges to the
stationary distribution in polynomial time.

▶ For non-convex energy functions, however, an exponentially
long mixing time is unavoidable in general. According to
Bonis (2016), it takes the Langevin diffusion at least
exp(Ω(h/τ)) steps to escape a depth-h basin of attraction.

How to overcome the local-trap problem is crucial to the success of
Bayesian learning.



Strategies used to Improve SGMCMC

▶ Auxiliary variable: using auxiliary variables to increase
dynamics of the simulation. For example, SGHMC introduces
a moment term and SGT introduces further another auxiliary
variable.

▶ Geometry information of the manifold: using the geometry
information of the target distribution to adapt the dynamics
of the simulation. For example, SGRLD, SGFS and pSGLD
use the fisher information metric or its estimator.

When the learning rate ϵt becomes very small after a sufficient
burn-in period, the trajectory of the samples can be local.
Therefore, it is very difficult for the existing SGMCMC algorithms
to traverse between different local energy minima even with above
two strategies.



Adaptively Weighted SGLD

AWSGLD employs a new strategy to resolve the local trap
problem, which is to adaptively update the gradient used in (1) to
facilitate escaping from local traps.

▶ AWSGLD will converge to a distribution (denoted by π̃(x |D))
different from the target distribution π(x |D), while all the
existing variants will converge to π(x |D).

▶ Compared to π(x |D), π̃(x |D) biases sampling toward low
energy regions and thus facilitates optimization of the energy
function.

▶ AWSGLD can be incorporated into the existing variants of
SGLD. For example, with the use of auxiliary variables, we can
have new algorithms such as adaptively weighted SGHMC or
adaptively weight SGT; with the use of the fisher information
metric, we can have a new algorithm adaptively weighted
SGRLD.



AWSGLD: Idea

▶ Suppose that we are interested in sampling from a posterior
density function

π(x |D) ∝ exp(−U(x |D)/τ), (2)

where D denotes the observed data, τ denotes the
temperature, and U(x |D) is the energy function. Let g(u)
denote the marginal density function of energy, which can be
defined through g(u) = dG (u)/du and

G (u) =

∫
{x :U(x |D)≤u}

π(x |D)dx . (3)



AWSGLD: Idea

▶ We propose to simulate from a weighted density function

π̃(x |D) ∝ π(x |D)

θ(U(x))ζ
, (4)

where ζ is a positive constant, and θ(u) is a strictly increasing
function of u. Sampling from (4) leads to the following
marginal density function of energy

P(u) ∝ g(u)

θζ(u)
,

which biases sampling toward low energy subregions.



AWSGLD: Idea

(a) τ = 1 (b) τ = 2 (c) τ = 8
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Figure: Illustrative Example 1: Original energy landscapes (upper panel)
and weighted energy landscapes (lower panel) at different temperatures:
(a) τ = 1; (b) τ = 2; (c) τ = 8.



AWSGLD: Setup

▶ A straightforward calculation shows

∇x log π̃(x |D) = −
[
1 + ζ

∂θ(u)/∂u

θ(u)

]
∇xU(x |D). (5)

▶ partitioning the sample space according to the energy function
into m disjoint subregions: E1 = {x : U(x |D) ≤ u1},
E2 = {x : u1 < U(x |D) ≤ u2}, . . .,
Em−1 = {x : um−2 < U(x |D) ≤ um−1}, and
Em = {x : U(x |D) > um−1}, where
−∞ < u1 < u2 < · · · < um < ∞ are specified by the user.

▶ Let {ϵt : t = 1, 2, . . .} and {γt : t = 1, 2, . . .} denote two
positive, non-increasing sequence satisfying certain conditions
as given in stochastic approximation.



AWSGLD: Algorithm

1. (Data subsampling) Draw a subsample of size n, denoted by
Dt , from the dataset D which contains N iid samples.

2. (SGLD sampling) Draw xt+1 using the SGLD algorithm based
on the current sample xt , i.e.,

xt+1 = xt − ϵt+1
N

n

[
1 +

ζ

∆u

(
1−

θ̂t,J(xt)−1

θ̂t,J(xt)

)]
×∇xU(xt |Dt) +

√
2ϵt+1ηt+1,

(6)

where ηt+1 ∼ N(0, Id), d denotes the dimension of x , and
ϵt+1 is the learning rate.

3. (Adaptive parameter updating) Update the estimate of θ(ui )’s
for i = 1, 2, . . . ,m by setting

θ̂t+1,i =

{
(1− γt+1)θ̂t,i , i < J(xt+1),

(1− γt+1)θ̂t,i + γt+1θ̂t,J(xt+1), i ≥ J(xt+1).



AWSGLD: remarks

▶ The estimate of θ(u) changes from iteration to iteration,
AWSGLD is an adaptive SGMCMC algorithm.

▶ AWSGLD possesses a self-adjusting mechanism for escaping
local traps: If it falls into a local energy minimum, the ratio
θ̂t,J(xt)−1/θ̂t,J(xt) will gradually decrease in the followed
iterations as implied by step 3 of the algorithm, rendering a
larger gradient multiplier to facilitate escaping from the local
trap.

▶ A large value of ζ enhances the ability of AWSGLD to escape
from local traps, especially in the early period of the
simulation. In practice, the value of ζ can be gradually
increased to a constant via an adaptive mechanism.



AWSGLD vs SGLD

Compared to SGLD, AWSGLD allows a higher temperature to be
used in simulations due to the inclusion of the gradient multiplier.
This is very important for global optimization: AWSGLD flattens
the high energy region, while protruding the low energy region via
an importance sampling mechanism. As a result, this shortens its
hitting time to the low energy set.



Adaptive SGLD: General algorithm

1. (SGLD sampling) Simulate xt+1 using SGLD based on the
current parameter estimate θt , i.e.

xt+1 = xt + ϵt+1
∂

∂x
L̃(xt ,θt) +

√
2ϵt+1ηt+1,

where ηt+1 ∼ N (0, I ).
2. (Parameter Update) Update the parameter θt according to

the recursion

θt+1 = θt + γt+1 (ξ(θt , xt+1)− θt)

= (1− γt+1)θt + γt+1ξ(θt , xt+1),
(7)

where ξ(·, ·) is a mapping to derive to the optimal parameter
value θ based on the samples xt ’s.



Adaptive SGLD: Convergence

Theorem 1 [L2 convergence rate] For the ASGLD algorithm, if

ϵ ∈ (0,Re(m−
√
m2−3M2

3M2 )), then there exists a constant λ such that
E
[
∥θk − θ∗∥2

]
≤ λγk holds, where θ∗ denotes a solution to the

fixed point equation ∫
ξ(θ, x)πθ(x |D)dx = θ. (8)



Adaptive SGLD: Convergence

Theorem 2 [Ergodicity]
If the learning rate sequence {ϵk}, the subsample size n, and the
iteration number k are appropriately chosen, then there exist
constants 0 < υ < 0.25 and C > 0 such that

W2(πk , π∗) ≤ Ck−υ, as k → ∞,

where W2(·, ·) denotes the 2-Wasserstein distance between two
probability measures, πk = πθk (xk |D) denotes the distribution of

xk , and π∗ = e−U(x |D)/τ/θζ
∗ denotes the target distribution.



Adaptive SGLD: Convergence

Theorem 3 [Dynamic Importance Sampling]
For any integrable function g(x), define

Êπg(x) =
k∑

i=1

wig(xi )/
k∑

i=1

wi , (9)

where the importance weight wi associated with xi is given by
wi = θζi ,J(xi ). Then

Êπg(x) → Eπg(x) =
∫

g(x)π(x |D)dx

almost surely as k → ∞.



AWSGLD: Convergence

AWSGLD is a special case of ASGLD, for which θ∗ can be
determined by solving the equation

θ∗(u) =

∫
e−U(x)

θζ
∗(u)

θ∗(u)1{u≥U(x)}dx =
G (u)

θζ−1
∗ (u)

. (10)

That is,
θ∗(u) = (G (u))1/ζ .

Furthermore, for any ζ, we have

ζ
∂θ(u)/∂u

θ(u)
=

g(u)

G (u)
. (11)

The choice of ζ will not affect much the performance of the
algorithm. However, a large value of ζ does enhance the
convergence of the algorithm toward a lower energy region in the
early period of the simulation.



Estimation of CDF in Energy

▶ Standard Gaussian distribution, i.e., π(x |D) = N(0, 1).

▶ Mixture Gaussian distribution 2
5N(−2, 1) + 3

5N(1, 1), which
represents a multimodal distribution.



Estimation of CDF in Energy
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Figure: Results of AWSGLD where the lines are annotated as follows:
black: true function G (u); red: AWSGLD estimate of G (u); blue:
empirical CDF of AWSGLD samples; and purple: empirical CDF of SGLD
samples.



2D Ackley Function

40
30

20
10

0
10

20
30

40 40 30 20 10 0 10 20 30 40
0

5

10

15

20

25

Global minimum

2D Ackley surface

SGLD trajectory

(a) SGLD trajectory.
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(b) AWSGLD trajectory.

Figure: Trajectories of AWSGLD and SGLD on 2D Ackley surface.



Multimodal Sampling

The second experiment is to show that AWSGLD has the
capability to traverse over a rugged energy landscape with many
local energy minima. The target density function is given by
π(x) ∝ exp(−U(x)/τ), where τ = 20 and U(x) is given by

U(x) = −{x1 sin(20x2) + x2 sin(20x1)}2 cosh(sin(10x1)x1)
− {x1 cos(10x2)− x2 sin(10x1)}2 cosh(cos(20x2)x2),

which has been used in multiple papers as a multimodal example.



Multimodal Sampling

1.0 0.5 0.0 0.5 1.0

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
Contour

1.0 0.5 0.0 0.5 1.0

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
SGLD trajectory

1.0 0.5 0.0 0.5 1.0

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
AW-SGLD trajectory

Figure: Sample paths of SGLD and AWSGLD on a rugged energy
landscape.



Multimodal Sampling

Table: Average iteration numbers required by SGLD and AWSGLD to
locate a global energy minimum for 10 benchmark functions, where
AW-10 is short for AWSGLD with 10 partitions and each test was
repeated 40 times

No Function \ Iters ×103 Dim SGLD AW-10 AW-100 AW-1000
1 Rastrigin (RT20) 20 8.7±0.8 16.8±1.3 9.4±1 7.1±0.6
2 Griewank (G20) 20 467.8±13 4.3±1 5.3±0.2 13.7±0.7
3 Sum Squares (SS20) 20 ∞ 81.4±6 78.3±6 96.9±3
4 Rosenbrock (R20) 20 61.0±10 19.9±5 21.6±6 26.3±6
5 Zakharov (Z20) 20 66.8±20 10.0±5 5.8±4 10.1±5
6 Powell (PW24) 24 98.4±1 34.8±4 20.0±3 51.7±6
7 Dixon&Price (DP25) 25 32.6±3 23.1±3 20.0±3 23.0±3
8 Levy (L30) 30 23.3±2 0.1±0.004 0.4±0.01 1.0±0.04
9 Sphere (SR30) 30 0.5±0.02 0.1±0.001 0.1±0.001 0.2±0.001
10 Ackley (AK30) 30 11.7±2 16.1±6 3.4±0.4 7.4±1



Landset Data

AWSGLD was applied to train a deep neural network (DNN) for
the dataset Landset which is available at the UCI Machine
Learning Repository.

▶ The dataset consists of 4435 training instances and 2000
testing instances

▶ Each instance consists of 36 attributes representing features
of an image of the earth surface taken from a satellite.

▶ The training instances consist of 6 classes.

▶ We trained a DNN with structure 36-30-30-6 and the
activation function tanh.



Landset Data
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Figure: Sample paths of AWSGLD (aw-SGLD, black), constant stepsize
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(ds-SGLD, light blue) in training a DNN for Landset data.



Landset Data

Table: Training and prediction errors produced by AWSGLD, constant
stepsize SGD (csSGD), constant stepsize SGLD (csSGLD), decreasing
stepsize SGD (dsSGD), decreasing stepsize SGLD (dsSGLD) for the
Landsat data.

SGLD SGD
Method AWSGLD cs ds cs ds

fit(%) 1.87 4.08 9.76 5.68 11.79
pred(%) 7.65 9.00 12.35 9.90 14.60



Computer Vision Data

▶ CIFAR10 is a benchmark dataset with 10 classes. It contains
50,000 images for training and 10,000 RGB images for testing.

▶ CIFAR100 dataset has 100 classes and each class consists of
500 training images.



Computer Vision Data

Table: Experiments on CIFAR10 & 100 datasets using Resnet20 models,
where ϵ denotes the learning rate and τ the temperature. Each test is
repeated for 10 times. The bold color means significant improvement.

Strategy
Dataset CIFAR10 CIFAR10 CIFAR100 CIFAR100
Criteria One Sample BMA One Sample BMA

Fixed ϵ
Fixed τ

M-SGD 90.10 ± 0.06 92.79 ± 0.04 61.19 ± 0.08 68.03 ± 0.07
SGHMC 89.73 ± 0.05 92.51 ± 0.03 61.72 ± 0.11 68.05 ± 0.08

AWSGHMC 91.20 ± 0.09 93.27 ± 0.03 65.20 ± 0.34 70.46 ± 0.08

Decay ϵt
Fixed τ

M-SGD 93.14 ± 0.05 93.50 ± 0.04 67.12 ± 0.26 70.14 ± 0.06
SGHMC 90.79 ± 0.04 93.07 ± 0.07 64.65 ± 0.09 69.85 ± 0.09

AWSGHMC 92.52 ± 0.04 93.66 ± 0.03 68.74 ± 0.16 71.74 ± 0.08

Decay ϵt
Decay τt

M-SGD 93.16 ± 0.04 93.49 ± 0.05 67.60 ± 0.11 70.31 ± 0.11
SGHMC 93.26 ± 0.04 93.58 ± 0.03 67.45 ± 0.14 70.22 ± 0.09

AWSGHMC 93.85 ± 0.04 94.10 ± 0.04 70.65 ± 0.09 72.04 ± 0.08



Conclusion

▶ We have proposed the AWSGLD algorithm as a general
Monte Carlo algorithm for Bayesian learning.

▶ We established the convergence theory and hitting time upper
bound for AWSGLD, and tested its performance on multiple
benchmark examples.

▶ The comparison with SGLD shows its superiority in stochastic
optimization and Bayesian learning.

▶ The efficiency of AWSGLD can be further improved with the
SGLD step replaced by its variants such as SGHMC, SGT or
SGRLD.
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