
Markov Chain Monte Carlo

After six decades of continual development, MCMC has proven to
be a very powerful and typically unique computational tool for
analyzing data of complex structures. However, it has encountered
intrinsic difficulties in dealing with large-scale problems:

▶ Big sample size (N): Repeated scans of the full dataset

▶ Large dimension (p): Curse of dimensionality

▶ Big N + Large p.



Stochastic Gradient MCMC (SGMCMC)

▶ Stochastic gradient Langevin dynamics (SGLD)

▶ stochastic gradient Hamiltonian Monte Carlo

▶ stochastic gradient thermostats

▶ stochastic gradient Fisher scoring

▶ preconditioned SGLD

Refer to Ma et al. (2015) for a complete framework of these
algorithms.



Attractive Features of SGMCMC

▶ Their transitional kernel is defined by a stochastic differential
equation with the moving direction guided by the gradient of
the log-target density function.

▶ Only an inaccurate gradient of the log-target density function,
which can be evaluated on a mini-batch of data, is required
for each transition.

These two distinctive features make SGMCMC algorithms highly
scalable, exhibiting similar costs as many stochastic optimization
algorithms.



Difficulties with SGMCMC

In their current setup, the SGMCMC algorithms are only applicable
to a small class of problems for which

(i) the parameter space has a fixed dimension; and

(ii) the log-posterior density is differentiable with respect to the
parameters.



Other Mini-batch Methods

▶ Split-and-merge: split the big dataset into a number of
smaller subsets, conduct the Bayesian analysis for each subset
separately (running in parallel), and then aggregate the
posterior samples generated for each subset to make correct
inference for the full data posterior. Existing methods include
consensus Monte Carlo (Scott et al., 2016), WASP Monte
Carlo (Srivastava et al., 2018), and double parallel Monte
Carlo (Xue and Liang 2018).

▶ mini-batch Metropolis-Hastings sampler: Korattikara et al.
(2014), Bootstrap MH (Liang et al., 2016), Bardenet et al.
(2017). These samplers are often biased due to an inaccurate
assessment for uncertainty of the acceptance/rejection
probability caused by subsampling.



Stochastic gradient Langevin dynamics (SGLD)

▶ Let XN = (X1,X2, . . ., XN) denote a set of N independent
and identically distributed (iid) observations.

▶ Let L(θ|XN) =
∑N

i=1 log f (xi |θ) + log π(θ) denote the
log-posterior density of a statistical model parameterized by θ,
where f (xi |θ) is the density function of Xi , and π(θ) is the
prior density of θ.

The SGLD algorithm iterates via the equation

θt+1 = θt +
ϵt+1

2
∂θL̂(θt |XN) +

√
ϵt+1τηt+1, ηt+1 ∼ N(0, Id),

(1)
where d is the dimension of θ, Id is a d × d-identity matrix, ϵt+1 is
the step size (also known as the learning rate), τ is the
temperature, and L̂(θ|XN) denotes an estimate of L(θ|XN).



Stochastic gradient Langevin dynamics (SGLD)

Under the assumption that the estimation error

ξt = L̂(θt |XN)− L(θt |XN)

is a white noise or martingale difference noise, Sato and Nakagawa
(2014) proved that θt converges weakly to the posterior

π(θ|XN) ∝ exp{L(θ|XN)/τ}, as ϵt → 0.



Stochastic gradient Langevin dynamics (SGLD)

Welling and Teh (2011) proposed to estimate L(θ|XN) using a
mini-batch sample by setting

L̂(θ|XN) =
N

n

n∑
i=1

log f (x∗i |θ) + log π(θ),

where {x∗1 , x∗2 , . . . , x∗n} denotes a subsample of size n, and set the
step size to a non-increasing sequence satisfying

∞∑
t=0

ϵt+1 = ∞,

∞∑
t=0

ϵ2t+1 < ∞,

as in a stochastic approximation algorithm.



Stochastic gradient Langevin dynamics (SGLD)

For the constant stepsize SGLD algorithm, Sato and Nakagawa
(2014) established the weak convergence for the path average,
which implies that for any continuously differentiable and
polynomial growth function ρ(θ),

1

T

T∑
t=1

ρ(θt)
p−→ Eπρ(θ), (2)

where
p−→ denotes convergence in probability.



Stochastic gradient Langevin dynamics (SGLD)

About the choice of ϵ and the subsample size n:

▶ According to Dalalyan and Karagulyan (2017), they should be
chosen such that ϵNp/n = o(1) under the assumptions that n
and p will increase with N, while ϵ will decrease with N,
where p denotes the dimension of θ.

▶ Based on practical experience, Nagapetyan et al. (2017)
suggested to choose ϵ < 1/N and n ≈ N2ϵ/2.



Variable selection for linear regression

For illustration, we consider the problem of variable selection for
linear regression:

y = Zβ + σε, (3)

where y is an N-dimensional response vector, Z is an N × p design
matrix, β is a p-dimensional vector of regression coefficients, σ is
the standard deviation, and ε ∼ N(0, IN).

This problem has been well studied in Bayesian statistics, for which
a variety of methods has been developed including SSVS (George
and McCullloch, 1993), Bayesian Lasso (Park and Casella, 2008),
split-and-merge (Song and Liang, 2015), among others.

When N is large, repeated scans of the full dataset during
iterations can make the Bayesian methods far less than practical.



Extended SGLD Algorithm

▶ Let θ denote a latent vector which links the model S and the
associated parameter vector βS via the relation

βS = θ ∗ γS , (4)

where γS is a binary vector indicating the variables included in
the model S , and ∗ denotes elementwise multiplication.

▶ Let θS and θ[−S] denote the elements of θ with the
corresponding variables belonging to S and not belonging to
S , respectively.

▶ Let π(γS) denote the prior probability of model S .

▶ Let π(θS) and π(θ[−S]) denote the prior density function of
θS and θ[−S], respectively. Assume that
π(θ|γS) = π(θS)π(θ[−S]).



Extended SGLD Algorithm

Lemma 1. Assume π(θ|γS) = π(θS)π(θ[−S]). If (4) holds, then

∇θ log π(θ | XN) =
∑
γS

π(γS | θ,XN)∇θ log π(θ | γS ,XN), (5)

where π(γS | θ,XN) and π(θ | γS ,XN) denote the conditional
posterior of γS and θ, respectively.

Lemma 1 provides us a Monte Carlo estimate for ∇θ log π(θ | XN)
by averaging over the samples drawn from the posterior
distribution π(γS |θ,XN).



eSGLD for variable selection: Plain version(Algorithm 1)

(i) (Simulating models) Simulate models γ
(t)
S1

, . . . ,γ
(t)
Sm

according

to the conditional posterior π(γS |θ(t),XN), where θ(t)

denotes the sample of θ drawn at iteration t.

(ii) (Updating θ) Update θ(t) by setting

θ(t+1) = θ(t)+
ϵt+1

2m

m∑
k=1

∇θ log π(θ
(t)|γ(t)

Sk
,XN)+

√
ϵt+1τηt+1,

where ηt+1 ∼ N(0, Id), and ϵt+1 can be set to a small
constant or decrease as in the SGLD algorithm.



eSGLD with subsampling

Without loss of generality, we assume that N is a multiple of n,
i.e., N/n is an integer. Let Xn,N = {Xn, . . . ,Xn} denote a
duplicated dataset from the subsample, whose total sample size is
also N. Therefore

∇θ log π(θ | Xn,N) = ∇θ log p(Xn,N | θ) +∇θ log π(θ)

=
∑
γS

π(γS | θ,Xn,N)∇θ log π(θ | γS ,Xn,N),

(6)

where the first equality implies ∇θ log π(θ | Xn,N) is an unbiased
estimator of ∇θ log π(θ | XN).



eSGLD with subsampling (Algorithm 2)

(i) (Subsampling) Draw a subsample of size n from the full

dataset XN at random, and denote the subsample by X (t)
n ,

where t indexes the iteration.

(ii) (Simulating models) Simulate models γ
(t)
S1,n

, . . . ,γ
(t)
Sm,n

from

the conditional posterior π(γS |θ(t),X (t)
n,N), where θ(t) denotes

the sample of θ drawn at iteration t.

(iii) (Updating θ) Update θ(t) by setting

θ(t+1) = θ(t)+
ϵt+1

2m

m∑
k=1

∇θ log π(θ
(t)|γ(t)

Sk
,X (t)

n,N)+
√
ϵt+1τηt+1,

where ηt+1 ∼ N(0, Id), and ϵt+1 can be set to a small
constant or decrease as in the SGLD algorithm.



Validity of eSGLD for variable selection

Let R
(t)
n denote the index of the subsamples drawn at iteration t.

The joint distribution of the eSGLD samples is given by

π(θ,Rn,γS |XN) = π(γS |θ,Xn,N)P(Rn)π(θ|XN).

Suppose that we are interested in estimating the probability
π(γS |XN). Based on the MCMC output, it can be estimated by

π̂(γS |XN) =
1

T

T∑
t=1

I (γ
(t)
S = γS). (7)



Validity of eSGLD for variable selection

Conditioned on (θ(t),R
(t)
n ), t = 1, 2, . . . ,T , i.e., taking the

conditional expectation for each indicator I (St = S), we get an
alternative estimator

π̃(γS |XN) =
1

T

T∑
t=1

E (I (γ
(t)
S = γS)|θ(t),X (t)

n,N)

=
1

T

T∑
t=1

π(γS |θ(t),X (t)
n,N).

(8)



Validity of eSGLD for variable selection

(A.1) The posterior π∗ = π(θ|XN) is strongly log-concave:

f (θ)− f (θ′)−∇f (θ′)T (θ−θ′) ≥ qN
2
∥θ−θ′∥22, ∀θ,θ′ ∈ Θ,

(9)
where f (θ) = − log π(θ|XN), and qN is a positive number
depending on N and satisfying the limit limN→∞ qN = ∞. In
general, we have qN = O(N).

(A.2) The posterior π∗ = π(θ|XN) is gradient-Lipschitz, i.e.,

∥∇f (θ)−∇f (θ′)∥2 ≤ QN∥θ − θ′∥2, ∀θ,θ′ ∈ Θ, (10)

where QN ≤ c0N is a positive constant for some constant c0.
Note that we must have qN ≤ NN .



Validity of eSGLD for variable selection

(A.3) E
{
maxS∈S EXN

[∥∇θ log π(θ|γS ,XN)∥2|θ]
}
= O(N2p), where

EXN
denotes expectation with respect to the distribution of

XN .

(A.4) Let LN(γS ,θ) = log p(XN |γS ,θ)/N and let

{L(i)N (θ) : i = 1, 2, . . . , |S∥} be the descending order statistics
of LN(γS ,θ)’s, where S denotes the set of all possible models
with the cordiality |S| = 2p. Assume that there exists a

constant δ > 0 such that infθ∈Θ(L
(1)
N (θ)− L

(2)
N (θ)) ≥ δ.



Validity of eSGLD for variable selection

Theorem 1. [Asymptotic consistency of subsampling estimators]
Assume the conditions (A.1)-(A.3), which are given in the
Appendix.

(i) If m, p, n are increasing with N such that N/n ≥ m ≻ √
p,

and a constant learning rate ϵ ≺ mn
Np is used, then

W2(πt , π∗) → 0 as t → ∞, where πt denotes the distribution
of θ(t), π∗(θ) = π(θ|XN), and W2(·, ·) denotes the second
order Wasserstein distance between two distributions.

(ii) If ρ(θ) is α-Lipschitz for some constant α > 0, then∑T
t=1 ρ(θ

(t))/T
p→ π∗(ρ) as T → ∞, where

p→ denotes
convergence in probability and π∗(ρ) =

∫
Θ ρ(θ)π(θ|XN)dθ.

(iii) If condition (A.4) and n ≻ p are further satisfied, then
1

mT

∑T
t=1

∑m
i=1 I (γ

(t)
Si ,n

= γS)− π(γS |XN)
p→ 0 as T → ∞

and N → ∞.



Validity of eSGLD for variable selection

Theorem 2. Assume the conditions of Theorem ?? hold. If,
instead of a constant learning rate, a decreasing learning rate
ϵt = O(1/tκ) is used for some 0 < κ < 1, then the unweighted
estimators given in parts (ii) and (iii) of Theorem ?? are still valid.



Remarks on eSGLD

▶ The total computational complexity of eSGLD is
O(N1+εp1−ε′) if measured in float computation, where
ε = κ/2 + δ and the factor 0 < 1− ε′ < 1 counts for the
possible sparsity of the model. This is quite comparable with
the computational complexity O(Np1−ε′) achieved in general
by the stochastic gradient descent (SGD) algorithm.

▶ For any integrable function ρ(γS) such that

Eπ|ρ(γS)|1+ε < ∞ for any ε > 0, 1
T

∑T
t=1 ρ(γ

(t)
S ) forms a

consistent estimator of Eπρ(γS), where Eπ denotes the
expectation with respect to the posterior distribution.



An Illustrative Example

We considered the regression model:

y = z1+z2+z3+z4+z5−z6−z7−z8+0·z9+· · ·+0·z100+ε, (11)

where ε ∼ N(0, IN), and IN denotes an N ×N identity matrix. The
explanatory variables z1, . . . , z100 were generated such that they
have a mutual correlation coefficient of 0.5. We considered three
different values of N: 250, 500 and 1000. For each of them, we
generated 10 independent datasets from the model (11).



An Illustrative Example

Table: Marginal inclusion probabilities estimates produced by Algorithm 2
for different sizes of datasets. CPU time was recorded for a run with one
dataset on a Linux machine with Intel(R) Core(TM) i7-7700
CPU@3.60GHz.

N True variablesa False variablesb CPUc (seconds)

250 0.9489 (0.0644) 0.0202 (0.0066) 2.4
500 1.0000 (0.0001) 0.0214 (0.0065) 6.0
1000 1.0000 (0.0000) 0.0249 (0.0063) 15.3



Large-Scale Linear Regression

To show that Algorithm 2 is suitable for large-scale Bayesian
computing, we simulated 10 large datasets from an extended
model of (11), where we set p = 2000 and N = 50, 000 while
keeping the true model unchanged.

The performance of the algorithm in variable selection is measured
by the false selection rate (FSR) and negative selection rate (NSR):

FSR =

∑10
i=1

∣∣∣Ŝi \ S∣∣∣∑10
i=1

∣∣∣Ŝi ∣∣∣ , NSR =

∑10
i=1

∣∣∣S \ Ŝi
∣∣∣∑10

i=1 |S |
, (12)

where S denotes the set of true variables, Ŝi denotes the set of
selected variables from dataset i , and |Ŝi | denotes the size of Ŝi .



Large-Scale Logistic Regression

We simulated 10 large datasets from the model

logitP(Yi = 1) =
k∑

i=1

βjzij , i = 1, 2, . . . ,N, (13)

where N = 50, 000, k = 2000, β1 = · · · = β5 = 1,
β6 = β7 = β8 = −1, and β9 = · · · = βp = 0. The explanatory
variables zi ’s, where zi = (zi1, . . . , zip)

T , were generated such that
they have a mutual correlation coefficient of 0.5. The response
variables were generated such that half of them have a value of 1
and the other half have a value of 0.



Large-Scale GLM

Table: Summary of numerical results of eSGLD for large datasets with
N = 50, 000 and p = 2000, where the CPU time was recorded for each
dataset on a Linux machine with Intel(R) Core(TM) i7-7700
CPU@3.60GHz.

Model Algorithm FSR NSR M̂SE 1 M̂SE 0 CPU(minutes)

eSGLD 0 0 2.91× 10−3(1.90× 10−3) 1.26× 10−7(1.18× 10−8) 2.5
Linear

RJMH — — — — 7983.3

Logistic eSGLD 0 0 2.37× 10−2(2.88× 10−3) 2.70× 10−4(1.40× 10−4) 2.9



A Pascal Challenge Dataset

The dataset epsilon has been used for Pascal large scale learning
challenge in 2008. The raw dataset consists of 500,000
observations and 2000 features, which was split into two parts:
400,000 observations for training and 100,000 observations for
testing. The training part is feature-wisely normalized to mean
zero and variance one and then observation-wisely scaled to unit
length. Using the scaling factors of the training part, the testing
part is processed in a similar way.



A Pascal Challenge Dataset

Table: Numerical results for the dataset epsilon, where the results of
eSGLD were averaged over 10 independent runs with the standard
deviation reported in the parentheses, and the CPU time was recorded for
a run on a Linux machine with Intel(R) Core(TM) i7-7700
CPU@3.60GHz.

Algorithm Setting Model size Prediction Error(ν) CPU (minutes)

eSGLD C0 = 2.5 62.7(2.6) 0.1422 (1.80× 10−3) 17.4
Lasso λ = 0.0239 63 0.1644 21.2

SIS-MCP/SCAD — — — > 1440



MovieLens Data

The dataset contains 10,000,054 ratings of 10,681 movies by
71,567 users. The ratings vary from 0.5 to 5 in increments of 0.5.
The whole dataset contains information of the rating, time of the
rating, and the genre of the movie (with 19 possible categories).



MovieLens Data

This dataset has been modeled by mixed effect models. Let N be
the total number of users, and let si denote the number of ratings
of user i . Set

y i = Wiβ+Zibi+ei , bi ∼ Nq(0,Σ), Σ = σ2D, ei ∼ Nri (0, σ
2Iri ),

where y i ∈ Rsi , Wi ∈ Rsi×p, β ∈ Rp, Zi ∈ Rsi×q, bi ∈ Rq for
i = 1, 2, . . . ,N. Let rij be the rating of user i for movie j , the
response is defined as yi = (rij1 , rij2 , . . . , rijsi )

T . Here it is assumed
that (yi , Wi , Zi ), i = 1, 2, . . . ,N are iid random samples with
varying dimensions. We let Wi denote the collection of the
intercept, genre predictor, popularity predictor and previous
predictor, and let Zi be the same as Wi .



eSGLD for missing data problems

(i) (Subsampling) Draw a subsample of size n from the full dataset XN at random,

and denote the subsample by X (t)
n .

(ii) (Imputation) Simulate models (viewed as missing data) γ
(t)
S1,n

, . . . ,γ
(t)
Sm,n from

the conditional posterior π(γS |θ(t),X (t)
n ).

(iii) (Updating θ) Update θ(t) by setting

θ(t+1) = θ(t) +
ϵt+1

2

{
N

mn

m∑
k=1

∇θ log π(θ(t)|X (t)
n , γ

(t)
Sk ,n

)−
N − n

n
∇θ log π(θ(t))

}
+

√
ϵt+1τηt+1,

where ηt+1 ∼ N(0, Id ), and ϵt+1 can be set to a small constant or decrease as in
the SGLD algorithm.



MovieLens Data
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Figure: Convergene diagnostic for the eSGLD algorithm on MovieLen
data with the Gelman-Rubin statistic, which was calculated based on 10
independent runs.



MovieLens Data
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Figure: Posterior densities of β estimated from the posterior samples
generated by the eSGLD algorithm in 1500 iterations.



Big-N-Large-P Problems

We suggest a combined use of the eSGLD algorithm and the
split-and-merge strategy (Song and Liang, 2015):

(i) spit the full dataset into a number of subsets of lower
dimensions;

(ii) apply eSGLD to each subset independently, which is to select
the true variables included in the subset as well as the
surrogate variables to the true variables missed in the subset;

(iii) collect all the variables selected from each subset as
explanatory variables to form a new regression, and apply
eSGLD to the new regression to select appropriate variables.

For linear regression, the consistency of this procedure has been
established in Song and Liang (2015). For logistic regression, its
consistency has been recently established by us and will be
reported elsewhere.



Conclusion

▶ eSGLD is highly scalable with the use of mini-batch samples
and can be much more efficient than traditional MCMC
algorithms

▶ eSGLD has a comparable computational complexity with the
SGD algorithm.

▶ Compared to frequentist methods, it can produce more
accurate variable selection and prediction results, while
exhibiting similar CPU costs when the dataset contains a large
number of samples.

The eSGLD algorithm has much alleviated the pain of Bayesian
methods in large-scale computing!



More Possible Applications of eSGLD

▶ Sparse deep learning (Liang et al., 2018)

▶ Hidden Markov model

▶ model-based clustering

▶ random coefficient models
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