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Statistical Inference

Statistical inference is a fundamental task in modern data science,
which studies how to propagate the uncertainty embedded in data
to model parameters.

Frameworks of Statistical Inference:

▶ Frequentist

▶ Bayes

▶ Fiducial
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Statistical Inference: Frequentist Methods

The frequentist methods often estimate model parameters using
the maximum likelihood approach and test hypotheses by
comparing a test statistic with a known theoretical reference
distribution.

▶ Parameter estimation: MLE can be significantly influenced by
outliers, reducing the fidelity of parameter estimation.

▶ Hypothesis testing: the required theoretical reference
distribution is test statistic-dependent, making statistical
inference difficult to automate.

▶ Large sample theory: the sample size required to achieve
asymptotic normality can be very large especially in
high-dimensional scenarios.
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Statistical Inference: Bayesian Methods

The dependence of Bayesian inference on the prior distribution has
been a subject of criticism throughout the history of Bayesian
statistics, often raising concerns about their fidelity.
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Statistical Inference: Fiducial

Fiducial inference was generally regarded as a big blunder by
Fisher. However, the goal he initially set, making inference about
unknown parameters on the basis of observations (Fisher, 1956),
has been continually pursued by many statisticians.

Building on our early works in sparse deep learning (Liang et al,
2018; Sun, Song, and Liang, 2022) and adaptive stochastic
gradient Markov chain Monte Carlo (MCMC) (Liang, Sun, and
Liang, 2022), we develop a new statistical inference framework
called the extended fiducial inference (EFI), which achieves the
initial goal of fiducial inference while possessing necessary features
like fidelity, automaticity, and scalability that are essential for
statistical inference in modern data science.
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Data generating equations: Uncertainty
Consider a dataset of regression: {(y1, x1), (y2, x2), . . ., (yn, xn)}.
In the view of structural inference, we can express the observations
in the data generating equation:

yi = f (xi , zi ,θ), i = 1, 2, . . . , n, (1)

where θ ∈ Rp and zi represents a random error (latent variable).
The system consists of n + p unknowns: {θ, z1, z2, . . . , zn}, while
there are only n equations. Therefore, the values of θ cannot be
uniquely determined by the data-generating equation, which gives
the source of uncertainty of parameters.

Figure 1: Illustration for the source of uncertainty of model parameters.
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Data generating equations: Frequentist

To solve for θ from the undetermined system (1), the frequentist
methods often impose a constraint on the system such that the
latent variables can be dismissed and θ can be uniquely
determined.

▶ The MLE method assumes the likelihood of {z1, z2, . . . , zn} is
maximized:

n∏
i=1

ϕ(zi ) = max
(z̃1,z̃2,...,z̃n)∈Rn

n∏
i=1

ϕ(z̃i ), (2)

which is equivalent to solving the optimization problem:

max
(β,σ)

n∑
i=1

log ϕ
(yi − xTi β

σ

)
. (3)

▶ Moment estimation:∑n
i=1 y

k
i =

∑n
i=1

∫
[f (xi , z ,θ)]

kπ0(z)dz , i = 1, 2, . . . , p.
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Data generating equations: Bayesian

Bayesian methods treat θ as random variables and circumvent the
issue of latent variables by adopting a conditional approach:

π(θ|(y1, x1), (y2, x2), . . . , (yn, xn)) =
∏n

i=1 p(yi |xi ,θ)π(θ)∫ ∏n
i=1 p(yi |xi ,θ)π(θ)dθ

,

(4)
The dependence of the inference on the prior distribution has been
subject to criticism throughout the history of Bayesian statistics, as
the prior distribution introduces subjective elements that may
affect the fidelity of statistical inference.
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Data generating equations: Generalized Fiducial Inference

GFI (Hannig, 2009; Hannig et al.,2016) provides an early method
to solve the data generating equation:

(a) (Proposal) Generate Z̃n = (z̃1, z̃2, . . . , z̃n)
T from the Gaussian

distribution N(0, In).

(b) (θ-fitting) Find the best fitting parameters
θ̃ = argminθ ∥Yn − Xnβ − σZ̃n∥, and compute the fitted
value Ỹn = Xnβ̃ + σ̃Z̃n.

(c) (Acceptance-rejection) Accept θ̃ if ∥Yn − Ỹn∥ ≤ ϵ for some
pre-specified small value ϵ, and reject otherwise.

Subsequently, statistical inference is made based on the accepted
samples of θ̃.
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Data generating equations: Extended Fiducial Inference

EFI treats θ as fixed unknowns. Let Zn := {z1, z2, . . . , zn} denote
the collection of latent variables, and let G (Yn,Xn,Zn) denote an
inverse function for the solution of θ in the system (1).

▶ EFI jointly imputes Zn and estimates G (Yn,Xn,Zn), and then
quantifies the uncertainty of θ based the estimated inverse
function and the imputed values of Zn, where the estimated
inverse function serves as an uncertainty propagator from Zn

to θ.

▶ Technically, EFI approximates G (Yn,Xn,Zn) using a sparse
deep neural network (DNN), and employs an adaptive
stochastic gradient MCMC algorithm to jointly impute Zn and
estimate the parameters of the sparse DNN.
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Data generating equations: Extended Fiducial Inference

Figure 2: Illustration of the EFI network, where the red nodes and links
form a DNN (parameterized by the weights w) to learn, the green node
represents latent variables to impute, and the black lines represent
deterministic functions.
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Extended Fiducial Inference: Theory-1

Assumption 1

There exists an inverse function G : Rn × Rn×d × Rn → Rp:
θ = G (Yn,Xn,Zn).

Assumption 2

For a given inverse function, we define an energy function
Un(z) := U(Yn,Xn, z ,G (·)) satisfying the conditions: Un(·) ≥ 0,
minz Un(z) exists and equals 0, and Un(z) = 0 if and only if
Yn = f (Xn, z ,G (Yn,Xn, z)).

Let Zn denote the zero-energy set Zn =
{
z ∈ Rn : Un(z) = 0

}
.

Lemma 1
If Assumptions 1-2 hold, then the zero-energy set Zn is invariant
to the choice of G (·).
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Extended Fiducial Inference: Theory-2

Let p∗n(z |Yn,Xn) denote the extended fiducial density function of
Zn on Zn. We define

pϵn(z |Xn,Yn) ∝ exp

{
−Un(z)

ϵ

}
π⊗n
0 (z), (5)

where ϵ > 0 represents the temperature, and
π⊗n
0 (z) = π0(z1)× π0(z2)× · · · × π0(zn).

Furthermore, we define p∗n(z |Yn,Xn) as the limit

p∗n = lim
ϵ↓0

pϵn, (6)

whose convergence can be studied as in Hwang (1980).



14/43

Extended Fiducial Inference: Theory-3

Let Πn(·) denote a probability measure on (Rn,R) with R being
the Borel σ-algebra and the corresponding density function given
by π⊗n

0 .

The convergence in (6) can be studied in two cases:

(a) Πn(Zn) > 0;

(b) Πn(Zn) = 0.
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Extended Fiducial Inference: Theory-4

Assumption 3

Πn(Un(z) < a) > 0 for any a > 0.

Theorem 2
If Assumptions 1-3 hold and Πn(Zn) > 0, then p∗n(z |Xn,Yn) is
invariant to the choice of the inverse function G (·) and the energy
function Un(·), and it is given by

dP∗
n(z |Xn,Yn)

dz
=

1

Πn(Zn)
π⊗n
0 (z), z ∈ Zn, (7)

where P∗
n represents the cumulative distribution function (CDF)

corresponding to p∗n.

An example for this case is logistic or multinomial logistic
regression, for which the resulting estimator of θ is a set.
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Extended Fiducial Inference: Theory-5

Assumption 4

(i) There exists a > 0 such that {Un(z) ≤ a} is compact; (ii)
π⊗n
0 (z) is continuous, and Un(z) ∈ C 3(Rn) is three-time

continuously differentiable; (iii) Zn has finitely many components
and each component is a compact smooth manifold with the
highest dimension p; (iv) π⊗n

0 (z) is not identically zero on the

p-dimensional manifold, and det(∂
2U
∂t2 (z)) ̸= 0 for z ∈ Zn.

Lemma 3
If Assumptions 1-4 hold, then the limiting probability measure p∗n
concentrates on the highest dimensional manifold and is given by

dP∗
n (z |Xn,Yn)

dν
(z) =

π⊗n
0 (z)

(
det(∇2

tUn(z))
)−1/2∫

Zn
π⊗n
0 (z) (det(∇2

tUn(z))
−1/2

dν
, z ∈ Zn, (8)

where ν is the sum of intrinsic measures on the p-dimensional
manifold in Zn.



17/43

Extended Fiducial Inference: Extended fiducial density
(EFD)

Given the inverse function G (·), we define the parameter space

Θ = {θ ∈ Rp : θ = G (Yn,Xn, z), z ∈ Zn}.

Definition 4
For any function b(θ) of interest, its EFD associated with the
inverse function G (·) is defined as

µ∗
n(B|Yn,Xn) =

∫
Zn(B)

dP∗
n (z |Yn,Xn), for any measurable set B ⊂ Θ,

(9)

where Zn(B) = {z ∈ Zn : b(G (Yn,Xn, z)) ∈ B}.
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Extended Fiducial Inference: Simulation Procedure

(a) (Manifold Sampling) For any given inverse function G̃ (·),
simulate M samples, denoted by SM = {z1, z2, . . . , zM}, from
π⊗n
0 (z) subject to the constraint Un(z) = 0. This can be done

using a constrained Monte Carlo algorithm such as
constrained Hamiltonian Monte Carlo.

(b) (Weighting) Calculate the importance weight

ωi =
(
det(∇2

tUn(zi ))
)−1/2

for each sample zi ∈ S using an
inverse function G (·) of interest.

(c) (Resampling) Draw m samples from SM with replacement
according to the probabilities: ωi∑M

j=1 ωj
for i = 1, 2, . . . ,M.

(d) (Inference) For b(θ), find the EFD associated with G (·)
according to (9) based on the m samples obtained in step (c).
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Extended Fiducial Inference: Flexibility

Remark: EFI provides a flexible framework of statistical inference.
One can adjust the inverse function G (·) and the energy function
Un(·) to ensure that the resulting fiducial distribution estimator of
b(θ) satisfies desired properties, such as efficiency, unbiasedness,
and robustness.

This mirrors the flexibility of frequentist methods, where different
estimators of b(θ) can be designed for different purposes.
However, its conditional inference nature makes EFI even more
attractive than frequentist methods, as it circumvents the need for
derivations of theoretical distributions of the estimators.
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Extended Fiducial Inference: Additive noise models

Assumption 5

(i) Un(·) is specified in the form: Un(z) = h(J(z)) =
∑n

i=1 h(ei )

for some function h(·) satisfying ∂h(J)
∂J (z) = 0 for any z ∈ Zn,

where J(z) = Yn − f (Xn, z ,G (Yn,Xn, z)) = (e1, e2, . . . , en)
T , and

ei = yi − f (xi , zi ,θ) for i = 1, 2, . . . , n; and (ii) the model noise is
additive; i.e., the function f (X ,Z ,θ) in model (1) is a linear
function of Z .

Theorem 5
If Assumptions 1-5 hold, then P∗

n(z |Yn,Xn) given in (8) is
invariant to the choices of G (·) and Un(·). Furthermore, P∗

n

reduces to a truncated distribution of π⊗n
0 on the manifold Zn.
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Extended Fiducial Inference: Linear Regression Example

Consider the linear regression model Yn = Xnβ + σZn.

Let θ = (β, σ2). To conduct EFI for θ, we set
G (Yn,Xn, z) = θ̂(z1, z2, . . . , zp) := (β̂T , σ̂)T , a solver for the first
p equations in (1), and set the energy function

Un(z) = ∥Yn − f (Xn, z ,G (Yn,Xn, z))∥2. (10)

The resulting EFD of σ2 is given by

µ∗
n(σ

2|Yn,Xn) = πχ−2
n−p+1

(
σ2

A

)
1

A
, (11)

where A serves as an unbiased estimator of (n − p + 1)σ2.
If we use the mean of µ∗

n (σ
2|Yn,Xn) as an estimator of σ2, it has a bias of 2

n−p−3
σ2.

In contrast, the MLE of σ2 has a bias of − p−1
n

σ2. Therefore, the EFD results in a

smaller bias than the MLE when n > (p + 3)(p − 1)/(p − 3).
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Extended Fiducial Inference: Linear Regression Example

The EFD of β can be obtained by completing the integration:

µ∗
n(β|Yn,Xn) =

∫
µ∗
n(β|Yn,Xn, σ

2)µ∗
n(σ

2|Yn,Xn)dσ
2, (12)

which is a multivariate non-central t-distribution t(µβ,Σβ, νβ)
with the parameters given by

µβ = (XT
n Xn)

−1XT
n Yn, Σβ =

A

n − p + 1
(XT

n Xn)
−1, νβ = n−p+1.

The mean and covariance matrix of the EFD is given by
(XT

n Xn)
−1XT

n Yn and A
n−p−1(X

T
n Xn)

−1.
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EFI with a sparse DNN inverse function

Figure 3: Illustration of the EFI network

A neural network estimator of the inverse function G (Yn,Xn,Zn):

θ̄n :=
1

n

n∑
i=1

θ̂i =
1

n

n∑
i=1

ĝ(yi , xi , zi ,w), (13)

where w denotes the parameters of the neural network.
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EFI with a sparse DNN inverse function

We estimate w by solving the equation

∇w log π(w |Xn,Yn) = 0, (14)

which, under the Bayesian context, can be expressed as

∇w log π(w |Xn,Yn) =

∫
∇w log π(w |Xn,Yn,Zn)π(Zn|Xn,Yn,w)dw = 0.

(15)

It can be solved using an adaptive stochastic gradient MCMC
algorithm (Liang, Sun, Liang, 2022).
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EFI with a sparse DNN inverse function

We define an energy function:

Ũn(Zn,w ;Xn,Yn) = η

n∑
i=1

∥θ̂i − θ̄n∥2 +
n∑

i=1

d(yi , xi , zi , θ̂i ), (16)

where the first term serves as a penalty function enforcing θ̂i ’s to
converge to the same value, and η > 0 is a regularization
parameter.

π(w |Xn,Yn,Zn) ∝ π(w)e−λŨn(Zn,w ;Xn,Yn),

π(Zn|Xn,Yn,w) ∝ π⊗n
0 (Zn)e

−λŨn(Zn,w ;Xn,Yn),
(17)

where λ is a tuning parameter resembling the inverse of the
temperature in (5).
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Extended Fiducial Inference: Algorithm

(a) (Latent variable sampling) Generate Z (k+1)
n from a transition

kernel induced by a stochastic gradient MCMC algorithm. For

example, we can simulate Z (k+1)
n using the stochastic

gradient Langevin dynamics (SGLD) algorithm:

Z (k+1)
n = Z (k)

n + ϵk+1∇̂zn log π(Z
(k)
n |Xn,Yn,w (k)) +

√
2τϵk+1e(k+1),

(18)

where e(k+1) ∼ N(0, Idz ), ϵk+1 is the learning rate, and τ is
the temperature that is generally set to 1 in simulations.

(b) (Parameter updating) Update the estimate of w by SGD:

w (k+1) = w (k) +
γk+1

n
∇̂w log π(w (k)|Xn,Yn,Z (k+1)

n ), (19)

where γk+1 denotes the step size of stochastic approximation.
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Extended Fiducial Inference: Convergence of the Adaptive
MCMC Algorithm

Theorem 6
(Informal version) If we set ϵk = Cϵ

cϵ+kα and γk =
Cγ

cγ+kβ for some

constants Cϵ > 0, cϵ > 0, Cγ > 0 and cγ > 0, α, β ∈ (0, 1], and
β ≤ α ≤ min{1, 2β}, then there exists a root
w∗

n ∈ {w : ∇w log π(w |Xn,Yn) = 0} such that

E∥w (k)
n − w∗

n∥2 ≤ ξγk , k ≥ k0,

for some constant ξ > 0 and iteration number k0 > 0.
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Extended Fiducial Inference: Convergence of the Adaptive
MCMC Algorithm

Theorem 7
(Informal version) Under the conditions of Theorem 6, for any
k ∈ N,

W2(µTk
, π∗) ≤ (Ĉ0δ

1/4
g + C̃1γ

1/4
1 )Tk + Ĉ2e

−Tk/cLS ,

for some positive constants Ĉ0, Ĉ1, and Ĉ2, where W2(·, ·) denotes
the 2-Wasserstein distance, cLS denotes the logarithmic Sobolev
constant of π∗, and δg reflects the variation of the stochastic

gradient ∇̂Zn log π(Z
(k)
n |Xn,Yn,w (k)).
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Extended Fiducial Inference: Convergence of the Adaptive
MCMC Algorithm

Theorem 8
(informal version) Under the limit λ → ∞, the posterior
consistency holds for π(wn|Yn,Xn,Zn) and the inverse mapping
estimator ĝ(·) constitutes a consistent estimator for the model
parameters, i.e.,

∥ĝ(y , x , z ,w∗
n )− θ∗∥ p→ 0, as n → ∞,

where θ∗ denotes the fixed unknown parameter values, and
(y , x , z) denotes a generic element of (Yn,Xn,Zn).
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Extended Fiducial Inference: Convergence of the Adaptive
MCMC Algorithm

We can approximate the fiducial distribution of θ by

µ̂n(dθ) =
1

M

M∑
k=1

δθ̄k
n
(dθ), as M → ∞, (20)

where θ̄k
n := 1

n

∑n
i=1 ĝ(xi , yi , z

k
i ,w

(k)
n ), Z (k)

n := (zk1 , z
k
2 , . . . , z

k
n ),

and (Z (k)
n ,w (k)

n ) denotes the sample and parameter estimate
produced by the adaptive MCMC algorithm at iteration k .
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Extended Fiducial Inference: Linear regression

Considering a linear regression model given by

yi = xTi θ + σzi , i = 1, 2, . . . , n, (21)

where zi ∼ N(0, 1), xi = (xi ,0, . . . , xi ,9)
T , xi ,0 = 1, xi ,k ∼ N(0, 1)

for k = 1, . . . , 9, σ = 1, and the regression coefficient
θ = (θ0, θ1, . . . , θ9)

T = (1, 1, 1, 1, 1, 0, 0, 0, 0, 0)T . We simulated
100 datasets from this model, each with a sample size of n = 500.
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Extended Fiducial Inference: Linear regression

Figure 4: Results of EFI (with the ReLU activation function) for one
dataset simulated from (21) with n = 500: (left) scatter plot of ẑn
(y -axis) versus zn (x-axis), (middle) Q-Q plot of ẑn and zn, (right)
confidence intervals of β1 produced by EFI and OLS.
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Extended Fiducial Inference: Linear regression

Table 1: Statistical inference results for the model (21) with known σ2,
where “Coverage” refers to the averaged coverage rate over 100 datasets
and respective parameters, and “CI-width” refers to the average width of
respective confidence intervals.

Signal parameters Noise parameters
Method Activation Coverage rate CI-width Coverage rate CI-width

OLS — 0.95 0.177 0.956 0.177
GFI — 0.95 0.177 0.952 0.177
EFI-a ReLU 0.948 0.176 0.95 0.171
EFI Sigmoid 0.948 0.176 0.956 0.176
EFI Tanh 0.948 0.176 0.956 0.176
EFI Softplus 0.95 0.177 0.95 0.176
EFI ReLU 0.95 0.176 0.95 0.176
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Extended Fiducial Inference: Behrens-Fisher Problem

Consider two Gaussian distributions N(µ1, σ
2
1) and N(µ2, σ

2
2).

Suppose that two independent random samples of sizes n1 and n2
are drawn from them, respectively. The structural equations are
given by

y1i = µ1 + σ1z1i , i = 1, . . . , n1,

y2i = µ2 + σ2z2i , i = 1, . . . , n2,
(22)

where zi1, zi2 ∼ N(0, 1) independently. The Behrens-Fisher
problem pertains to the inference for the difference µ1 − µ2 when
the ratio σ1/σ2 is unknown.
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Extended Fiducial Inference: Behrens-Fisher Problem

Table 2: Statistical inference results for the Behrens-Fisher problem,
where “Coverage” refers to the coverage rate of µ1 − µ2 calculated by
averaging over 200 datasets, and “CI-width” refers to the average width
of respective confidence intervals.

(σ2
1, σ

2
2) = (0.25, 1) (σ2

1, σ
2
2) = (1, 1)

Method Coverage CI-width std CI Coverage CI-width std CI

n1 = n2 = 50
Behrens-Fisher 0.95 0.634 0.0040 0.955 0.802 0.0043

Welch 0.95 0.630 0.0040 0.95 0.794 0.0042
Hsu-Scheffé 0.95 0.635 0.0040 0.955 0.804 0.0043

EFI 0.95 0.609 0.0058 0.955 0.788 0.0047

n1 = n2 = 500
Behrens-Fisher 0.95 0.196 0.0004 0.95 0.248 0.0004

Welch 0.95 0.196 0.0004 0.95 0.247 0.0004
Hsu-Scheffé 0.95 0.196 0.0004 0.95 0.248 0.0004

EFI 0.95 0.198 0.0006 0.95 0.245 0.0014
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EFI: Fidelity in Parameter Estimation

Consider the linear regression again. We set n = 600 and
generated random errors from a mixture Gaussian distributions:
z1, z2, . . . , z540 ∼ N(0, 1) and z541, z542, . . . , z600 ∼ N(4, 1). The
latter cases were considered as outliers, although some of them
might be indistinguishable from the former ones.

Figure 5: Fidelity of EFI in parameter estimation: (left) scatter plot of
residuals: zi versus ẑi ; (middle left) scatter plot of ordered residuals: z(i)
versus ẑ(i); (middle right) EFI and OLS confidence intervals for β1;
(right) EFI and OLS confidence intervals for σ2.
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EFI: Fidelity in Parameter Estimation

EFI essentially estimates θ by maximizing the predictive likelihood:

π(Zn|Xn,Yn,θ) ∝ π⊗n
0 (Zn)e

−λ
∑n

i=1 d(yi ,xi ,zi ,θ),

which balances the fitting errors and the likelihood of random
errors.

Compared to the MLE:

θ̂MLE = argmax
θ

π⊗n
0 (Zn),

where Zn can be expressed as a function of (Yn,Xn,θ), the EFI
estimator tends to be more robust to outliers and provides higher
fidelity in parameter estimation.

If the model is correctly specified, no outliers exist, and the sample
size is reasonably large, the two methods yield similar estimates.
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EFI for Semi-Supervised Learning

Table 3: Comparison of EFI with supervised learning and semi-supervised
learning (50% labels were removed) algorithms for some classification
problems, where µ± se represents the mean prediction accuracy of the
5-fold cross validation runs and the standard deviation of the mean value.

Supervised Learning Semi-Supervised Learning
Dataset size Full Labeled Only Self-training Label-propagation EFI

Divorce 170 98.82±1.05 96.47±1.29 92.94±3.87 96.47±1.29 98.82±1.05
Diabetes 520 89.62±1.29 87.69±1.69 87.31±2.01 85.77±2.01 88.08± 0.64

Breast Cancer 699 96.52±0.66 95.36±0.26 94.39±0.76 95.07±0.52 96.23±0.52
Raisin 900 82.89±1.16 83.78±0.24 58.67±1.35 50.22±0.20 85.56± 0.99
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EFI for Complex Hypothesis Tests

Consider the following mediation analysis model:

Y = βTT + βM + βT
x X + ϵY , ϵY ∼ N(0, σ2

Y ),

M = γT + γT
x X + ϵM , ϵM ∼ N(0, σ2

M),
(23)

where Y , T , M and X denote the outcome, treatment, mediator
and design matrix, respectively.

The mediator effect can be inferred by testing the hypothesis
H0 : βγ = 0 against HA : βγ ̸= 0 with the natural test statistic β̂γ̂.
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EFI for Complex Hypothesis Tests

This is a challenging inferential task due to the non-uniform
asymptotics of the univariate test statistic. Specifically, the null
hypothesis consists of three cases:

(i) β = 0, γ ̸= 0,

(ii) β ̸= 0, γ = 0,

(iii) β = γ = 0,

while the theoretical reference distribution of β̂γ̂ under case (iii) is
different from that under cases (i) and (ii). It is known that
traditional statistical tests such as Sobel’s test and Max-P test are
conservative under case (iii).
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EFI for Complex Hypothesis Tests

Table 4: Type-I errors of the Sobel, MaxP, minimax optimal (mm-opt),
bootstrap, and EFI tests for the mediator effect, where the significance
level of each test is α = 0.05.

n = 500 n = 1000 n = 2000
(β, γ) (0.2,0) (0,0.2) (0,0) (0.2,0) (0,0.2) (0,0) (0.2,0) (0,0.2) (0,0)

Sobel 0.01 0.00 0.00 0.05 0.02 0.00 0.04 0.06 0.00
MaxP 0.04 0.03 0.00 0.06 0.05 0.00 0.07 0.07 0.00
mm-opt 0.05 0.04 0.03 0.06 0.05 0.07 0.07 0.07 0.07
Bootstrap 0.06 0.05 0.01 0.04 0.07 0.00 0.13 0.04 0.00

EFI 0.05 0.06 0.04 0.06 0.04 0.04 0.05 0.04 0.05
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EFI for Complex Hypothesis Tests

Table 5: Powers of the Sobel, MaxP, minimax optimal (mm-opt),
bootstrap, and EFI tests for the mediator effect, where the significance
level of each test is α = 0.05. Part of the results of mm-opt are not
available (NA), as the test is inefficient for the alternative hypothesis
settings of (β, γ) when the sample size becomes large.

n = 500 n = 1000 n = 2000
(β, γ) (0.1,0.4) (-0.1,0.4) (0.2,0.2) (0.1,0.4) (-0.1,0.4) (0.2,0.2) (0.1,0.4) (-0.1,0.4) (0.2,0.2)

Sobel 0.29 0.31 0.67 0.65 0.57 0.96 0.78 0.89 1.00
MaxP 0.34 0.37 0.79 0.66 0.59 0.98 0.78 0.89 1.00
mm-opt 0.34 0.37 0.79 NA NA NA NA NA NA
Bootstrap 0.33 0.42 0.52 0.59 0.51 0.93 0.93 0.92 1.00

EFI 0.48 0.64 0.84 0.70 0.74 0.97 0.86 0.95 1.00
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Conclusion

▶ EFI is a novel and flexible framework for statistical inference,
applicable to general statistical models regardless of the type
of noise, whether additive or non-additive.

▶ The EFI-DNN algorithm provides an effective implementation
for EFI. It jointly imputes the realized random errors in
observations using MCMC and approximates the inverse
function using a sparse DNN. The consistency of the sparse
DNN estimator ensures the uncertainty embedded in the
observations is properly propagated to the model parameters
through the estimated inverse function, thereby validating
downstream statistical inference.

▶ The EFI-DNN algorithm has demonstrated appealing
properties in parameter estimation (fidelity), hypothesis
testing (automated process), and semi-supervised learning
(missing data).
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