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Problem Setup

We are interested in conducting Bayesian on-line learning for the
dynamic system:

xt = g(xt−1) + ut , ut ∼ N(0,Ut),

yt = Htxt + ηt , ηt ∼ N(0, Γt),
(1)

for stages t = 1, 2, . . . ,T , where xt ∈ Rp and yt ∈ RNt denote,
respectively, the state and observations at stage t; and the
dimension p, the total number of stages T , and the sample sizes
Nt ’t are all assumed to be very large.

Notations: f (yt |xt) denotes the likelihood function of yt , π(xt |y1:t)
denotes the filtering distribution at stage t given y1:t = {y1, y2, . . . , yt},
and π(xt |y1:t−1) =

∫
π(xt |xt−1)π(xt−1|y1:t−1)dxt−1 denotes the

predictive distribution of xt given y1:t−1.



Problem Setup

The dynamic system (1) is of central importance: It models the
data assimilation problems with linear measurement equations, and
many other problems such as inverse problems and data
assimilation with nonlinear measurement equations can be
converted to it via appropriate transformations.



Ensemble Kalman Filter (EnKF)

▶ Initialization: Initialize an ensemble {xa,10 , xa,20 , . . ., xa,m0 } of
size m.
For t = 1, 2, . . . ,T , do the following steps:

▶ Forecast: For i = 1, 2, . . . ,m, draw uit ∼ N(0,Ut) and set

x f ,it = g(xa,it−1) + uit ; calculate the sample covariance matrix of

x f ,1t , . . . , x f ,mt and denote it by Ct .

▶ Analysis: For i = 1, 2, . . . ,m, draw ηit ∼ N(0, Γt) and set

xa,it = x f ,it + K̂t(yt − Htx
f ,i
t − ηit)

∆
= x f ,it + K̂t(yt − y f ,it ),

where K̂t = CtH
T
t (HtCtH

T
t + Γt)

−1 forms an estimator for
the Kalman gain matrix Kt = StH

T
t (HtStH

T
t + Γt)

−1 and St
denotes the covariance matrix of x ft .



Features of EnKF

The EnKF has two attractive features which make it extremely
successful in dealing with high-dimensional data assimilation
problems:

▶ It approximates each filtering distribution π(xt |y1:t) using an
ensemble of particles. Since the ensemble size m is typically
much smaller than p, it leads to dimension reduction and
computational feasibility compared to the Kalman filter.

▶ In generating particles from each filtering distribution, it
avoids covariance matrix decomposition compared to
conventional particle filters. It is known that an
LU-decomposition of the covariance matrix has a
computational complexity of O(p3). Instead, EnKF employs a
forecast-analysis procedure to generate particles, which has a
computational complexity of O(max{p2Nt ,N

3
t }+mpNt) for

m particles at stage t.



Features of EnKF

Despite its great successes, the performance of EnKF is
sub-optimal: It converges only to a mean-field filter, which
provides the optimal linear estimator of the conditional mean but
not the filtering distribution except for linear systems in the large
sample limit.



Linear Inverse Problem

Consider a Bayesian inverse problem for the regression

y = Hx + η, (2)

where H is a known matrix, η ∼ N(0, Γ) for some covariance
matrix Γ, y ∈ RN , and x ∈ Rp is an unknown continuous
parameter vector.



Linear Inverse Problem: Formulation

Let π(x) denote the prior density function of x , which is assumed
to be differentiable with respect to x . Let π(x |y) denote the
posterior distribution.
We reformulate the model (2) as a state-space model through
subsampling and Langevin diffusion:

xt = xt−1 + ϵt
n

2N
∇ log π(xt−1) + wt ,

yt = Htxt + vt ,
(3)

where wt ∼ N(0, n
N ϵt Ip) = N(0, n

NQt), i.e., Qt = ϵt Ip, yt denotes a
block randomly drawn from {ỹ1, . . . , ỹB}, vt ∼ N(0,V ), and Ht is
a submatrix of H extracted with the corresponding yt .



Linear Inverse Problem: Algorithm

0. (Initialization) Start with an initial ensemble
xa,10 , xa,20 , . . . , xa,m0 , where m denotes the ensemble size. For
each stage t = 1, 2, . . . ,T (first loop), do the following:

1. (Subsampling) Draw without replacement a mini-batch data,
denoted by (yt ,Ht), of size n from the full dataset of size N.

▶ Set Qt = ϵt Ip, Rt = 2Vt , and the Kalman gain matrix
Kt = QtH

T
t (HtQtH

T
t + Rt)

−1. For each chain i = 1, 2, . . . ,m
(second loop), do steps 2-3:

2. (Forecast) Draw w i
t ∼ Np(0,

n
NQt) and calculate

x f ,it = xa,it−1 + ϵt
n

2N
∇ log π(xa,it−1) + w i

t . (4)

3. (Analysis) Draw v it ∼ Nn(0,
n
NRt) and calculate

xa,it = x f ,it + Kt(yt − Htx
f ,i
t − v it )

∆
= x f ,it + Kt(yt − y f ,it ). (5)



Linear Inverse Problem: Convergence

Theorem 1. For Algorithm 1, if V is positive and definite, then
the algorithm is reduced to a parallel pre-conditioned SGLD
algorithm; i.e., for each chain i ∈ {1, 2, . . . ,m},

xa,it = xa,it−1 +
ϵt
2
Σt∇̂ log π(xa,it−1|y) + et , (6)

where Σt =
n
N (I − KtHt) is a constant matrix of x , et is a zero

mean Gaussian random error with covariance Var(et) = ϵtΣt , and
∇̂ log π(xa,it−1|y) =

N
n H

T
t V−1

t (yt − Htx
a,i
t−1) +∇ log π(xa,it−1)

represents an unbiased estimate of ∇ log π(xa,it−1|y).



Data Assimilation: Bayesian Formulation

To motivate the development of the algorithm, we consider the
Bayesian formula

π(xt |y1:t) =
f (yt |xt)π(xt |y1:t−1)∫
f (yt |xt)π(xt |y1:t−1)dxt

, (7)

which suggests that in order to get the filtering distribution
π(xt |y1:t), the predictive distribution π(xt |y1:t−1) should be used
as the prior at stage t.



Data Assimilation: Bayesian Formulation

The gradient ∇xt log π(xt |y1:t−1) can be estimated as follows:

∇xt log π(xt |y1:t−1)

=

∫
∇xt log π(xt |xt−1)ω(xt−1|xt)π(xt−1|y1:t−1)dxt−1,

(8)

where ω(xt−1|xt) = π(xt−1|xt , y1:t−1)/π(xt−1|y1:t−1) =
π(xt |xt−1)/π(xt |y1:t−1) ∝ π(xt |xt−1), as π(xt |y1:t−1) is a constant
with respect to xt−1, given particle xt and the data y1:t−1.
Given a set of samples Xt−1 = {xt−1,1, xt−1,2, . . . , xt−1,m′} drawn
from the filtering distribution π(xt−1|y1:t−1), an importance
resampling procedure can be employed to draw a sample from
π(xt−1|xt , y1:t−1).



Data Assimilation: Bayesian Formulation

With the above formulas and Langevin dynamics, we can construct
a dynamic system similar to (3) at stage t as

xt,k = xt,k−1 − ϵt
nt
2Nt

U−1
t (xt,k−1 − g(x̃t−1,k−1)) + wt,k ,

yt,k = Ht,kxt,k + vt,k ,
(9)

for k = 1, 2, . . ., where xt,0 = g(xt−1) + ut ; x̃t−1,k−1 denotes a
sample drawn from π(xt−1|xt,k−1, y1:t−1) at iteration k of stage t
through the importance resampling procedure;
wt,k ∼ N(0, nt

Nt
ϵt,k Ip), Qt,k = ϵt,k Ip, and p is the dimension of xt .



Data Assimilation: Algorithm

0. (Initialization) Start with an initial ensemble xa,11,0 , x
a,2
1,0 , . . . , x

a,m
1,0 . Set

Xt = ∅ for t = 1, 2, . . . ,T . Set k0 as the common burnin period for
each stage t. For each stage t = 1, 2, . . . ,T (first loop), and for
each iteration k = 1, 2, . . . ,K (second loop), do the following:

1. (Subsampling) Draw without replacement a mini-batch sample,
denoted by (yt,k ,Ht,k), of size nt from the full dataset of size Nt .

▶ Set Qt,k = ϵt,k Ip, Rt = 2Vt , and the Kalman gain matrix
Kt,k = Qt,kH

T
t,k(Ht,kQt,kH

T
t,k + Rt)

−1.

For each chain i = 1, 2, . . . ,m (third loop), do steps 2-5:

2. (Importance resampling) If t > 1, calculate importance weights

ωi
t,k−1,j = π(xa,it,k−1|xt−1,j) = ϕ(xa,it,k−1 : g(xt−1,j),Ut) for

j = 1, 2, . . . , |Xt−1|, where ϕ(·) denotes a Gaussian density, and
xt−1,j ∈ Xt−1 denotes the jth sample in Xt−1; if k = 1, set

xa,it,0 = g(xa,it−1,K) + ua,it and ua,it ∼ N(0,Ut). Resample

s ∈ {1, 2, . . . , |Xt−1|} with a probability ∝ ωi
t,k−1,s , i.e.,

P(St,k,i = s) = ωi
t,k−1,s/

∑|Xt−1|
j=1 ωi

t,k−1,j , and denote the sample

drawn from Xt−1 by x̃ it−1,k−1.



Data Assimilation: Algorithm (continuation)

3. (Forecast) Draw w i
t,k ∼ Np(0,

n
NQt,k). If t = 1, set

x f ,it,k = xa,it,k−1 − ϵt,k
nt
2Nt

∇ log π(xa,it,k−1) + w i
t,k , (10)

where π(·) denotes the prior distribution of x1. If t > 1, set

x f ,it,k = xa,it,k−1 − ϵt,k
nt
2Nt

U−1
t (xa,it,k−1 − g(x̃ it−1,k−1)) + w i

t,k . (11)

4. (Analysis) Draw v i
t,k ∼ Nn(0,

n
NRt) and set

xa,it,k = x f ,it,k+Kt,k(yt,k−Ht,kx
f ,i
t,k−v i

t,k)
∆
= x f ,it,k+Kt,k(yt,k−y f ,i

t,k). (12)

5. (Sample collection) If k > k0, add the sample xa,it,k into the set Xt .



Data Assimilation: Theory

Theorem 2 We consider a dynamic system with t = 1, 2, . . . ,T
stages. Let πt = π(xt |y1:t) denote the filtering distribution at
stage t. Suppose that appropriate assumptions (see Zhang et al.,
2024) hold, and Nt ’s are larger than certain threshold. If
ϵt,k ∝ 1

n2t logK
k−ϖ for some ϖ ∈ (0, 1) and any k ∈ {1, 2, . . . ,K},

then uniformly with dominating probability, for any
t ∈ {1, 2, . . . ,T}, xa,it,K follows a probability law π̃t and
limK→∞W2(π̃t , πt) = 0, where W2(·, ·) denotes 2-Wasserstein
distance between two distributions.



Data Assimilation: On Sample Degeneracy

It is known that sample degeneracy is an inherent default of
sequential importance sampling (SIS), especially when the
dimension of the system is high.
Fortunately, LEnKF is essentially immune to this issue. In LEnKF,
the importance resampling procedure is to draw from Xt−1 a
particle which matches a given particle xt in state propagation
such that the gradient ∇xt log π(xt |y1:t−1) can be reasonably well
estimated. By (7), π(xt |y1:t−1) works as the prior distribution of xt
for the filtering distribution π(xt |y1:t). Therefore, the effect of the
importance resampling procedure on the performance of the
algorithm is limited if the sample size Nt is reasonably large at
each stage t.



Data Assimilation: Uncertainty Quantification

LEnKF is run in ensemble which provides a convenient way for
uncertainty quantification. At each stage and for each chain, the
state can be estimated by averaging over iterations. The state
estimates can then be further averaged over the chains. It is easy
to see that the central limit theorem holds for this chain-averaged
estimator approximately given the weak dependence between
different chains, and uncertainty quantification can be made
accordingly.



Lorenz-96 Model

The Lorenz-96 model was developed by Edward Lorenz in 1996 to
study difficult questions regarding predictability in weather
forecasting. The model is given by

dx i

dt
= (x i+1 − x i−2)x i−1 − x i + F , i = 1, 2, · · · , p,

where F = 8, p = 40, and it is assumed that x−1 = xp−1,
x0 = xp, and xp+1 = x1. Here F is known as a forcing constant,
and F = 8 is a common value known to cause chaotic behavior.



Lorenz-96 Model
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Figure: Chaotic path of the partial state variables (X 1
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2
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t ) for

t = 1, 2, . . . , 100, simulated from the Lorenz-96 Model.



Lorenz-96 Model: State estimation
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Figure: State estimates produced by LEnKF (red) and EnKF (green) for
the Lorenz-96 model along with t = 1, 2, . . . , 100.



Lorenz-96 Model: State estimation
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Figure: State estimates produced by LEnKF (red) and EnKF (green) for
the Lorenz-96 model: log(RMSEt) along with stage t.



Lorenz-96 Model: Coverage Prob.
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Figure: Coverage probabilities of the 95% confidence intervals produced
by LEnKF (red) and EnKF (green) for Lorenz-96 Model for along with
stage t = 1, 2, . . . , 100: results for one dataset.



Lorenz-96 Model: Coverage Prob.
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Figure: Coverage probabilities of the 95% confidence intervals produced
by LEnKF (red) and EnKF (green) for Lorenz-96 Model for along with
stage t = 1, 2, . . . , 100: results averaged over 10 datasets.



Lorenz-96 Model: Coverage Prob.

Table: Comparison of the EnKF and LEnKF, where the averages over 10
independent datasets are reported with the standard deviation given in
the parentheses. The CPU time was recorded for a single run of the
method.

LEnKF
k0 = K/2 k0 = K − 1 EnKF

Am-RMSE 1.702(0.0343) 1.714(0.0360) 1.722(0.0230)
Am-CP 0.948(0.0028) 0.947(0.0034) 0.460(0.0029)
CPU(s) 6.37(0.3942) 3.350(0.0807) 0.817(0.0426)



LEnKF with Unknown Parameters

(i) (Initialization) Initialize an ensemble {xa,1
1,0 , x

a,2
1,0 , . . . , x

a,m
1,0 } of size m by

drawing from the prior π(x1), set Xt = ∅ for t = 1, 2, . . . ,T , and set k0
as the common burn-in period of each stage.

For t = 1, 2, . . . ,T , do:

For k = 1, 2, . . . ,K, do:

(ii) (Subsampling) Draw a mini-batch data (i.e., a block), denoted by
(yt,k ,Ht,k), of size nt from the full dataset of size Nt . Set Qt,k = ϵt,k Ip,
Rt = 2Vt , and the Kalman gain matrix
Kt,k = Qt,kH

T
t,k(Ht,kQt,kH

T
t,k + Rt)

−1.

For i = 1, 2, . . . ,m, do:

(iii) (Importance resampling) If t > 1, calculate importance weights
ωi
t,k−1,j = π(xa,i

t,k−1|xt−1,j) = ϕ(xa,i
t,k−1 : g(xt−1,j),Ut) for each sample

xt−1,j ∈ Xt−1, where j ranges from 1 to |Xt−1|, xa,i
t,k−1 is the sample

generated in the analysis step by chain i at iteration k − 1 of stage t, and
ϕ(·) denotes a Gaussian density; if k = 1, set xa,i

t,0 = g(xa,i
t−1,K) + ua,i

t and

ua,i
t ∼ N(0,Ut). Resample s ∈ {1, 2, . . . , |Xt−1|} with a probability

∝ ωi
t,k−1,s , i.e., P(St,k,i = s) = ωi

t,k−1,s/
∑|Xt−1|

j=1 ωi
t,k−1,j , and denote the

sample drawn from Xt−1 by x̃ i
t−1,k−1.



LEnKF with Unknown Parameters
(iv) (Forecast) Draw w i

t,k ∼ Np(0,
nt
Nt
Qt,k). If t = 1, set

x f ,i
t,k = xa,i

t,k−1 − ϵt,k
nt
2Nt

∇ log π(xa,i
t,k−1) + w i

t,k , (13)

where π(·) denotes the prior distribution of x1. If t > 1, set

x f ,i
t,k = xa,i

t,k−1 − ϵt,k
nt
2Nt

U−1
t (xa,i

t,k−1 − g(x̃ i
t−1,k−1)) + w i

t,k . (14)

(v) (Analysis) Draw v i
t,k ∼ Nn(0,

nt
Nt
Rt) and set

xa,i
t,k = x f ,i

t,k + Kt,k(yt,k − Ht,kx
f ,i
t,k − v i

t,k)
∆
= x f ,i

t,k + Kt,k(yt,k − y f ,i
t,k). (15)

(vi) (Sample collection) If k > k0, add the sample xa,i
t,k into the set Xt .

End For

(vii) (Parameter updating) If t > 1, calculate

θt,k = θt,k−1 + γt,kΨ(yt,k , x̃t−1,k−1,θt,k−1), (16)

where θt,k denotes the estimate of θ obtained at iteration k of stage t,

Ψ(yt,k , x̃t−1,k−1,θt,k−1) =
Nt

mnt

m∑
i=1

∇θ log π(yt,k |x̃ i
t−1,k−1,θt,k−1), (17)

End For

End For



Discussion
▶ We propose LEnKF as a scalable particle filter by

reformulating EnKF under the framework of Langevin
dynamics. LEnKF turns out to be a sequential preconditioned
SGLD algorithm but with an accelerated ensemble
implementation as for EnKF, and it converges to the correct
filtering distribution under the big data scenario where the
dynamic system consists of a large number of stages and there
are a large number of observations at each stage.

▶ LEnKF can be applied to state estimation for both inverse and
data assimilation problems, and uncertainty quantification of
the state estimates.

▶ LEnKF is not only scalable with respect to the state
dimension and sample size, but also tends to be immune to
the sample degeneracy issue that is often suffered by
conventional particle filters.

▶ LEnKF can be easily extended to dynamic systems with
nonlinear measurement equations.
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