Empirical Bayesian GAN



GAN: Definition

The Generative Adversarial Network (GAN) (Goodfellow et al.,
2014) provides a novel way for training generative models which
seek to learn to generate fake samples with the same statistics as
real ones.
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Figure 1. Diagram of GAN, where the generator and discriminator are
modeled by deep neural networks.



GAN: mode collapse

GAN is extremely hard to train due to the instability issues such as
mode collapse (i.e., lack of diversity among fake samples),
non-convergence, and vanishing or exploding gradients.

Our Contribution:

» We figure out the reason why GAN suffers from the mode
collapse issue: GAN evaluates fake samples on a one-by-one
base through the outputs of the discriminator, lacking a
mechanism for enhancing diversity of fake samples.

> We lay down a new theoretical paradigm for GAN based on
randomized decision rules.

» \We propose a new training algorithm for GAN, which is
immune to mode collapse and whose convergence to the Nash
equilibrium is asymptotically guaranteed.



GAN: Exisiting works

The existing methods can be roughly grouped into two categories,
metric-based methods and mixture generator methods.

» Metric-based methods: to find a more stable and informative
metric to guide the training process, e.g., f-divergence,
x2-divergence, Wasserstein distance, etc.

> Mixture generator methods: to learn a mixture of generators
with a similar motivation as the proposed method, e.g.,
ensemble GAN, AdaGAN, MAD-GAN, MGAN, Bayesian GAN
and ProbGAN.



Pure Strategy Minimax Game: Notations

Let 64 denote the parameters of the discriminator, let Dy, (x)
denote its output function, and let Gy, (z) denote the generator
with parameter 0, whose input z is Gaussian or uniform random
variable, and whose output distribution is denoted by py, .

Define

Jd (Qd' ag) = Exwpdata(bl(D@d(X)) + EXNP9g¢2(D9d(X))7

Tel05:00) = ~Enropys61(Dpy () + Expo, 03(Dpy ().

where ¢1(+), ¢2(-) and ¢3(-) denote three metrics. For example,
¢1(D) = log(D), ¢2(D) = log(1 — D), and ¢3(D) = — log(1 — D)
or log(D) in Goodfellow et al. (2014).



Pure Strategy Minimax Game

The general form of the game introduced by GAN is given as
follows:

(i) maxJo(09i0s). (i) max Ty (0 a). (2)

If ¢3 = —¢2, the objective of (2) represents a pure strategy
minimax game, i.e.,

min max J4(0g,04), (3)

0 Oq

which is called minimax GAN.



Mixed Strategy Minimax Game

Let mg(6g) denote a distribution of generators. Based on
randomized decision theory, we define a mixed strategy minimax
game:

min max Er, Jq(04; 0g), (4)

Tg O

where J4(04; 0g) is as defined in (1), and the expectation is taken
with respect to mg(6;).

The new game is to iteratively find an optimal discriminator 6, by
maximizing Er, Jq(04; 0g) for a given generator distribution 7,
and an optimal generator distribution 7wz by minimizing

maxg, Er, Ja(04; 0g) for a given discriminator 6.



Mixed Strategy Minimax Game

Let pr, denote the distribution of the fake samples produced by
the generators drawn from g, i.e., pr,(x fpgg 0g)dOg.

Lemma 1

Suppose the discriminator and generator have enough capacity,
¢1(D) = log(D), and ¢2(D) = log(1 — D). Then

ming, maxg, B, J4(04;0g) = —log(4). If

6y = arg maxg, Bz, J4(04; 0g) for some 7tg, then (9~d, pz,) is a
Nash equilibrium point if and only ifE;rgjd(éd; 0g) = —log(4).



Mixture Strategy Nash Equilibrium
Let gg(6,) denote the prior distribution of 65, and let N denote
the training sample size. Define

7(0g|0d, D) o exp{Jg(bg: ba)}qe(bg), (5)
where

Jg(0g:04) = NTg(0g:04)
= N(—Ex~pgoi, 1(Do, (x)) + EXNP9g¢3(D9d(X))'

For the game (4), we propose to solve 04 by setting
0y = arg max / Td(04; 0g)7 (04104, D)db,, (6)
d
where J4(04; 0g) is as defined in (1) and then setting

PR, = / po, (0|0, D) db. (7)



Mixture Strategy Nash Equilibrium: Theory

Theorem 2

Suppose that the discriminator and generator have enough
capacity, p1(D) = log(D), ¢2(D) = log(1 — D),

¢3 = —log(1 — D), and some regularity conditions hold. Then
(84, pz,) defined in (6)-(7) is a Nash equilibrium point to the game
(4) as N — oo.



Training Algorithm: ldea

Equation (6) can be solved by solving the equation
Vo, | Td(04;0¢)m(0g]04, D)dOg = 0. When N is sufficiently large,
the latter equation can be solved by solving the mean field equation

h(8g) = / H(04, 05) (0|04, D) = 0, (8)

using a stochastic approximation algorithm, where H(64, 64)
denotes an unbiased estimator of Vg, J4(64;6g)-

The convergence of the solution to the Nash equilibrium can be
checked via some plots shown later.



Training Algorithm: Algorithm

By the standard theory of stochastic approximation MCMC, (8)
can be solved by iterating between the following two steps:
(i) Simulate Gét) by a Markov transition kernel which leaves the
conditional posterior
W(Qg\ﬁgtfl),D) ox exp{Jg(fg; thfl))}qg(ﬁg) invariant.
(i) Update the estimate of 6, by setting
Hgt) = Bfffl) + WtH(H((ffl), Hét)), where w; denotes the step
size used at iteration t.
Stochastic gradient MCMC algorithms, such as SGLD, SGHMC
and momentum SGLD, can be used in step (i).



Training Algorithm: Convergence Analysis

Under appropriate conditions, we will show that |0‘(f) — 04| = 0in
probability and Gg) ~ (04|04, D) as t — co. That is, the
proposed algorithm converges to the Nash equilibrium of the mixed
strategy minimax game (4).

Lemma 3 (Convergence of discriminator)

If the learning rate € is sufficiently small, then there exist a constant
7, an iteration number tq and an optimum 04 = arg maxg,
[ Td(84; 0g)7 (04|04, D)dOg such that for any t > to,

E|64) — 4] < yws,

where t indexes iterations, w; is the step size converging to 0.



Training Algorithm: Convergence Analysis

Lemma 4 (Ergodicity of generator)

For a smooth test function 1)(0g) with ||1)(8g)| < C(1+ ||64]|) for
some constant C, define

R e(t
br ZZ“” )= / W(0g) (05104, D)dO;.  (9)
t=1 %t

Under appropriate conditions, we have

Ell)r —¥|> =0, as T — co.



A Single Gaussian Example

Consider a 2-D Gaussian example, where the real samples are
generated in the following procedure:

> Generate the cluster mean: u ~ N(0, k), where , denotes a
2-dimensional identity matrix.

» Generate a mapping matrix: M ~ N(0, hy»), that is, M is a
2 X 2-matrix with each element being independently drawn
from N (0, 1).

> Generate 10000 observations: x; ~ (N(0, k) + u) x MT, for
i=1,2,...,10000.

Both the discriminator and generators used for this example are
fully connected neural networks with ReLU activation. The

discriminator has a structure of 2 — 1000 — 1, and the generator
has a structure of 10 — 1000 — 2.



A Single Gaussian Example: Convergence Path
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Figure 2: Empirical means of D (xi) and D (%) produced by (a) GAN
d d
and (b) EBGAN with a Gaussian prior along with iterations.



A Single Gaussian Example: Coverage Plot

(a) Evolution of coverage by GAN
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Figure 3: Coverage plots produced by (a) GAN, (b) a single generator of
EBGAN, and (c) all 10 generators of EBGAN, where the generators for the
plots from left to right are collected at iterations 2500, 5000, 7500, ..., 25000,
respectively.




Mixture Gaussian Example

The dataset was generated from a 10-component mixture Gaussian

distribution in the following procedure:

(i) Generate 10 cluster means: uY) ~ 5N(0, k), j=1,2,...,10.

(i) generate 10 mapping matrices: MU) ~ 5N(0, hoox2),
j=12...,10.

(iii) generate 1000 observations of xU) for each (uU), MU)):
<~ (N0, k) % 0.5 + pD) x (MD)T for j=1,2,...,10,
i=1,2,...,1000.

EBGAN was run with the prior gz = N(0, /), kg = 10, and

¢3(D) = —log(1 — D) and log(D). The discriminator has a

structure of 100 — 1000 — 1 and the generator has a structure of

10 — 1000 — 100, which are the same as those used in Saatci and

Wilson (2017).



Mixture Gaussian Example: Convergence Path
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Figure 4. Nash equilibrium convergence plots of the empirical means of
D, (xi) and D, (%) produced by different methods: (a) EBGAN, (b)

d d
minimax GAN, (c) Bayesian GAN, (d) ProbGAN, (e) Lipschitz-GAN, (f)
EBGAN with a Lipschitz penalty.



Mixture Gaussian Example: Coverage plot

Cover of Empirical Bayesian Cover of GANs: -log(1-D)
et
scan
\g — oy g o ——
) -2y -
\ v
5 H 5 3 H ®
Cover of GANs: -log(1-D) Cover of Empirical Bayesian GAN-+Lipshitz Penalty
e
roncAN
[}
4% — : ~
Q -
- » v
— ‘ » :;,
L]
A )
B » ) )

Figure 5. Component recovery plots produced by different methods with
¢3(D) = —log(1 — D): (a) EBGAN, (b) minimax GAN, (c) Bayesian GAN, (d)
ProbGAN, (e) Lipschitz GAN, and (f) EBGAN with a Lipschitz penalty.



Image Generation: Fashion-MNIST
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Figure 6: Convergence plots and images produced by (a
with a Gaussian prior.
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Nonparametric Clustering
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Figure 7:  (a) K-means clustering, (b) Agglomerative clustering, (c)
DBSCAN, (d) Cluster-GAN, (e)-(h) Cluster-EBGAN in different runs.



Conclusion

» We have figured out the reason why GAN suffers from the
mode collapse issue, proposed a new theoretical framework for
addressing this issue, and proposed a new method for training
GANSs.

» The proposed empirical Bayes-like method can be extended in
various ways, e.g., more efficient SGMCMC algorithms for
simulating generators and more efficient optimization
algorithms for training the discriminator. Also, sparse
generators and discriminator can be learned for the method
with appropriate penalty functions.
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