
Empirical Bayesian GAN

GAN: Definition
The Generative Adversarial Network (GAN) (Goodfellow et al.,
2014) provides a novel way for training generative models which
seek to learn to generate fake samples with the same statistics as
real ones.

Random input Generator Fake sample

Real Sample

Discriminator

Feedback

Figure 1: Diagram of GAN, where the generator and discriminator are
modeled by deep neural networks.

GAN: mode collapse

GAN is extremely hard to train due to the instability issues such as
mode collapse (i.e., lack of diversity among fake samples),
non-convergence, and vanishing or exploding gradients.

Our Contribution:

▶ We figure out the reason why GAN suffers from the mode
collapse issue: GAN evaluates fake samples on a one-by-one
base through the outputs of the discriminator, lacking a
mechanism for enhancing diversity of fake samples.

▶ We lay down a new theoretical paradigm for GAN based on
randomized decision rules.

▶ We propose a new training algorithm for GAN, which is
immune to mode collapse and whose convergence to the Nash
equilibrium is asymptotically guaranteed.

GAN: Exisiting works

The existing methods can be roughly grouped into two categories,
metric-based methods and mixture generator methods.

▶ Metric-based methods: to find a more stable and informative
metric to guide the training process, e.g., f -divergence,
χ2-divergence, Wasserstein distance, etc.

▶ Mixture generator methods: to learn a mixture of generators
with a similar motivation as the proposed method, e.g.,
ensemble GAN, AdaGAN, MAD-GAN, MGAN, Bayesian GAN
and ProbGAN.

Pure Strategy Minimax Game: Notations

Let θd denote the parameters of the discriminator, let Dθd (x)
denote its output function, and let Gθg (z) denote the generator
with parameter θg , whose input z is Gaussian or uniform random
variable, and whose output distribution is denoted by pθg .

Define

Jd(θd ; θg) = Ex∼pdataϕ1(Dθd (x)) + Ex∼pθg
ϕ2(Dθd (x)),

Jg (θg ; θd) = −Ex∼pdataϕ1(Dθd (x)) + Ex∼pθg
ϕ3(Dθd (x)),

(1)

where ϕ1(·), ϕ2(·) and ϕ3(·) denote three metrics. For example,
ϕ1(D) = log(D), ϕ2(D) = log(1− D), and ϕ3(D) = − log(1− D)
or log(D) in Goodfellow et al. (2014).

Pure Strategy Minimax Game

The general form of the game introduced by GAN is given as
follows:

(i) max
θd

Jd(θd ; θg), (ii) max
θg

Jg (θg ; θd). (2)

If ϕ3 = −ϕ2, the objective of (2) represents a pure strategy
minimax game, i.e.,

min
θg

max
θd

Jd(θg , θd), (3)

which is called minimax GAN.

Mixed Strategy Minimax Game

Let πg (θg) denote a distribution of generators. Based on
randomized decision theory, we define a mixed strategy minimax
game:

min
πg

max
θd

EπgJd(θd ; θg), (4)

where Jd(θd ; θg) is as defined in (1), and the expectation is taken
with respect to πg (θg).

The new game is to iteratively find an optimal discriminator θd by
maximizing EπgJd(θd ; θg) for a given generator distribution πg
and an optimal generator distribution πg by minimizing
maxθd EπgJd(θd ; θg) for a given discriminator θd .

Mixed Strategy Minimax Game

Let pπg denote the distribution of the fake samples produced by
the generators drawn from πg , i.e., pπg (x) =

∫
pθg (x)πg (θg)dθg .

Lemma 1
Suppose the discriminator and generator have enough capacity,
ϕ1(D) = log(D), and ϕ2(D) = log(1− D). Then
minπg maxθd EπgJd(θd ; θg) = − log(4). If

θ̃d = argmaxθd Eπ̃gJd(θd ; θg) for some π̃g , then (θ̃d , pπ̃g) is a

Nash equilibrium point if and only if Eπ̃gJd(θ̃d ; θg) = − log(4).

Mixture Strategy Nash Equilibrium
Let qg (θg) denote the prior distribution of θg , and let N denote
the training sample size. Define

π(θg |θd ,D) ∝ exp{Jg (θg ; θd)}qg (θg), (5)

where

Jg (θg ; θd) = NJg (θg ; θd)

= N(−Ex∼pdataϕ1(Dθd (x)) + Ex∼pθg
ϕ3(Dθd (x)).

For the game (4), we propose to solve θd by setting

θ̃d = argmax
θd

∫
Jd(θd ; θg)π(θg |θd ,D)dθg , (6)

where Jd(θd ; θg) is as defined in (1) and then setting

pπ̃g =

∫
pθgπ(θg |θ̃d ,D)dθg . (7)

Mixture Strategy Nash Equilibrium: Theory

Theorem 2
Suppose that the discriminator and generator have enough
capacity, ϕ1(D) = log(D), ϕ2(D) = log(1− D),
ϕ3 = − log(1− D), and some regularity conditions hold. Then
(θ̃d , pπ̃g) defined in (6)-(7) is a Nash equilibrium point to the game
(4) as N → ∞.

Training Algorithm: Idea

Equation (6) can be solved by solving the equation
∇θd

∫
Jd(θd ; θg)π(θg |θd ,D)dθg = 0. When N is sufficiently large,

the latter equation can be solved by solving the mean field equation

h(θd) =

∫
H(θd , θg)π(θg |θd ,D) = 0, (8)

using a stochastic approximation algorithm, where H(θd , θg)
denotes an unbiased estimator of ∇θdJd(θd ; θg).

The convergence of the solution to the Nash equilibrium can be
checked via some plots shown later.

Training Algorithm: Algorithm

By the standard theory of stochastic approximation MCMC, (8)
can be solved by iterating between the following two steps:

(i) Simulate θ
(t)
g by a Markov transition kernel which leaves the

conditional posterior

π(θg |θ(t−1)
d ,D) ∝ exp{Jg (θg ; θ(t−1)

d)}qg (θg) invariant.
(ii) Update the estimate of θd by setting

θ
(t)
d = θ

(t−1)
d + wtH(θ

(t−1)
d , θ

(t)
g), where wt denotes the step

size used at iteration t.

Stochastic gradient MCMC algorithms, such as SGLD, SGHMC
and momentum SGLD, can be used in step (i).

Training Algorithm: Convergence Analysis

Under appropriate conditions, we will show that |θ(t)d − θ̃d | → 0 in

probability and θ
(t)
g ∼ π(θg |θ̃d ,D) as t → ∞. That is, the

proposed algorithm converges to the Nash equilibrium of the mixed
strategy minimax game (4).

Lemma 3 (Convergence of discriminator)

If the learning rate ϵ is sufficiently small, then there exist a constant
γ, an iteration number t0 and an optimum θ̃d = argmaxθd∫
Jd(θd ; θg)π(θg |θd ,D)dθg such that for any t ≥ t0,

E∥θ(t)d − θ̃d∥2 ≤ γwt ,

where t indexes iterations, wt is the step size converging to 0.

Training Algorithm: Convergence Analysis

Lemma 4 (Ergodicity of generator)

For a smooth test function ψ(θg) with ∥ψ(θg)∥ ≤ C (1 + ∥θg∥) for
some constant C, define

ψ̂T =

∑T
t=1 ϵtψ(θ

(t)
g)∑T

t=1 ϵt
, ψ̄ =

∫
ψ(θg)π(θg |θ̃d ,D)dθg . (9)

Under appropriate conditions, we have

E∥ψ̂T − ψ̄∥2 → 0, as T → ∞.

A Single Gaussian Example

Consider a 2-D Gaussian example, where the real samples are
generated in the following procedure:

▶ Generate the cluster mean: µ ∼ N (0, I2), where I2 denotes a
2-dimensional identity matrix.

▶ Generate a mapping matrix: M ∼ N (0, I2×2), that is, M is a
2× 2-matrix with each element being independently drawn
from N (0, 1).

▶ Generate 10000 observations: xi ∼ (N (0, I2) + µ)×MT , for
i = 1, 2, . . . , 10000.

Both the discriminator and generators used for this example are
fully connected neural networks with ReLU activation. The
discriminator has a structure of 2− 1000− 1, and the generator
has a structure of 10− 1000− 2.

A Single Gaussian Example: Convergence Path

(a) (b)

Figure 2: Empirical means of D
θ
(t)
d

(xi) and D
θ
(t)
d

(x̃i) produced by (a) GAN

and (b) EBGAN with a Gaussian prior along with iterations.

A Single Gaussian Example: Coverage Plot

(a) Evolution of coverage by GAN

(b) Evolution of coverage by one generator from EBGAN

(c) Evolution of coverage by integration of all 10 generators from EBGAN

Figure 3: Coverage plots produced by (a) GAN, (b) a single generator of
EBGAN, and (c) all 10 generators of EBGAN, where the generators for the
plots from left to right are collected at iterations 2500, 5000, 7500, . . ., 25000,
respectively.

Mixture Gaussian Example

The dataset was generated from a 10-component mixture Gaussian
distribution in the following procedure:

(i) Generate 10 cluster means: µ(j) ∼ 5N (0, I2), j = 1, 2, . . . , 10.

(ii) generate 10 mapping matrices: M(j) ∼ 5N (0, I100×2),
j = 1, 2, . . . , 10.

(iii) generate 1000 observations of x (j) for each (µ(j),M(j)):

x
(j)
i ∼ (N (0, I2) ∗ 0.5 + µ(j))× (M(j))T , for j = 1, 2, . . . , 10,
i = 1, 2, . . . , 1000.

EBGAN was run with the prior qg = N (0, I), kg = 10, and
ϕ3(D) = − log(1− D) and log(D). The discriminator has a
structure of 100− 1000− 1 and the generator has a structure of
10− 1000− 100, which are the same as those used in Saatci and
Wilson (2017).

Mixture Gaussian Example: Convergence Path

(a) (b) (c)

(d) (e) (f)

Figure 4: Nash equilibrium convergence plots of the empirical means of
D

θ
(t)
d

(xi) and D
θ
(t)
d

(x̃i) produced by different methods: (a) EBGAN, (b)

minimax GAN, (c) Bayesian GAN, (d) ProbGAN, (e) Lipschitz-GAN, (f)
EBGAN with a Lipschitz penalty.

Mixture Gaussian Example: Coverage plot

(a) (b) (c)

(d) (e) (f)

Figure 5: Component recovery plots produced by different methods with
ϕ3(D) = − log(1− D): (a) EBGAN, (b) minimax GAN, (c) Bayesian GAN, (d)
ProbGAN, (e) Lipschitz GAN, and (f) EBGAN with a Lipschitz penalty.

Image Generation: Fashion-MNIST

(a) (b) (c) (d) (e)

Figure 6: Convergence plots and images produced by (a) GAN, (b) Bayesian
GAN, (c) ProbGAN, (d) EBGAN with a KL-divergence prior, and (e) EBGAN
with a Gaussian prior.

Nonparametric Clustering

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 7: (a) K-means clustering, (b) Agglomerative clustering, (c)
DBSCAN, (d) Cluster-GAN, (e)-(h) Cluster-EBGAN in different runs.

Conclusion

▶ We have figured out the reason why GAN suffers from the
mode collapse issue, proposed a new theoretical framework for
addressing this issue, and proposed a new method for training
GANs.

▶ The proposed empirical Bayes-like method can be extended in
various ways, e.g., more efficient SGMCMC algorithms for
simulating generators and more efficient optimization
algorithms for training the discriminator. Also, sparse
generators and discriminator can be learned for the method
with appropriate penalty functions.

	Problem
	A New Framework of GAN
	Training Algorithm
	Conclusion

