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Motivations

Deep learning has played a crucial role in the recent advancements
of data science. However, when viewed from the perspective of
statistical modeling, it suffers from several fundamental issues:

▶ overparameterization

▶ miscalibration

▶ uninterpretability in structure

which have posed great challenges in understanding the
performance of deep learning theoretically.
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Motivations

On the other hand, statistics, during its century-long history, has
developed principles and methods to address above issues for
traditional statistical models particularly linear models.

Question:
Whether and how can we bridge the gap between linear models
and DNNs such that the theory and methods developed for linear
models can be transferred to DNNs to have the above issues
adequately addressed?

Related work: Some authors have tried to understand the
performance of the DNNs from the perspective of kernel learning.
They proved the transition to linearity of the DNN model and
constancy of the neural tanget kernel (NTK) when the DNNs are
sufficiently wide.
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Basic Idea: StoNet

We reformulate the DNN as a composition of many simple linear
or logistic regressions by adding random noise to the feeding value
of each hidden unit, while maintaining its universal approximation
power.

As a result, the stochastic neural network (StoNet) falls into the
framework of statistical modeling, which does not only allow us to
address many fundamental issues in deep learning, such as
overparameterization, miscalibration, and structural
uninterpretability, but also provides us with a platform for
transferring the theory and methods from linear models to deep
learning.
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StoNet: Structure

Figure 1: An illustrative plot for the structure of a StoNet with two
hidden layers.
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Mathematical Formulation: DNN

Consider a DNN model with h hidden layers. We can rewrite the
DNN in the following form

Ỹ1 = b1 + w1X ,

Ỹi = bi + wiΨ(Ỹi−1), i = 2, 3, . . . , h,

Y = bh+1 + wh+1Ψ(Ỹh) + eh+1,

(1)

where eh+1 ∼ N(0, σ2h+1Idh+1
) is Gaussian random error.
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Mathematical Formulation: StoNet

The StoNet, as a probabilistic deep learning model, is given by

Y1 = b1 + w1X + e1,
Yi = bi + wiΨ(Yi−1) + ei , i = 2, 3, . . . , h,

Y = bh+1 + wh+1Ψ(Yh) + eh+1,

(2)

where Y1,Y2, . . . ,Yh can be viewed as latent variables. Further,
we assume that ei ∼ N(0, σ2i Idi ) for i = 1, 2, . . . , h, h + 1.

In words, the StoNet has been formulated as a composition of
many simple linear/logistic regressions, which makes its structure
more designable and interpretable.
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StoNet: an Approximator to DNN-1

Let θi = (wi ,bi ), let θ = (θ1,θ2 · · · ,θh+1) denote the parameter
vector of StoNet.

Assumption 1

(i) Θ is compact, i.e., Θ is contained in a dθ-ball centered at 0
with radius r ;

(ii) E(log π(Y |X ,θ))2 <∞ for any θ ∈ Θ;

(iii) the activation function ψ(·) is c ′-Lipschitz continuous for
some constant c ′;

(iv) the network’s depth h and widths di ’s are both allowed to
increase with n;

(v) σn,1 ≤ σn,2 ≤ · · · ≤ σn,h+1, σn,h+1 = O(1), and

dh+1(
∏h

i=k+1 d
2
i )dkσ

2
n,k ≺ 1

h for any k ∈ {1, 2, . . . , h}.
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Loss Surface

Theorem 1
Suppose Assumption 1 holds. Then the StoNet (2) and the neural
network (1) have asymptotically the same loss function, i.e.,

sup
θ∈Θ

∣∣∣∣∣ 1n
n∑

i=1

log π(Y (i),Y (i)
mis |X

(i),θ)−
1

n

n∑
i=1

log π(Y (i)|X (i),θ)

∣∣∣∣∣ p→ 0, as n → ∞,

(3)

where Ymis = (Y1,Y2, . . . ,Yh) denotes the collection of all latent
variables in the StoNet (2).
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Loss Surface

Let Q∗(θ) = E(log π(Y |X ,θ)), where the expectation is taken
with respect to the joint distribution π(X ,Y ). By Assumption
1-(i)&(ii) and the law of large numbers,

1

n

n∑
i=1

log π(Y (i)|X (i),θ)− Q∗(θ)
p→ 0 (4)

holds uniformly over Θ. Further, we assume the following
condition hold for Q∗(θ):

Assumption 2

(i) Q∗(θ) is continuous in θ and uniquely maximized at θ∗; (ii) for
any ϵ > 0, supθ∈Θ\B(ϵ)Q

∗(θ) exists, where
B(ϵ) = {θ : ∥θ − θ∗∥ < ϵ}, and
δ = Q∗(θ∗)− supθ∈Θ\B(ϵ)Q

∗(θ) > 0.
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StoNet: an Approximator to DNN-2

Theorem 2
Suppose Assumptions 1 and 2 hold, and π(Y ,Ymis |X ,θ) is
continuous in θ. Let
θ̂n = argmaxθ∈Θ{ 1

n

∑n
i=1 log π(Y

(i),Y (i)
mis |X (i),θ)}. Then

∥θ̂n − θ∗∥ p→ 0, as n → ∞.

This theorem implies that the DNN (1) can be trained by training
the StoNet (2). The two models are asymptotically equivalent as
the sample size n becomes large.
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StoNet Training-I: Imputation-Regularized Optimization
(Liang et al.,2018, JRSSB)

▶ Imputation: For each sample (X (i),Y (i)), draw Y (i ,t+1)
mis from

π(Ymis|Y (i),X (i), θ̂
(t)
n ,σ2

n), where t indexes the iterations.

▶ Regularized optimization: Based on the pseudo-complete

data (Y ,Y (t+1)
mis ,X ), update θ̂

(t)
n by minimizing a penalized

loss function, i.e., setting

θ̂(t+1)
n = argmin

θ

{
− 1

n

n∑
i=1

log π(Y (i),Y (i,t+1)
mis

∣∣X (i),θ,σ2
n) + Pλn(θ)

}
,

(5)

where the penalty function Pλn(θ) is chosen such that θ̂
(t+1)
n

forms a consistent estimator of

θ
(t+1)
∗ = argmax

θ
E
θ
(t)
n
log π(Y ,Ymis|X ,θ,σ2

n) (6)

where θ
(t+1)
∗ is called the working true parameter at iteration

t + 1.
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StoNet Training-I: a note

Solving (5) corresponds to solving a series of linear regressions by
noting that the joint distribution π(Ymis,Y |X ,θn,σ2

n) can be
decomposed as follows by its Markov structure:

π(Ymis,Y |X ,θn,σ2
n) = π(Y |Yh,θn,σ

2
n)

× π(Yh|Yh−1,θn,σ
2
n) · · ·π(Y1|X ,θn,σ2

n),
(7)

and, furthermore, the components of Yi ∈ Rdi are mutually
independent conditional on Yi−1 for i = 1, 2, . . . , h + 1.

The IRO algorithm leads to two interleaved Markov chains:

θ
(0)
n → Y (1)

mis → θ
(1)
n → Y (2)

mis → · · · ,

whose convergence has been studied in Liang et al. (2018).



14/58

StoNet Training-I: Convergence

Let γ∗ = {k : θ∗k ̸= 0} be the set of indexes of non-zero elements
of θ∗ and select the connections by setting

γ̂
(t)
n = {k : |θ̂(t)k,n| > c

√
rn} for some constant c , where θ∗k and θ̂

(t)
k,n

denote the k-th component of θ∗ and θ̂
(t)
n , respectively.

Theorem 3
Suppose that the Lasso penalty is imposed on θ. Under
appropriate assumptions, the following results hold:

(i) ∥θ̂(t)
n − θ∗∥ p→ 0 for sufficiently large n and sufficiently large t

and almost every observed dataset Dn.

(ii) P(γ̂
(t)
n = γ∗) → 1 as n → ∞ and t → ∞.

Similar to the sparse learning theory of linear models, Theorem 3
shows that if an θ-min condition is satisfied, then the true
structure of the StoNet can be recovered.
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StoNet Training-I: Corollary

With IRO, we have given a constructive proof for the consistency
of sparse StoNets based on the sparse learning theory of linear
models. Let

θ̂∗
n = argmax

θ

{1
n

n∑
i=1

log π(Y (i),Y (i)
mis|X

(i),θ,σ2) +
1

n
Pλ(θ)

}
, (8)

θ̂∗
DNN,n = argmax

θ

{1
n

n∑
i=1

log π(Y (i)|X (i),θ) +
1

n
Pλ(θ)

}
. (9)

By Theorem 1,

Corollary 4

If the Lasso penalty Pλ(θ) is employed, then the estimator (9) is
also consistent in both parameter estimation and structure
selection, i.e., ∥θ̂∗

DNN,n − θ∗∥ p→ 0 and P(γ̂DNN,n = γ∗) → 1 as
n → ∞, where γ̂DNN,n is selected with the same threshold as given
in Theorem 3.
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StoNet Training-II

By Theorem 2, the StoNet can be trained by solving the equation

E[H(Ymis ,θ)] =

∫
H(Ymis ,θ)π(Ymis |θ,X ,Y )dYmis = 0, (10)

where H(Ymis ,θ) = ∇θ log π(Y ,Ymis |X ,θ)−∇Pλn(θ).

Equation (10) further implies that StoNet can be trained by an
adaptive stochastic gradient MCMC algorithm.
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StoNet Training-II: adaptive stochastic gradient MCMC

(i) (Sampling) Simulate the latent variables

Y (k+1)
mis := (Y (k+1)

1 ,Y (k+1)
2 , . . . ,Y (k+1)

h ) from
π(Ymis |θ(k),X ,Y ) using a stochastic gradient MCMC
algorithm, e.g., SGLD or SGHMC.

(ii) (Parameter updating) Update the parameters of the StoNet
by one stochastic gradient descent (SGD) step:

θ(k+1) = θ(k) + γk+1H(Y (k+1)
mis ,θ(k)).
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Convergence of Adaptive SGHMC

Theorem 5
Under some regularity conditions, if we set ϵk = Cϵ/(ce + kα) and
γk = Cγ/(cg + kα) for some constants α ∈ (0, 1), Cϵ > 0, Cγ > 0,
ce ≥ 0 and cg ≥ 0, then there exists an iteration k0 and a constant
λ0 > 0 such that for any k > k0,

E(∥θ(k) − θ∗∥2) ≤ λ0γk , (11)

where θ∗ denotes a solution to the equation (10).
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Convergence of SGHMC

Theorem 6
Under some regularity conditions, for any k ∈ N, we have

W2(µD,Tk
, πD) ≤ C

√
Hρ(µ0, πD)e

−µ∗Tk

+
√

C5 log(Tk)

√C̃ (k) +

(
C̃ (k)

2

)1/4
+

√√√√C6Tk

k−1∑
j=1

ϵ2j+1,

which can be made arbitrarily small by choosing a large enough
value of Tk and small enough values of ϵ1 and γ1. Here Hp(·)
denotes a semi-metric for probability distributions.
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Prediction Uncertainty Quantification

Let Y (t)
i denote the imputed latent variable at layer i ,

corresponding to the input vector z . Let µ(t)
i and Σ

(t)
i denote,

respectively, the mean and covariance matrix of Y (t)
i . By Eve’s

law, for any layer i ∈ {2, 3, . . . , h + 1},

Σ
(t)
i = E(Var(Y (t)

i |Y (t)
i−1)) +Var(E(Y (t)

i |Y (t)
i−1))

where the respective variances can be calculated by the
Lasso+OLS.
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Prediction Uncertainty Quantification

Given Σ̂
(t)
i ’s, the 95% prediction interval of µj(z ,θ∗), the j-th

component of µ(z ,θ∗), can be constructed in the following procedure:

(i) For each StoNet estimate θ̂(t) ∈ S, calculate the variance of the

training error by ς̂
2(t)
h+1,j =

1
n

∑n
k=1(µj(x (k), θ̂(t))− y

(k)
j )2.

(ii) For each StoNet estimate θ̂(t) ∈ S, construct the prediction interval(
µj(z , θ̂(t))− 1.96

√
Σ̂

(t)
h+1,j + ς̂

2(t)
h+1,j ,

µj(z , θ̂(t)) + 1.96
√
Σ̂

(t)
h+1,j + ς̂

2(t)
h+1,j

)
,

(12)

where Σ̂
(t)
h+1,j denotes the (j , j)-th diagonal element of Σ̂

(t)
h+1.

(iii) Output the final 95% prediction interval of µj(z ,θ∗) by averaging
m intervals obtained in step (ii).
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Prediction Uncertainty Quantification: Example
Consider a neural network model:

y = tanh(2 tanh(2x1−x2))+2 tanh(2 tanh(x3−2x4)−tanh(2x5))+0x6+. . . 0x20+ϵ,
(13)

where ϵ ∼ N(0, 1), x = (x1, x2, . . . , x20), xi ∼ N(0, 1) for
i = 1, 2, . . . , 20, and xi ’s are correlated with a mutual correlation
coefficient of 0.5.

(a) 2-hidden-layer StoNet
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Figure 2: Variable selection paths by the StoNet.
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Variable Selection
We generate n = 10000 training samples from the following model

y =
5x2

1 + x21
+ 5 sin(x3x4) + 2x5 + 0x6 + · · ·+ 0x2000 + ϵ,

where ϵ ∼ N(0, 1), x = (x1, . . . , x2000), xi ∼ N(0, 1) for
i = 1, . . . , 2000, and xi ’s are mutually correlated with correlation
coefficient 0.5. We train a StoNet with structure 2000-500-100-1.
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Figure 3: Variable selection paths by StoNet, where y -axis is the average

output gradient 1
n

∑n
k=1

∂µ̂(x)
∂xi

|x (k) calculated over the training data.



24/58

Structural Interpretability: Sufficient Dimensional
Reduction

Suppose that we are able to learn a StoNet, which maps X to Y
via some stochastic hidden layers and possesses a layer-wise
Markovian structure such that

π(Y ,Yh,Yh−1, . . . ,Y1|X ) = π(Y |Yh)π(Yh|Yh−1) · · ·π(Y1|X ),
(14)

where each conditional distribution is modeled by a linear or
logistic regression (on transformed outputs of the previous layer).

The layer-wise Markovian structure implies Y |= X |Yh, and the
simple regression structure of π(Y |Yh) successfully gets around
the identifiability issue of the latent variable Z := Yh that has
been suffered by some other deep learning-based methods.
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Sufficient Dimension Reduction (SDR)

Let Y ∈ Rd be response variables, and let
X = (X1, . . . ,Xp)

T ∈ Rp be explanatory variables. The goal of
SDR is to find a lower-dimensional representation Z ∈ Rq, as a
function of X for some q < p, such that

P(Y |X ) = P(Y |Z ), or equivalently Y |= X |Z , (15)

where |= denotes conditional independence.
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SDR: Linear Setting

Under the linear setting, SDR is to find a few linear combinations
of X that are sufficient to describe the conditional distribution of
Y given X , i.e., finding a projection matrix B ∈ Rp×q such that

Y |= X
∣∣BTX . (16)

Inverse regression Methods:

▶ sliced inverse regression (SIR)

▶ sliced average variance estimation (SAVE)

▶ parametric inverse regression

▶ contour regression

▶ directional regression

These methods require strict assumptions on the joint distribution
of (X ,Y ) or the conditional distribution of X |Y , which limit their
use in practice.
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SDR: Nonlinear Setting

Under the nonlinear setting, SDR is to find a nonlinear function
f (·) such that

Y |= X
∣∣f (X ). (17)

A common strategy to achieve nonlinear SDR is to apply the kernel
trick to the existing linear SDR methods, where the variable X is
first mapped to a high-dimensional feature space via kernels and
then inverse or forward regression methods are performed.
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Nonlinear SDR methods: Kernel trick

▶ kernel sliced inverse regression (KSIR)

▶ kernel dimension reduction (KDR)

▶ manifold kernel dimension reduction (MKDR)

▶ generalized sliced inverse regression (GSIR)

▶ generalized sliced average variance estimator (GSAVE)

▶ least square mutual information estimation (LSMIE)

A drawback shared by these methods is that they require to
compute the eigenvectors or inverse of an n × n matrix. Therefore,
these methods lack the scalability necessary for big data problems.
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SDR: Deep Learning

In Kapla et al. (2021), the authors assume that the response
variable Y on the predictors X is fully captured by a regression

Y = g(BTX ) + ϵ, (18)

for an unknown function g(·) and a low rank parameter matrix B,
where g(·) is approximated by a DNN.

This method might be invalid unless the estimate of g(·) is
consistent, but the consistency does not generally hold for the fully
connected neural networks trained without constraints.
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SDR: Deep Learning

Banijamali et al. (2018) learn the latent variable Z by optimizing
three DNNs to approximate the distributions p(Z |X ), p(X |Z ) and
p(Y |Z ), respectively, under the framework of variational
autoencoder. Again, Z suffers from the identifiability issue due to
the universal approximation ability of the DNN.
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SDR: A Validating Example

▶ The dataset consists of 100 samples. Each sample is
generated from the model Y = cos(XTb) + ϵ, where
X ∈ R20 follows a multivariate Gaussian distribution, and ϵ
follows a generalized Gaussian distribution GN(0,

√
1/2, 0.5).

▶ Kapla et al. (2021) projected the data to one-dimensional
space by working with a refinement network of 20-1-512-1.
Let Z1 and Z2 denote two SDR vectors produced by the
method in two independent runs with different initializations
of network weights. An independence test Z1 |= Z2 returns a
p-value of 0.4068, which suggests that the two SDR vectors
are independent.

▶ StoNet was applied to the same dataset with structure
20-10-1-1. The test Z1 |= Z2 returns a p-value of 0.012, which
suggests that the two SDR vectors are not independent.
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SDR: Classification

Table 1: Mean misclassification rates on test sets over 20 independent
trials for some binary classification examples.

Datasets q StoNet LSMIE GSIR GSAVE KDR SIR SAVE PCA

thyroid
1 0.0687(.0068) 0.2860(.0109) 0.0640(.0063) 0.0913(.0102) 0.2847(.0110) 0.1373(.0117) 0.3000(.0110) 0.3013(.0110)
2 0.0693(.0068) 0.1733(.0113) 0.0667(.0071) 0.0947(.0103) 0.2713 (.0128) 0.1373(.0130) 0.3000(.0118) 0.1467(.0143)

breastcancer
2 0.2578(.0074) 0.2812(.0110) 0.2772(.0091) 0.2740(.0069) 0.2714(.0102) 0.2818(.0125) 0.2870(.0075) 0.2857(.0129)
4 0.2682(.0113) 0.2760(.0118) 0.2740(.0100) 0.2805(.0076) 0.2740(.0105) 0.2831(.0110) 0.2922(.0147) 0.2766(.0097)

flaresolar
2 0.3236(.0040) 0.3770(.0177) 0.3305(.0034) 0.3308(.0033) 0.4161(.0138) 0.3312(.0052) 0.4860(.0127) 0.3313(.0046)
4 0.3239 (.0043) 0.3346(.0043) 0.3400(.0040) 0.3336(.0038) 0.3673(.0108) 0.3328(.0049) 0.4302(.0133) 0.3612(.0036)

heart
3 0.1625(.0076) 0.1725(.0073) 0.1645(.0069) 0.1731(.0060) 0.1870(.0064) 0.1720(.0088) 0.1910(.0053) 0.1920 (.0123)
6 0.1625(.0062) 0.1695(.0073) 0.1650(.0068) 0.1754(.0063) 0.1715(.0075) 0.1770(.0100) 0.1720(.0073) 0.1830(.0102)

german
5 0.2368(.0050) 0.25(.0052) 0.2325(.0058) 0.2323(.0050) 0.2430(.0050) 0.2367(.0068) 0.2703(.0072) 0.2777(.0070)
10 0.2356(.0047) 0.2443(.0056) 0.2327(.0046) 0.2312(.0047) 0.2347(.0075) 0.2360(.0068) 0.2447(.0062) 0.2350(.0051)

waveform
5 0.1091(.0010) 0.1336(.0013) 0.1140(.0015) 0.1095(.0016) 0.1269(.0031) 0.1453(.0018) 0.1427(.0020) 0.1486(.0013)
10 0.1079(.0012) 0.1369(.0018) 0.1117(.0009) 0.1070(.0013) 0.1254(.0030) 0.1444(.0017) 0.1417(.0020) 0.1430(.0020)
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SDR: MNIST Example

Table 2: Misclassification rates on the test set for the MNIST example,
where the best misclassification rates achieved by different methods at
each dimension q are specified by bold face. The CPU time (in seconds)
was recorded on a computer of 2.2 GHz.

q StoNet LSMIE GSIR GSAVE Autoencoder PCA

392 0.0456 - 0.0596 0.0535 0.1965 0.1002
196 0.0484 - 0.0686 0.0611 0.2268 0.0782
98 0.0503 - 0.0756 0.0696 0.2733 0.0843
49 0.0520 - 0.0816 0.0764 0.3112 0.0889
10 0.0825 - 0.0872 0.0901 0.4036 0.1644

Average Time(s) 96.18 > 24hours 16005.59 22154.11 1809.18 5.11
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SDR: Regression

Table 3: Mean MSE and Pearson correlation on the test sets (and their
standard deviations in the parentheses) over 10 trails for the Relative
location of CT slices on axial axis dataset.

StoNet Autoencoder PCA
q MSE Corr MSE Corr MSE Corr

192 0.0002(.0000) 0.9986(.0001) 0.0079(.0015) 0.9267(.0147) 0.0027(.0000) 0.9755(.0001)
96 0.0002(.0000 0.9985(.0001) 0.0106(.0024) 0.9002(.0237) 0.0026(.0000) 0.9756(.0001)
48 0.0002(.0000) 0.9982(.0001) 0.0143(.0035) 0.8562(.0399) 0.0034(.0000) 0.9682(.0001)
24 0.0002(.0000) 0.9980(.0001) 0.0185(.0033) 0.8168(.0364) 0.0042(.0000) 0.9612(.0001)
12 0.0002(.0000) 0.9980(.0001) 0.0233(.0027) 0.7579(.0338) 0.0053(.0000) 0.9499(.0001)
6 0.0002(.0000) 0.9980(.0001) 0.0304(.0024) 0.6668(.0300) 0.0102(.0001) 0.9023(.0002)
3 0.0004(.0000) 0.9965(.0002) 0.0384(.0030) 0.5529(.0538) 0.0209(.0001) 0.7858(.0004)
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K-StoNet
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Figure 4: Structure of K-StoNet
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Attractive features of K-StoNet

K-StoNet overcomes the issues on local trap and uncertainty
quantification suffered by the DNN in a coherent way. The new
model incorporates support vector regression (SVR) as the first
hidden layer and reformulates the neural network as a latent
variable model.

▶ The SVR layer maps the input vector from its original space
into an infinite dimensional feature space, ensuring all local
minima on the loss surface are globally optimal.

▶ The latent variable modeling resolves the parameter
optimization and statistical inference issues associated with
the neural network: it breaks the high-dimensional nonconvex
optimization problem into a series of low-dimensional convex
optimization problems, enabling the prediction uncertainty of
the neural network easily assessed.
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Attractive features of K-StoNet (continuation)

▶ The new model can be easily trained using the
imputation-regularized optimization (IRO) algorithm (Liang et
al., 2018), which usually converges in tens of epochs.

▶ The introduction of the SVR layer with a universal kernel
enables K-StoNet to work with a smaller network, while
ensuring the universal approximation power to hold.

In summary, K-StoNet provides a new neural network model which
possesses a theoretical guarantee to asymptotically converge to the
global optimum and enables the prediction uncertainty easily
assessed.
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A full row rank example

The dataset was generated from a two-hidden layer neural network
with structure 1000-5-5-1:

y = w3 tanh(w2 tanh(w1x)) + ϵ, (19)

where the input variables x1, . . . , x1000 have a mutual correlation
coefficient of 0.5, w1 ∈ R5×1001, w2 ∈ R5×6 and w3 ∈ R1×6

represent the weights at different layers of the neural network,
tanh(·) is the hyperbolic tangent function, and the random error
ϵ ∼ N(0, 1). Each element of wi ’s was randomly sampled from the
set {−2,−1, 1, 2}. The full dataset consisted of 1000 training
samples and 1000 test samples.
Since wi ’s for i = 1, 2, 3 are all full-row rank matrices, there will be
no local traps for SGD.
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A full row rank example
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Figure 5: MSE paths produced by K-StoNet, KNN, and DNN for one
simulated dataset.
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A full row rank example

▶ For K-StoNet, we tried a model with one hidden layer and 5
hidden units. The model was trained by IRO for 40 epochs.

▶ K-StoNet converges to the global optimum very fast, usually
within a few epochs; while the DNN needs over 100 epochs.

▶ K-StoNet is less bothered by over-fitting, whose prediction
performance is stable after convergence has been reached.
However, the DNN tends to be over fitted, whose prediction
becomes worse and worse as training goes on.
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A measurement error example

This example mimics the typical scenario that DNN works in. We
generated 500 training samples and 500 test samples from a
nonlinear regression model:

Y =
5X2

1 + X 2
1

+ 5 sin(X3X4) + 2X5 + ϵ,

where ϵ ∼ N(0, 1), and Xi ’s have a mutual correlation coefficient
of 0.5. Then each explanatory variable was perturbed by adding a
random measurement error independently simulated from
N(0, 0.5), making the true input-output mapping unknown and
complicated.

This is a typical large-n-small-p problem that deep learning works
on.
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A measurement error example
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Figure 6: MSE paths produced by K-StoNet, KNN and DNN on a
measurement error example.
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A measurement error example
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Figure 7: 95% confidence intervals produced by K-StoNet for 20 test
points. The overall covrage rate for 500 test points is 93.812% with a
standard deviation of 0.781%.
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MNIST
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Figure 8: Training and test accuracy versus epochs produced by
K-StoNet and DNN (LeNet-300-100) for the MNIST data, where
K-StoNet achieved a prediction accuracy of 98.87%, and LeNet-300-100
achieved a prediction accuracy of 98.38% (without data augmentation
being used in the experiments)
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Causal inference: challenges

Challenges with causal inference for high-dimensional complex
data:

(i) High dimensionality of covariates, which is common in social
media data, environmental and healthcare data, and genomic
data

(ii) Unknown functional forms for the outcome and treatment
models

(iii) Missing values in covariates

Sparse StoNet addresses all the three challenges in a coherent way!



46/58

Causal inference: flexible structure of StoNet
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Figure 9: Causal-StoNet Structure: the treatment is included as a visible
unit (rectangle) in a middle layer, and Y2 denotes the latent variable of
that layer but with the unit directly feeding to the treatment rectangle
excluded; ‘x’ represents possible missing values.
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Causal inference: Estimation

Under appropriate assumptions, we can show the following results
for the Causal-StoNet:

(a) (Propensity score function) With probability greater than
1− exp{cnϵ2n} for some constant c ,

Ex [(p̂(x ; θ̂n)− p∗(x))2] = o(n−1/2).

(b) (Outcome function) With probability greater than
1− exp{cnϵ2n} for some constant c ,

Ex(|µ̂(x ,A; θ̂n)− µ∗(x)|2) = o(n−1/2).

(c) (Structure selection) P(γ̂(θ̂n) = γ∗)
p→ 1, where γ∗ specifies

the structure of the underlying true sparse deep neural
network.
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Causal inference: Estimation

(d) V
−1/2
τ

√
n(τ̂n − τ∗)

d→ N (0, 1) as n → ∞, where τ∗ denotes
the true value of the average treatment effect, and τ̂n denotes
the double robust estimator constructed with µ̂(x ,A, θ̂n) and
p̂(x , θ̂n).

(e) (Uniformly valid inference) For cα = Φ−1(1− α/2),

sup
Pn∈Pn

∣∣∣∣PPn

[
τ∗ ∈

{
τ̂n ± cα

√
V̂τ/n

}]
− (1− α)

∣∣∣∣→ 0, as n → ∞,

where V̂τ denotes a consistent estimator of Vτ , and Pn

denotes the class of data generating processes.
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Causal inference: Example

The Causal-StoNet is compared with the baseline methods on 10
simulated dataset and 10 synthetic datasets by Atlantic Causal
Inference Conference (ACIC) 2019 Data Challenge. Each of the
datasets contains 200 covariates, and the true ATE is known.

Table 4: MAE of the ATE estimates by different methods, where the
number in the parentheses is the standard deviation of the MAE

Simulation ACIC
In-sample Out-of-sample In-sample Out-of-sample

Causal-StoNet 0.0130(0.0027) 0.0504(0.0101) 0.0501(0.0118) 0.0542(0.0132)
DSE 0.0876(0.0113) 0.0964(0.0169) 0.0776(0.0193) 0.1632(0.0251)
ARBE 0.0999(0.0095) 0.1012(0.0184) 0.0729(0.0166) 0.1335(0.0179)

TMLE(Lasso) 0.1111(0.0102) 0.1343(0.0237) 0.0869(0.0164) 0.0867(0.0165)
TMLE(ensemble) 0.0506(0.0067) 0.0813(0.0177) 0.1140(0.0394) 0.1316(0.0429)

X-Learner 0.0535(0.0168) 0.0928(0.0138) 0.1634(0.0434) 0.1805(0.0489)
Dragonnet 0.0340(0.0124) 0.0612(0.0147) 0.0800(0.0170) 0.0857(0.0269)
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Post-StoNet for Deep Learning

In real applications, use of large-scale deep neural networks, such
as residual networks and transformer, has been a common practice.
To make statistical inference for these large-scale models, we
propose a post-StoNet modeling procedure, without significantly
changing the current practice of large-scale models.

The proposed procedure is as follows:

(i) Transform the explanatory variables by calculating the output
of the last-hidden-layer of a well-trained DNN.

(ii) Learn a simple sparse StoNet(e.g. with one hidden layer only)
using the transformed data and their response on the
validation data.
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Post-StoNet for Deep Learning: Classification

Table 5: Calibration results for CIFAR100 data, where standard deviations
of the respective measures are given in parentheses. The ‘p-value’
evaluates the significance of the ECE produced by Post-StoNet,
compared to other methods, using a two-sample student t-test.

Network Size Method ACC NLL ECE p-value

DenseNet40 176K

No Post Calibration 67.89%(0.51%) 1.5590(0.0220) 17.29%(0.44%) 2.825e-23
Matrix Scaling 53.48%(0.62%) 4.8759(0.3891) 37.00%(1.07%) 1.975e-25
Temp. Scaling 67.89%(0.51%) 1.1653(0.0150) 4.66%(0.38%) 6.473e-5
Post-StoNet 67.48%(0.37%) 1.2755(0.0154) 3.71%(0.44%) —

ResNet 110 1.7M

No Post Calibration 73.38%(0.57%) 1.3364(0.0344) 15.11%(0.34%) 1.648e-26
Matrix Scaling 60.62%(0.98%) 4.4136(0.1754) 31.98%(0.86%) 9.455e-27
Temp. Scaling 73.38%(0.58%) 0.9923(0.0210) 4.64%(0.23%) 1.538e-16
Post-StoNet 73.42%(0.47%) 1.0317(0.0219) 1.73%(0.22%) —

WideResNet-
28-10

36M

No Post Calibration 79.71%(0.18%) 0.8589(0.0081) 8.03%(0.25%) 4.532e-23
Matrix Scaling 70.21%(0.66%) 3.7497(0.1147) 24.24%(0.68%) 2.181e-26
Temp. Scaling 79.71%(0.18%) 0.8152(0.0057) 4.69%(0.23%) 2.418e-18
Post-StoNet 80.43%(0.31%) 0.7277(0.0075) 1.09%(0.21%) —
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Post-StoNet for Deep Learning: Regression

Table 6: Average coverage rate and confidence interval length of test sets
of 10 random split of data.

Dataset N P Model Coverage Rate Interval length p-value

Liver 345 5
Post-StoNet 90.14% (3.54%) 9.4931 (0.4371) —

Split Conformal 90.72% (4.82%) 12.7296 (0.9708) 1.63e-8

QSAR 908 6
Post-StoNet 89.01% (2.23%) 3.1315(0.0973) —

Split Conformal 88.74% (3.87%) 3.5428 (0.2504) 1.31e-4

Community 1,994 100
Post-StoNet 88.25% (1.84%) 0.4657 (0.0191) —

Split Conformal 89.05% (2.13%) 0.5065 (0.0283) 1.37e-3

STAR 2,166 39
Post-StoNet 90.85% (1.44%) 840.7099 (33.8295) —

Split Conformal 90.46% (1.04%) 914.9324 (16.5794) 7.06e-6

Abalone 4,177 8
Post-StoNet 90.62% (0.85%) 7.4187 (0.1416) —

Split Conformal 90.33% (1.08%) 9.6276 (0.2951) 3.13e-14

Parkinson 5,875 22
Post-StoNet 89.40% (1.23%) 32.1171 (0.6234) —

Split Conformal 89.49% (0.70%) 35.9594 (0.9017) 1.79e-9

Power
Plant

9,568 4
Post-StoNet 90.97% (0.71%) 13.2852 (0.1723) —

Split Conformal 89.99% (0.82%) 14.5719 (0.2676) 1.81e-10

Bike 10,886 18
Post-StoNet 89.84% (0.86%) 173.5158 (2.1959) —

Split Conformal 89.75% (0.77%) 182.4721 (5.1792) 8.61e-5

Protein 45,730 9
Post-StoNet 89.41% (0.28%) 13.1319 (0.0494) —

Split Conformal 90.04% (0.22%) 14.4296 (0.0886) 3.98e-19

Year 515,345 90
Post-StoNet 90.64% (0.13%) 29.4272 (0.0923) —

Split Conformal 90.01% (0.10%) 32.1068 (0.3726) 1.74e-14
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Modularized Deep Learning

The structure of the StoNet is very flexible, for which one can
replace each regression by a more sophisticated model such that
large-scale models can be easily learned for a complex system.
The modularized DNN is naturally used to model the following
complex system:

Y1 = µ1(X ) + e1
Y = µ2(Y1) + e2

Z = Y1 + e3

(20)

where X , Z , and Y represent the input, intermediate and output
variables, respectively; µ1(·) and µ2(·) are complex functions
represented by neural networks.
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Drug effect prediction with CCLE Data

We used the mutation data as the input X , the gene expression
data as the intermediate observations Z , and the drug effect data
as the output Y . For the drug PLX4720, the dimensions of X , Y
and Z are 1638, 96 and 1, respectively. We modeled µ1(·) and
µ2(·) by shallow neural networks.
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CCLE Data Example: Training
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Figure 10: Evolutionary paths of the mean squared fitting errors produced
by different methods in one fold of the cross-validation experiment.
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CCLE Data Example: Testing
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Figure 11: Evolutionary paths of the mean squared prediction errors
produced by different methods in one fold of the cross-validation
experiment.
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Discussion

The StoNet provides a new formulation of the deep neural network as a
composition of many regressions:

▶ The StoNet bridges from linear models to deep learning, enabling
the sparse learning theory to be transferred from linear models to
deep neural networks.

▶ The StoNet reformulates the DNN as a latent variable model. It
breaks the high-dimensional nonconvex neural network training
problem into a series of lower-dimensional convex optimization
problems, and enables the prediction uncertainty easily assessed.

▶ The compositional regression structure enables the StoNet to model
many complex systems in a natural way, easing statistical analysis of
the data collected therefrom.

▶ The StoNet has many applications in statistics: sufficient dimension
reduction, causal inference, missing data imputation, data
integration, measurement error, etc.
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