
On Statistical Inference with Sparse Deep
Learning

October 14, 2024

Outline

▶ Introduction on sparse deep learning
▶ Theory on sparse deep learning:

▶ posterior consistency
▶ structure selection consisteny
▶ asymptotic normality of prediction

▶ Training algorithms

▶ Numerical experiments

▶ Conclusion

Deep Neural Networks

Deep neural networks (DNNs) have achieved great successes in
pattern recognition and speech processing during the past decade,
however, they are often over-parameterized, which leads to

▶ formidable computational challenges;

▶ mis-calibration.

For some problems, the DNNs might consist of hundreds of layers
and billions of parameters. For some networks, only 5% of
parameters are enough to achieve acceptable models.

Complexity Reduction

Three related questions:

▶ Is a sparse DNN able to approximate the target mapping with a
desired accuracy?

▶ How to train and determine the structure of a sparse DNN?

▶ How to quantify uncertainty of the prediction with a sparse DNN?

We answer the three questions in a coherent way: We propose a
frequentist-like method for learning sparse DNNs, justify its consistency
under the Bayesian framework, and establish asymptotic normality of
prediction.

We expect our theory can tame powerful neural networks into the
framework of statistical modeling: By selecting an appropriate network
size according to the training sample size, the proposed method can
generally improve the generalization and calibration of the DNN while
controlling the training error to a reasonable level.

Approximation Theory: Notation

▶ Let Dn = (x (i), y (i))i=1,...,n denote a dataset of n i .i .d
observations, where x (i) ∈ Rpn , y (i) ∈ R, and pn is assumed
to grow with the sample size n.

▶ We study the approximation theory of sparse DNNs under the
probabilistic framework of generalized linear models:

f (y |µ∗(x)) = exp{A(µ∗(x))y + B(µ∗(x)) + C (y)}.

▶ We approximate µ∗(x) using a DNN, which has Hn − 1
hidden layers and Lh hidden units in the h-th layer, where
LHn = 1 for the output layer and L0 = pn for the input layer.

Approximation Theory: Notation

▶ The DNN forms the nonlinear mapping

µ(w ,b, x) = wHnψHn−1
[
· · ·ψ1

[
w1x + b1

]
· · ·
]
+ bHn ,

where β = {wh
ij , b

h
k : h ∈ {1, 2, ...,Hn}, i , k ∈ {1, ..., Lh},

j ∈ {1, ..., Lh−1}} denotes the collection of weights and biases,
which consists of Kn =

∑Hn
h=1

(
Lh−1 × Lh + Lh

)
elements in

total.

▶ Let γwh
and γbh

denote the matrix and vector of the
indicator variables associated with wh and bh, respectively.
Let γ = {γwh

ij , γbh

k } and βγ = {wh
ij , b

h
k}, which specify,

respectively, the structure and associated parameters for a
sparse DNN.

Approximation Theory: Notation

▶ We define the true DNN as

(β∗,γ∗) = argmin
(β,γ)∈Gn,∥µ(β,γ,x)−µ∗(x)∥L2(Ω)≤ϖn

|γ|, (1)

where Gn := G(C0,C1, ε, pn,Hn, L1, L2, . . . , LHn) denotes the
space of valid sparse networks satisfying condition A.2 (given
below) for the given values of Hn, pn, and Lh’s, and ϖn is
some sequence converging to 0 as n → ∞.

Approximation Theory: Assumptions

A.1 The input x is bounded by 1 entry-wisely, i.e.
x ∈ Ω = [−1, 1]pn , and the density of x is bounded in its
support Ω uniformly with respect to n.

A.2 The true sparse DNN model satisfies the following conditions:

A.2.1 The network structure satisfies: rnHn log n
+rn log L+ sn log pn ≤ C0n

1−ε, where 0 < ε < 1 is a small
constant, rn = |γ∗| denotes the connectivity of γ∗,
L = max1≤j≤Hn−1 Lj denotes the maximum hidden layer width,
sn denotes the input dimension of γ∗.

A.2.2 The network weights are polynomially bounded: ∥β∗∥∞ ≤ En,
where En = nC1 for some constant C1 > 0.

A.3 The activation function ψ is Lipschitz continuous with a
Lipschitz constant of 1.

Approximation Theory: Remarks

Assumption A.2 specifies the class of DNN models we are considering.
They are sparse, while still being able to approximate many types of
functions arbitrarily well as the training sample size becomes large, i.e.,
limn→∞ϖn = 0. Here are some examples:

▶ (Affine functions) For the functions that can be represented by an
affine system, Bolcskei et al. (2019) proved that if the connection
weights are bounded in absolute value by some polynomial g(rn),
then the approximation error ϖn = O(r−α∗

n) for some constant α∗.

For affine functions, we can verify that Assumption A.2 is satisfied
with rn = O(n(1−ϵ)/2), ∥β∗∥∞ ≺ nC for some constant C , and the
approximation error ϖn = O(n−ς) for some constant ς > 0.

Approximation Theory: Remarks

▶ (Piecewise smooth functions) Petersen and Voigtlaender(2018)
showed that for a wide class of piecewise smooth functions with a
fixed input dimension, a fixed depth ReLU network can achieve an
ϖn-approximation with log(rn) = O(− logϖn) and
log En = O(− logϖn). This result satisfies condition A.2 by setting
ϖn = n−ς for some constant ς > 0.

▶ (Bounded α-Hölder smooth function) Schmidt-Hieber (2017) and
Polson and Rockova (2018) proved that any bounded α-Hölder
smooth function µ∗(x) can be approximated by a sparse ReLU DNN
with the network approximation error
ϖn = O(log(n)α/pnn−α/(2α+pn)) for some Hn ≍ log n log pn,
Lj ≍ pnn

pn/(2α+pn)/ log n, rn = O(p2nα
2pnnpn/(2α+pn) log pn), and

En = C for some fixed constant C > 0. This result satisfies
condition A.2 as long as p2n ≪ log n.

Approximation Theory: Remarks

The fundamental difference between the existing neural network
approximation theory and ours:

▶ In the existing neural network approximation theory, no data is
involved and a small network can potentially achieve an
arbitrarily small approximation error by allowing the
connection weights to take values in an unbounded space, see
e.g. Theorem 2.2 in Bolcskei et al. (2019).

▶ In our theory, the network approximation error, the network
size, and the bound of connection weights are all linked to the
training sample size. A small network approximation error is
required only when the training sample size is large; otherwise,
over-fitting might be a concern from the point of view of
statistical modeling.

Approximation Theory: Mixture Gaussian prior

We consider a mixture Gaussian prior

γwh

ij ∼ Bernoulli(λn), γbh

k ∼ Bernoulli(λn), (2)

wh
ij |γwh

ij ∼ γwh

ij N(0, σ21,n) + (1− γwh

ij)N(0, σ20,n),

bhk |γbh

k ∼ γbh

k N(0, σ21,n) + (1− γbh

k)N(0, σ20,n),
(3)

where h ∈ {1, 2, ...,HN}, i ∈ {1, ..., Lh−1} , j , k ∈ {1, ..., Lh}, and
σ20,n < σ21,n are prespecified constants. Marginally, we have

wh
ij ∼ λnN(0, σ21,n) + (1− λn)N(0, σ20,n),

bhk ∼ λnN(0, σ21,n) + (1− λn)N(0, σ20,n).
(4)

Typically, we set σ20,n to be a very small value while σ21,n to be
relatively large.

Approximation Theory: Posterior Consistency

Theorem 1
Suppose Assumptions A.1-A.3 hold. If the mixture Gaussian prior (4) is
set appropriately, then there exists an error sequence
ϵ2n = O(ϖ2

n) + O(ζ2n) such that limn→∞ ϵn = 0 and limn→∞ nϵ2n = ∞,
and the posterior distribution satisfies

P∗
{
π[d(pβ, pµ∗) > 4ϵn|Dn] ≥ 2e−cnϵ2n

}
≤ 2e−cnϵ2n ,

E∗
Dn
π[d(pβ, pµ∗) > 4ϵn|Dn] ≤ 4e−2cnϵ2n ,

(5)

for sufficiently large n, where ζ2n = [rnHn log n + rn log L+ sn log pn]/n,
pµ∗ denotes the underlying true data distribution, and pβ denotes the
data distribution reconstructed by the Bayesian DNN based on its
posterior samples.

Remarks on Theorem 1

▶ Theorem 1 provides a posterior contraction rate ϵn for the
sparse BNN. The contraction rate contains two components,
ϖn and ζn, which represent the network approximation error
and the network estimation error, respectively.

▶ Theorem 1 implies that given a training sample size n, the
proposed method can learn a sparse neural network with at
most O(n/ log(n)) connections. The sparse BNN has nice
theoretical properties, such as posterior consistency, variable
selection consistency, and asymptotically optimal
generalization bounds.

▶ Liang et al. (2018) employed a spike-and-slab prior, for which
sampling from the posterior is hard.

Consistency of DNN structure selection

Let ν(γ,β) be an operator that maps any neural network to a unique
network defined in an equivalent class via appropriate transformations
such as nodes permutation, sign changes, weight rescaling, etc. For each
connection ci , we define its marginal posterior inclusion probability by

qi =

∫ ∑
γ

ei|ν(γ,β)π(γ|β,Dn)π(β|Dn)dβ, i = 1, 2, . . . ,Kn, (6)

where ei|ν(γ,β) is the indicator for the existence of connection ci in the
network ν(γ,β).
Let A(ϵn) = {β : d(pβ, pµ∗) ≥ ϵn}. Define

ρ(ϵn) = max
1≤i≤Kn

∫
A(ϵn)c

∑
γ

|ei|ν(γ,β) − ei|ν(γ∗,β∗)|π(γ|β,Dn)π(β|Dn)dβ.

The identifiability condition can be stated as follows:

B.1 ρ(ϵn) → 0, as n → ∞ and ϵn → 0.

Consistency of DNN structure selection

Theorem 2
Assume that the conditions of Theorem 1 and the identifiability
condition B.1 hold. Then

(i) max1≤i≤Kn{|qi − ei |ν(γ∗,β∗)|}
p→ 0, where

p→ denotes
convergence in probability;

(ii) (sure screening) P(γ∗ ⊂ γ̂q̂)
p→ 1 for any pre-specified

q̂ ∈ (0, 1).

(iii) (Consistency) P(γ∗ = γ̂0.5)
p→ 1.

Laplace approximation of marginal inclusion probability

Define: hn(β) =
1

n

n∑
i=1

log(p(yi , xi |β)) +
1

n
log(π(β)). (7)

Let β̂ denote a strict local maximum of hn(β).

Theorem 3
Assume some regularity conditions hold for hn(β). For any bounded

function b(β), if |bi1,...,id (β)| = | ∂db(β)
∂βi1

∂βi2
···∂βid

| < M holds for any

1 ≤ d ≤ 2 and any 1 ≤ i1, . . . , id ≤ Kn, then for the posterior mean of
b(β), we have ∫

b(β)enhn(β)dβ∫
enhn(β)dβ

= b(β̂) + O

(
r4n
n

)
.

Laplace approximation of marginal inclusion probability

With an appropriate choice of prior hyperparameters, we can show
that π(γi = 1|β) satisfies all the requirements of b(β) in Theorem
3 with a probability tending to 1 as n → ∞. Then, by Theorem 3,
qk and π(γi = 1|β̂) are approximately the same as n → ∞.
Combining with Theorem 2, we have that π(γi = 1|β̂) is a
consistent estimator of ei |ν(γ∗,β∗).

Asymptotic Normality of Connection Weights

Theorem 4
Assume the conditions of Theorem 2 hold with ρ(ϵn) = o(1

Kn
) and

C1 >
2
3 in Condition A.2.2. Under some further conditions,

π[
√
n(ν̃(β)− β∗) | Dn]⇝ N(0,V),

as n → ∞, where V = (vij), and vi ,j = E (hi ,j(β∗)) if i , j ∈ γ∗ and
0 otherwise.

Asymptotic Normality of Prediction

Theorem 5
Assume the conditions of Theorem 4 and the following condition
hold: |µi (β∗, x0)| < M, |µi ,j(β, x0)| < M, |µk(β, x0)| < M hold
for any i , j ∈ γ∗, k /∈ γ∗ and β ∈ B2δn(β

∗), where M denotes a
constant. Then

π[
√
n(µ(β, x0)− µ(β∗, x0)) | Dn]⇝ N(0,Σ),

where Σ = ∇γ∗µ(β∗, x0)TH−1∇γ∗µ(β∗, x0) and
H = E (−∇2

γ∗ ln(β
∗)) is the Fisher information matrix.

Training Algorithm I: Sparse DNN Elicitation with
Bayesian Evidence

Repeat the following steps for t = 1, 2, . . . ,T , output the model with the
largest evidence.

(i) Initialization: Randomly initialize the weights and biases of a fully
connection DNN.

(ii) Optimization: Run SGD to maximize hn(β) as defined in (7).
Denote the estimate of β by β̂.

(iii) Sparsification: For each i ∈ {1, 2, . . . ,Kn}, set γi = 1 if

|β̂i | >
√
2σ0,nσ1,n√
σ2
1,n−σ2

0,n

√
log
(

1−λn

λn

σ1,n

σ0,n

)
and 0 otherwise. Denote the

yielded sparse DNN structure by γt .

(iv) Nonzero-weights refining: Refine the nonzero weights of the
sparsified DNN, and denote the resulting DNN model by β̃γt .

(v) Model evaluation: Calculate the Bayesian Evidence:

Evidencet = det(− n
2πHn(β̃γt))−

1
2 enhn(β̃γt).

Algorithm I: Remark

For a large-scale neural network, even if it is sparse, the number of
nonzero elements can easily exceed a few thousands or millions. In
this case, we suggest to approximate the log(Bayesian evidence) by
nhn(β̂γ)− 1

2 |γ| log(n).

If the prior information imposed on the sparse DNNs is further
ignored, then the sparse DNNs can be elicited by BIC.

Sparse Deep Learning under the Framework of Statistical
Modeling

Repeat steps (i)-(v) for t = 1, 2, . . . ,T , output the minimum BIC sparse
network.

(i) Initialization: Randomly initialize the weights of a fully connection
DNN.

(ii) Optimization: Run SGD to find the MAP network (with an
appropriate mixture Gaussian prior).

(iii) Sparsification: Truncate small weights to zero.

(iv) Nonzero-weights refining: Refine the nonzero weights of the
sparsified DNN.

(v) Model evaluation: Calculate BIC of the sparsified DNN.

Code is available at https://github.com/sylydya/Consistent-Sparse-Deep-
Learning-Theory-and-Computation.

Sparse Deep Learning Algorithm II: Prior Annealing

It has been shown in Nguyen and Hein (2017) and Gori and Tesi
(1992) that the loss of an over-parameterized DNN exhibits good
properties:

(S∗) For a fully connected DNN with an analytic activation
function and a convex loss function at the output layer, if the
number of hidden units of one layer is larger than the number
of training points and the network structure from this layer on
is pyramidal, then almost all local minima are globally optimal.

Training Algorithm II: Prior Annealing

(i) (Initial training) Train a DNN satisfying condition (S*) by SGD or
Adam such that an optimum β0 = argmaxβ ln(β) is reached.

(ii) (Prior annealing) Initialize β at β0 and simulate from a sequence of
distributions

π(β|Dn, τ, η
(k), σ

(k)
0,n) ∝ enln(β)/τπ

η(k)/τ
k (β)

for k = 1, 2, . . . ,m, where 0 < η(1) ≤ η(2) ≤ · · · ≤ η(m) = 1.

(iii) (Structure sparsification) For each connection i ∈ {1, 2, . . . ,Kn}, set

γ̃i = 1 if |β̂i | >
√
2σ0,nσ1,n√
σ2
1,n−σ2

0,n

√
log
(

1−λn

λn

σ1,n

σ0,n

)
and 0 otherwise.

Denote the yielded sparse DNN structure by γ̃.

(iv) (Nonzero-weights refining) Refine the nonzero weights of the
sparsified DNN by maximizing ln(β). Denote the resulting estimate
by β̃γ̃ , which represents the MLE of β∗.

The code is available at https://github.com/sylydya/Sparse-Deep-Learning-

A-New-Framework-Immuneto-Local-Traps-and-Miscalibration.

Training Algorithm III: Bayesian Computation

For certain problems the size (or #nonzero elements) of γ∗ is
large, calculation of the Fisher information matrix is difficult. In
this case, the prediction uncertainty can be quantified via posterior
simulations. The simulation can be started with a DNN satisfying
condition (S*) and performed using a SGMCMC algorithm with an
annealed prior. The over-parameterized structure and annealed
prior make the simulations immune to local traps.

Sparse Deep Learning Algorithm III: Bayesian Computation

Theorem 6
Suppose some regularity conditions hold. Then

E

(
1

T

T−1∑
t=1

ϕ(β(t))−
∫
ϕ(β)π(β|Dn, η

∗, σ∗
0,n)dβ

)

=O

(
1

T ϵ
+

∑T−1
t=0 (|η(t) − η∗|+ |σ(t)

0,n − σ∗
0,n|)

T
+ ϵ

)
,

(8)

where η∗ and σ∗0,n are treated as fixed constants.

Theorem 6 shows that with prior annealing simulations, the path
averaging estimator can still be used for estimating the mean and
variance of the prediction and uncertainty quantification.

Simulation: Structure Selection

We generated 10 datasets from the following neural network model:

y = tanh(2 tanh(2x1 − x2)) + 2 tanh(tanh(x3 − 2x4)− tanh(2x5))

+ 0x6 + · · ·+ 0x1000 + ε,

where ε ∼ N(0, 1) and is independent of xi ’s.

Over ten datasets, in terms of variable selection, we got perfect
results with FSR = 0 and NSR = 0; in terms of structure selection,
we got FSR = 0.377 and NSR = 0.

Structure Selection

𝑥" 𝑥# 𝑥$ 𝑥% 𝑥& 𝑥' 𝑥"(((⋯⋯

𝐻"" 𝐻#" 𝐻$" 𝐻%" 𝐻&"

𝐻"# 𝐻## 𝐻$#

+𝑦

𝑥" 𝑥# 𝑥$ 𝑥% 𝑥& 𝑥' 𝑥"(((⋯⋯

𝐻"" 𝐻#" 𝐻$" 𝐻%" 𝐻&"

𝐻"# 𝐻## 𝐻$#

+𝑦

Figure 1: The left and right panels show the network structures selected
for one dataset after the stages of training and retraining, respectively,
where the black lines show the connections that are selected and exist in
the true model, and the red lines show the connections that are selected
but do not exist in the true model.

Simulation: Nonlinear Regression

We generated 10 datasets from the following model:

y =
5x2

1 + x21
+ 5 sin(x3x4) + 2x5 + 0x6 + · · ·+ 0x2000 + ε, (9)

where ε ∼ N(0, 1) and is independent of xi ’s. Each dataset consist
of 10,000 samples for training and 1000 samples for testing. We
modeled the data by a 3-hidden layer neural network with structure
2000-10000-100-10-1.

Simulation: Nonlinear regression

Table 1: Simulation Result: MSFE and MSPE were calculated by
averaging over 10 datasets, and their standard deviations were given in
the parentheses.

Method |Ŝ | FSR NSR MSFE MSPE

BNN anneal 5(0) 0 0 2.353(0.296) 2.428(0.297)
BNN Evidence 5(0) 0 0 2.372(0.093) 2.439(0.132)

Spinn 10.7(3.874) 0.462 0 4.157(0.219) 4.488(0.350)
DNN - - - 1.17e-5(1.15e-6) 16.923(0.323)

Dropout - - - 1.104(0.068) 13.183(0.716)
BART50 16.5(1.222) 0.727 0.1 11.182(0.334) 12.097(0.366)
LASSO 566.8(4.844) 0.993 0.26 8.542(0.022) 9.496(0.148)

Nonlinear regression: Uncertainty Quantification for
Prediction

We conducted experiments over 100 different training sets, based
on which we constructed 95% prediction intervals over 1000 test
points. The average coverage rate over the 1000 test points is
94.72%(0.61%).

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
index

−10

−5

0

5

10

Y

Confidence Interval
True Value
Predicted Value

Figure 2: Prediction intervals of 20 testing points, where y-axis is for
response, x-axis is for index of test points, and the blue point represents
the true observation.

Residual Network Compression

Table 2: ResNet network pruning results for CIFAR-10 data.

ResNet-20 ResNet-32
Method Pruning Ratio Test Accuracy Pruning Ratio Test Accuracy

DNN dense 100% 92.93(0.04) 100% 93.76(0.02)

BNN average 19.85%(0.18%) 92.53(0.08) 9.99%(0.08%) 93.12(0.09)
BNN anneal 19.80%(0.01%) 92.30(0.16) 9.97%(0.03%) 92.63(0.09)
BNN BIC 19.67%(0.05%) 92.27(0.03) 9.53%(0.04%) 92.74(0.07)

SM1 20% 91.54(0.16) 10% 91.54(0.18)
DSR1 20% 91.78(0.28) 10% 91.41(0.23)
DPF1 20% 92.17(0.21) 10% 92.42(0.18)

BNN average 9.88%(0.02%) 91.65(0.08) 4.77%(0.08%) 91.30(0.16)
BNN anneal 9.95%(0.03%) 91.28(0.11) 4.88%(0.02%) 91.17(0.08)
BNN BIC 9.55%(0.03%) 91.27(0.05) 4.78%(0.01%) 91.21(0.01)

SM 10% 89.76(0.40) 5% 88.68(0.22)
DSR 10% 87.88(0.04) 5% 84.12(0.32)
DPF 10% 90.88(0.07) 5% 90.94(0.35)

1Sparse momentum (SM) by Dettmers and Zettlemoyer (2019);
1Dynamic sparse representation (DSR) by Mostafa and Wang (2019)
1Dynamic pruning with feedback (DPF) by Lin et al. (2020)

Residual Network Compression

Table 3: ResNet network pruning results for CIFAR-10 data, which were
calculated by averaging over 3 independent runs with the standard
deviation reported in the parentheses.

Method Model Pruning Ratio NLL JS-Distance ECE

DNN dense ResNet20 100% 0.2276(0.0021) 7.9118(0.9316) 0.02627(0.0005)

BNN average ResNet20 9.88%(0.02%) 0.2528(0.0029) 9.9641(0.3069) 0.0113(0.0010)
BNN anneal ResNet20 9.95%(0.03%) 0.2618(0.0037) 10.1251(0.1797) 0.0175(0.0011)

DPF ResNet20 10% 0.2833(0.0004) 7.5712(0.4466) 0.0294(0.0009)

BNN average ResNet20 19.85%(0.18%) 0.2323(0.0033) 7.7007(0.5374) 0.0173(0.0014)
BNN anneal ResNet20 19.80%(0.01%) 0.2441(0.0042) 6.4435(0.2029) 0.0233(0.0020)

DPF ResNet20 20% 0.2874(0.0029) 7.7329(0.1400) 0.0391(0.0001)

DNN dense ResNet32 100% 0.2042(0.0017) 6.7699(0.5253) 0.02613(0.00029)

BNN average ResNet32 9.99%(0.08%) 0.2116(0.0012) 9.4549(0.5456) 0.0132(0.0001)
BNN anneal ResNet32 9.97%(0.03%) 0.2218(0.0013) 8.5447(0.1393) 0.0192(0.0009)

DPF ResNet32 10% 0.2677(0.0041) 7.8693(0.1840) 0.0364(0.0015)

BNN average ResNet32 4.77%(0.08%) 0.2587(0.0022) 7.0117(0.2222) 0.0100(0.0002)
BNN anneal ResNet32 4.88%(0.02%) 0.2676(0.0014) 6.8440(0.4850) 0.0149(0.0006)

DPF ResNet32 5% 0.2921(0.0067) 6.3990(0.8384) 0.0276(0.0019)

Advantage of Sparse Deep Learning

0 50 100 150 200 250 300 350 400
Epoch

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

CIFAR-10 ResNet20 Training Path

Sparse BNN: Training
Sparse BNN: Testing
Sparse BNN Fine Tune: Training
Sparse BNN Fine Tune: Testing
Starting with sparse network: Training
Starting with sparse network: Testing
Starting with small dense network: Training
Starting with small dense network: Testing

Figure 3: Training and testing paths of a ResNet20 model (with 10%
sparsity level) on the CIFAR-10 dataset.

Conclusion: Theory

We have tamed deep neural networks into the framework of
statistical modeling, and the resulting sparse DNN possesses nice
theoretical properties such as posterior consistency, structure
selection consistency, and asymptotic normality of prediction.

▶ The proposed method works like a frequentist method, but is
justified under the Bayesian framework. With the proposed
method, a sparse neural network with at most O(n/ log(n))
connections can be learned via sparsifying an
over-parameterized one.

Conclusion: Computation

▶ In computation, we proposed three methods:
▶ Use Bayesian evidence or BIC for eliciting sparse DNN models

learned by an optimization method in multiple runs with
different initializations.

▶ Use a prior annealing method.
▶ Bayesian computation with annealed priors.

Since conventional optimization methods such as SGD and
Adam can be used for training the DNN, the proposed
method is computationally more efficient than the standard
Bayesian method.

▶ Our numerical results show that the proposed method can
perform very well in large-scale network compression,
high-dimensional nonlinear variable selection, and prediction
uncertainty quantification. The sparse DNN learned by the
proposed method tends to predict better than those by the
existing methods.

Reference

▶ Liang, F., Li, Q. and Zhou, L. (2018) Bayesian Neural Networks for Selection of
Drug Sensitive Genes. Journal of the American Statistical Association, 113,
955-972.

▶ Sun∗, Y., Song∗, Q., and Liang, F. (2022). Consistent Sparse Deep Learning:
Theory and Computation. Journal of the American Statistical Association, 117
(540), 1981-1995. (∗ equal contribution)

▶ Sun, Y., Song, Q., and Liang, F. (2022) Learning sparse deep neural networks
with a spike-and-slab prior. Statistics and Probability Letters, 180, 109246.

▶ Sun, Y., Xiong, W. and Liang, F. (2021). Sparse deep learning: A new
framework immune to local traps and miscalibration. NeurIPS 2021.

▶ Zhang, M., Sun, Y., and Liang, F. (2023). Sparse Deep Learning for Time
Series Data: Theory and Applications. NeurIPS 2023.

	Literature Review
	Bayesian Sparse DNNs: Approximation Theory
	Computation
	Experiments
	Conclusion

