Lecture 14: Markov Neighborhood Regression for
High-Dimensional Inference



High-Dimensional Data Research

» Variable Selection:
> Frequentist (regularization) methods: Lasso (Tibshirani, 1996),
SCAD (Fan and Li, 2001); MCP (Zhang, 2010), rLasso (Song
and Liang, 2015);
» Bayesian methods: Subset Modeling (Liang et al., 2013),
Split-and-Merge (Song and Liang, 2015).

» Sure Independence Screening: Fan and Lv (2008), Fan and
Song (2010)
» Graphical models:

> nodewise regression (Meinshausen and Buhlmann, 2006)
» graphical Lasso (Yuan and Lin, 2007; Friedman et al., 2008)
» )-learning (Liang et al., 2015)



High-Dimensional Inference

Consider a high-dimensional linear regression:
Y = XpB +¢,

where X is an n x p design matrix, 8 = (fo, f1,- - -, Bp), and the
sample size n is much smaller than the dimension p
(small-n-large-p).

We are interested in assessing uncertainty of the model, in
particular, constructing the confidence interval for each regression
coefficient B; and calculating the associated p-values.

Later, you will see that the proposed method also works for
generalized linear models and improves accuracy of variable
selection.



High-Dimensional Inference

» desparsified Lasso (van de Geer et al., 2014; Zhang and
Zhang, 2014; Javanmard and Montanari, 2014)

B=B+6X"(y—-XB)/n,

where 3 is the original Lasso estimator, and © is an
approximation for the inverse of 3 = X7 X/n.

Vi(B-p7) = OXTe/\/n/n(l,~O%)(B-B") ~ N(0,5°036T),

where I, denotes the p x p identity matrix.



High-Dimensional Inference

» Multi sample-splitting: Splitting the samples into half and
half, using the first half for variable selection and the second
half with the reduced set of selected variables for statistical
inference in terms of p-values; repeating this process for many
times; and aggregating the p-values obtained in the process
for statistical inference.

> Ridge projection: It can be viewed as a direct extension of
the low-dimensional ridge regression.

> residual-type bootstrapping: supper-efficiency phenomenon
» Other methods: covariance test, group-bound



Graph Theory

Figure: An illustrative graphical model



Graph Theory

An undirected graph is a pair G = (V, E), where V is the set of
vertices and E = () is the adjacency matrix.
> If two vertices i, j € V forms an edge then we say that i and j
are adjacent and set e;; = 1.
» A path of length / > 0 from vy to v; is a sequence
Vo, V1, ..., v of distinct vertices such that e,, ,,, =1 for all
k=1,...,1.
» The subset U C V is said to separate I C V from J C V if
for every i € I and j € J, all paths from i to j have at least
one vertex in U.



Graph Theory

» Py is said to satisfy the Markov property with respect to G if
for every triple of disjoint sets I, J, U C V, it holds that
X1 L Xy| Xy whenever U separates I and J in G.

» Let {; = {k : ejx = 1} denote the neighboring set of X; in G.
Following from the Markov property of the Gaussain graphical
model (GGM), we have X; L X;|X; for any i € V'\ §, as §;
forms a separator between X; and X;.

» For convenience, we call §; the minimum Markov

neighborhood of X; in G, and call any subset s; D ¢; a
Markov neighborhood of X; in G.



A Simple Mathematical fact

» Let S; = {2,...,d} denote a Markov neighborhood of Xi, let
Y 4 denote the covariance matrix of {X1} U Xs,, and partition

© as
©g ©Oy4 —d]
©= P , 1
[@p—d,d Op-d M
where the first row of ©4 ,_4 and the first column of ©,_4 4
are exactly zero, as X1 L Xy ({13us,)|Xs, holds.

P Inverting the partitioned matrix, we have
ry= (@d - @d,p—d@;_ld@p—d,d)_ly and

Y1 =04 -04p 49, 0p a4 (2)
» Since the first row of ©4 ,_4 and the first column of ©,_4 4

are exactly zero, the (1,1)th element of @d,p—d@,id@p—dd
is exactly zero.



A Simple Mathematical fact

» If we assume that {X1} U Xs, D Xs,, where S, denote the set
of true predictors, then the statistical inference for 51 from
the original model will be exactly the same as that from the
subset regression

Y =80+ X161+ X5+ ...+ XaBy + €, (3)

where the prime on 5;'s for i # 1 indicates that those
regression coefficients might be modified by the subset
regression.

» Since S; forms a Markov neighborhood of Xi, we call (3) a
Markov neighborhood regression, which reduces the
high-dimensional inference problem to a series of
low-dimensional inference problems.



Markov Neighborhood Regression: Variable selection-based

(a) (Graphical Model Construction) Construct a GGM for X and
obtain a consistent estimate of the minimum Markov
neighborhood for each variable. Denote the estimates by éj
forj=1,2,...,p.

(b) (Variable selection) Conduct variable selection for the model
to get a consistent estimate of S, the set of true predictors.
Denote the estimate by S..

(c) (Subset regression) For each variable Xj, j =1,...,p, let

D; = {j} Uéj U 8. and run an Ordinary Least Square (OLS)
regression with the predictors given by Xp,, i.e.,

y = ﬁO + XDjIBDj + €, (4)

where € ~ N(0,021,) and I, is an n x n-identity matrix.
Conduct inference for 3, including the estimate, confidence
interval and p-value, based on the output of (4).



MNR: Justification

Lemma 1 Let fAJ 2 & denote any Markov neighborhood of feature
xU), let .§* D S, denote any reduced feature space, and let
Dj={j}u éj U S.. Consider the subset regression (4). Let éDj
denote the OLS estimator of Bp, from the subset regression, and
let Bj denote the element of ,@Dj corresponding to the variable X;.
If |D;| = o(n'/?), as n — oo, the following results hold:

(i) v/n(B; — Br) ~ N(O, 020};), where 0j; is the (j, j)-th entry of
the precsion matrix ©.

(ii) \ifﬁ N(0,1), where

( - XDJ'/@DJ')T(y - XDJ'BDJ')/(” —d- 1)' éJJ is the
. . 71 .
(J,/)-th entry of the matrix [rl, Py xgj)(x,()j))T , and XL()J-)

denotes the j-th row of Xp;-



MNR: Remark

Remark: Lemma 1 assumes that §, D S, and |D;| = o(n'/?). For
the case that n is finite, we have

(n—|Dj| — 1)62/02 ~ x*(n — |D;j| — 1), independent of BDJ-. by
the standard theory of OLS estimation. Therefore, we can use

T . S Bi—B; .
t(n — |Dj| — 1) to approximate the distribution of ez that is,

the estimate, p-value and confidence interval of 3; can be
calculated from (4) as in conventional low-dimensional multiple
linear regression.



MNR: Justification

Theorem 1 (Validity of Algorithm 1) If the conditions (A0)-(A9)
hold, the w-learning algorithm is used for GGM construction in step

(a), and the SCAD algorithm is used for variable selection in step

. B8
(b), then for each j € {1,2,...,pn}, we have N ~ N(0,1) as

n — oo, where 52 = (y — xDJﬂDj) (y — xDj,@Dj)/(n —d-1), HJ-J is
11
the (j,j)-th entry of the matrix |1 577 | xgj)(xgj))T , and x( i)

denotes the i-th row of Xp,.



Markov Neighborhood Regression: Variable
screening-based

1 (Correlation screening) Apply the correlation screening
procedure to X to obtain a reduced neighborhood
& € {1,...,p} for each feature x;.

2 (Variable screening) Apply a sure independence screening
procedure, with Y as the response variable and X as
predictors, to obtain a reduced feature set, S, c{1,...,p},
with the size |S,| = O(y/n/ log(n)).

3 (Subset Regression) For each variable X;, j =1,...,p, run
the OLS regression with the predictors given by
{Xj} U ng U Xg , i.e., the subset regression (4). Conduct
inference for 3;, including the estimate, confidence interval
and p-value, based on the output of the subset regression.



MNR: Justification

Theorem 2 If the conditions (A0), (A9), and (B1)-(B4) (given in
the Appendix) hold, then for each j € {1,2,...,p,}, we have

BJ j
N N(0,1) as n — oo, where

52 = (y — xp,80,) " (y — x0,8p,)/(n — d — 1), §; is the (j,j)-th

. 71 .
entry of the matrix |1 577 x,(J)( gj))T , and xgj) denotes the
i-th row of Xp;.



Variable Selection versus Variable Screening

» Compared to the variable selection-based algorithm, the
variable screening-based algorithm is faster and more robust.

» The screening-based algorithm reduces the risk of losing
variables in the true minimum Markov neighborhood as well
as the risk of losing true predictors, while maintaining the
validity of MNR.

» Since more variables will be included in the subset regression,
the resulting confidence interval will be slightly wider.



Generalized Linear Models (GLMs)

Lemma 2 Let fj 2 & denote any Markov neighborhood of feature
xj, let §* D S, denote any reduced feature space, and let
Dj = {j} U U S.. Consider a subset GLM with the predictorts

Xp;,

let BADJ. denote the MLE of Bp,, and let ﬁj denote the

component of BD,— corresponding to feature X;. If |Dj| = o(n%/?),
then, as n — oo, the following results hold:

(i)

V/n(B; = BF) ~ N(0, ki), where k;; denotes the (j,j)-th entry
of the inverse of the Fisher information matrix
K=1"1=[E('(x"B*)xxT)]7L, and B* denotes the true
regression coefficients.

Vn(B; - B7)/ kjj ~ N(0,1), where k; denotes the (j, j)-th
entry of the inverse of the observed information matrix

In(Bp,) = -1, HBDJUOg f(vilBp;, xp;))/n and Hng(')

denotes the Hessian matrix evaluated at the MLE BDJ.



Joint Inference

> Let A C V denote a subset of predictors for which the joint
inference is desired. Define {4 = U;ca&; as the union of the
minimum Markov neighborhoods of the variables in A. Let
M=AU §AA US,. Then a subset regression can be conducted
with the predictors included in M.

» For high-dimensional linear regression, if |A| = O(1), then,
similar to Theorem 1, we can show
ﬁ(BA — B%4) ~ N(0,0%044), where © 4 denotes the
submatrix of the precision matrix © constructed by its A rows
and A columns.

» For high-dimensional GLMs, we have
ﬁ(BA —B3%) ~ N(0, Kaa), where Kaa denotes the submatrix
of K =[E(b"(xTB*)xxT]~! constructed by its A rows and A
columns.



Example 1

We first generated a dataset from a linear regression with

n = 2000 and p=50, where o was set to 1, the covariates X were
generated from a multivariate Gaussian distribution with mean 0
and a Toeplitz covariance matrix ¥;; = 0.9 for i, j=1,...,p,
and the true regression coefficients

(50, 617 ,32, RN ,55) = (1, 02, 0.4, —0.3, —0.57 10) and

Be = cdots = B, = 0.



Example 1: Confidence Interval

Figure: Comparison of confidence intervals of 1, ..., Bp produced by
ordinary least square (red) and Markov neighborhood regression (black)
for a dataset with n = 2000 and p = 50.



Example 2

We generated 100 datasets from a linear regression with n = 200
and p=500, where o2 was set to 1, the covariates X were
generated from a multivariate Gaussian distribution with mean 0
and a Toeplitz covariance matrix ¥;; = 0.9l fori,j=1,...,p,
and the true regression coefficients

(50551752) s 765): (172347 _35 _5) 10) and /86 == ﬁp =0.



Example 2

Table: Coverage rates and widths of the 95% confidence intervals for the

Toeplitz-covariance linear regression model.

Measure Desparsified-Lasso MNR
signal  0.384(0.049)  0.576(0.049) 0.956(0.021)
Coverage | e 0965(0.018)  0.990(0.010) 0.950(0.022)
signal ) 0.822(0.011)
Width .
noise  0.691(0.005)  1.143(0.008) 0.869(0.007)




Example 2: Screening Algorithm

Table: Coverage rates and widths of the 95% confidence intervals
produced by the Screening MNR Algorithm for the Toeplitz-covariance
linear regression with different values of m, which controls the size of
Markov neighborhoods.

Measure m=3 m=25 m=28 m=15 m =20
signal  0.956(0.021) 0.962(0.019) 0.956(0.021) 0.958(0.020) 0.954(0.021)
Coverage e 0.052(0.021) 0950(0.022) 0.951(0.022) 0.951(0.022) 0.949(0.022)
signal  1.023(0.035) 0.854(0.014) 0.839(0.011) 0.857(0.011) 0.876(0.011)

Width
th gise  2.566(0.019) 1.610(0.054) 0.902(0.008) 0.935(0.007) 0.963(0.008)




Example 2: MNR for Variable selection

» Convert p-values produced by the subset regressions to
z-scores using the transformation:

) _ -1 () - :
Z,‘ _(D (1_q )7 /—17---,/37 J_la2a"'7n'

1

» Conduct multiple hypothesis tests.



Example 2: MNR for Variable selection

Table: Variable selection for the Toeplitz-covariance linear regression with
the MNR, SIS-SCAD, SIS-MCP and SIS-Lasso methods.

MNR
Measure §=00001 g=0001 q=001 SIS-SCAD SIS-MCP  SIS-Lasso
FSR 0 0.004 0.022 0.127 0.175 0.819

NSR 0 0 0 0 0 0




Example 2: MNR for Variable selection

(a) (b)

_ 1A
(c) (d)

.“hl allllh. | _.....nnul...."

Figure: Histograms of z-scores of the features produced by MNR for (a)
Toeplitz-covariance linear regression, (b) AR(2)-precision linear
regression, (c) AR(2)-precision logistic regression, (d) AR(2)-precision
Cox regression.



Example 2: MNR for joint inference

Table: Coverage rates of the 95% Bonferroni joint confidence intervals
produced by MNR for sets of parameters.

Parameters (B, 82) (83, Ba, Bs) (61, Bs) (87, 10) (P20, B200, Paoo)

Joint coverage rate  0.97(0.017) 0.95(0.022) 0.93(0.026) 0.97(0.017) 0.93(0.026)




Example 3

Consider the AR(2)-precision matrix © = (6;;) given by

05, if|j—il=1,i=2,..,(p—1),
025, if|j—il=2,i=3,....(p—2),
1, ifi=4,i=1,..,p,

0, otherwise,

0 = (5)

» Linear: 100 datasets were generated from the linear regression
with n = 200, p = 500, 0=1, the features generated from a
zero-mean Gaussian with an AR(2)-precision matrix,

(Bo, -+ ,05) =(1,2,2.5,3,3.5,4) and all others equal to 0.

> Logistic: same setting as linear but with n = 300.

> Cox: same setting as linear but with n = 300 and
(81 =---= 05 =1 and all others equal to 0.



Example 3

Table: Coverage rates of 95% confidence intervals for the AR(2)-precision
linear (n = 200, p = 500), logistic (n = 300,p = 500) and Cox regression
(n = 300, p = 500).

Regression Desparsified-Lasso Ridge MNR
signal  0.2300(0.0421)  0.3340(0.0447) 0.9500(0.0218)
Linear  Gise  0.9640(0.0186)  0.9922(0.0088) 0.9503(0.0217)
~ signal  0.004(0.0063) 0(0) 0.9320(0.0252)
Logistic  ice  0.0053(0.0068) ~ 1.0(45e-4)  0.9373(0.0242)
signal — - 0.9140(0.0281)
Cox gise — — 0.9354(0.0246)




Example 3

Table: Widths of 95% confidence intervals for the AR(2)-precision linear
(n =200, p =500), logistic (n = 300,p = 500) and Cox regression (n = 300,

p = 500).

Regression

Desparsified-Lasso

Ridge

MNR

Linear

signal

noise

0.2810(0.0027)
0.2723(0.0024)

0.4481(0.0043)
0.4335(0.0036)

0.2806(0.0022
0.2814(0.0024

Logistic

signal

noise

0.6424(0.0101)
0.5782(0.0081)

1.0775(0.0110)
1.0100(0.0095)

1.9473(0.0529
0.9799(0.0132

Cox

signal

noise

0.3356(0.0018
0.2683(0.0017

~— —— — | — ~—




Bias of Desparsified-Lasso Estimates

Let Z; denote the residual of the regression X; versus all other
features X[—j], and let Py = X[ Z;/ X" Z;. Then the following
identity holds

€Z
Tz

Yl

W_BJ‘FZPJkﬁk‘FX (6)

k#j

Plugging the Lasso estimator BLQSSO (of the regression Y versus X)
into (6) leads to the bias-corrected estimator

o Y’Z
bec,j = XT Z R/kBLasso k — /BLasso,J + Z (Y xﬁLasso)/Z X]u
Pk

(7)
for j=1,2,...,p. The bias-corrected estimator is still biased if
the sample size n is not sufficiently large.



Bias of Desparsified-Lasso Estimates

Table: Regression coefficient estimates (averaged over 100 independent
datasets) produced by MNR and desparsified-Lasso for the
AR(2)-precision linear regression (with |S.| =5, p =500 and n = 200).

Method ~ Measure b1 Ba B3 B Bs Bs B7 Bs

— true 2 2.5 3 35 4 0 0 0

Bhbe 1.841 2.274 2.698 3.270 3.849  -0.051 -0.007 0.016

desparsified g (0.008) (0.009) (0.009) (0.007) (0.007) (0.006) (0.007) (0.007)

BuNR 1.997 2.503 2.994 3.498 4.001 0.014 0.004  -0.002

MNR SD  (0.006) (0.008) (0.008) (0.007) (0.006) (0.007) (0.008) (0.008)




Causal Structure Discovery

» The causal relationship for a pair or more variables refers to a
persistent association which is expected to exist in all
situations without being affected by the values of other
variables.

» In statistics, the causal relationship or the persistent
association can be determined using conditional independence
tests. For a large set of variables, a pair of variables are
considered to have no direct causal relationship if a subset of
the remaining variables can be found such that conditioning
on this subset of variables, the two variables are independent.

» PC algorithm (Spirtes et al., 2000), PC-simple (Buhlmann et
al., 2010)



Simplied MNR Algorithm

(a) (Variable screening) Apply a sure independence screening
procedure with Y as the response variable and X as
predictors, to obtain a reduced feature set, §, C {1,...,p}
with the size |S.| = O(y/n/ log(n)).

(b) (Minimum Markov neighborhood determination) For each
variable X; € S.. apply a sure independence screening
procedure to obtain a reduced neighborhood éj c{1,...,p}.

(c) (Subset Regression) For each variable X; € S,, run a subset
regression with the predictors given by {X;} U Xéj U X .
Conduct inference for (3;, including the estimate, confidence
interval and p-value, based on the output of the subset
regression.

(d) (Causal Structure Discovery) Conduct a multiple hypothesis
test to identify causal predictors based on the p-values
calculated in step (c).



Causal Structure Discovery

» Linear Regression: Gaussian graphical model, faithfulness is
required

P> Logistic Regression: Faithfulness to the mixed graphical model

» Cox Regression: Bayesian network (as Y is non-Gaussian,
non-multinomial, and with missing observations)



CCLE Drug Response

The cancer cell line encyclopedia (CCLE) database, which is
publicly available at www.broadinstitute.org/ccle. The dataset
consisted of 8-point dose-response curves for 24 chemical
compounds across over 400 cell lines. For different chemical
compounds, the numbers of cell lines are slightly different. For
each cell line, it consisted of the expression value of p = 18,988
genes. We used the area under the dose-response curve, which is
termed as activity area, to measure the sensitivity of a drug for
each cell line.

Compared to other measurements, such as /Csg and ECsp, the
activity area could capture the efficacy and potency of the drug
simultaneously.



CCLE Drug Response

Table: Comparison of drug sensitive genes selected by desparsified Lasso,
ridge projection, multi-split and MNR for 24 anti-cancer drugs, where *
indicates that this gene was significantly selected and the number in the
parentheses denotes the width of the 95% confidence intervals produced
by the method.

Drug Des-Lasso Ridge Multi-Split MNR
17-AAG - - NQO1*(0.138) NQO1*(0.088)
AEW541 - F3(0.076) SP1(0.176) SLC10A7(0.116)
AZD0530 - PPY2(0.966) SYN3(0.705) BEST3(0.152)

SPRY2*(0.084) .
AZD6244 - OSBPL3(0.161) LYZ*(0.069) RNL\F(IZ2E(>9(((;4(}5)1)

RNF125%(0.084) '
Erlotinib - LRRNI1(0.102) PCDHGC3(0.684)  PRRGA4(0.043)

ARHGAP19%(0.134)

Irinotecan - SLFN11(0.091) SLFN11+(0.044)

SLFN11*(0.032)




Identification of Cancer Driver Gene

The Lymph dataset consists of n = 148 samples with 100
node-negative cases (low risk for breast cancer) and 48
node-positive cases (high risk for breast cancer) as our binary
response. For each sample, there are p = 4512 genes that showed
evidence of variation above the noise level for futher study.



Identification of Cancer Driver Gene

Table: Comparison of the cancer driver gene selected by the MNR,
desparsified Lasso and ridge projection methods for the Lymph dataset,
where * indicates that this gene was significantly selected and the
number in the parentheses denotes the width of the 95% confidence
intervals produced by the method.

Desparsified Lasso Ridge MNR
Gene RGS3 RGS3 RGS3*
Cl (1.145,5.748) (-0.251,2.249) (2.651,5.999)

Width 4.603 2.500 3.348




Discussion

» We have proposed an innovative method for conducting
statistical inference, assessing p-values and constructing
confidence intervals, for high-dimensional regression and
generalized linear models.

» The proposed method can be very fast compared to the
existing methods: embrassingly parallel structure

» The proposed method can deal with ultra-high dimensional
problems, as it has reduced the problem to a series of
low-dimensional problems.

» Markov neighbodhood, or conditional independence set, is a
useful concept and can be used in many problems.
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