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Gaussian Graphical Model

Consider a set of Gaussian random variables, there are two
measures for their dependency:

» Correlation Coefficient
» Partial Correlation Coefficient:

Compared to the partial correlation coefficient, the correlation
coefficient is much weaker as marginally, i.e. directly or indirectly,
all variables in a system are more or less correlated. The goal of
GGM learning is to distinguish direct from indirect dependencies
for all variables in a system.

The partial correlation coefficient provides a measure for direct
dependence as it will vanish for the indirect case.



Applications

» Gene regulatory networks: molecular mechanism underlying
cancer with data available at The Cancer Genome Atlas
(TCGA).

» Causal networks: time course data.



Covariance Selection

let X = (X®),...X(P)) denote a p-dimensional random vector
drawn from a multivariate Gaussian distribution N,(tt, X). Denote
the concentration matrix by C = £~ = (C;). Then

Ci,j

— i,j=1,...,p. (1)
CiiGij

Pilv\{ij} = —

The covariance selection method (Dempster, 1972; Lauritzen,
1996) is to identify the non-zero elements in the concentration
matrix. However, it is not feasible for high dimensional problems
with p > n.



Limited order partial correlations

The idea is to use low-order partial correlation as a surrogate of
the full-order partial correlation, and it is widely acknowledged that
the limited order partial correlation methods can result in
something inbetween the full GGM (with correlations conditioned
on all p — 2 variables) and the correlation graph.

Related work: Spirtes et al. (2000), Magwene and Kim (2004),
Wille and Biihimann (2006), Castelo and Roverato (2006, 2009).



Nodewise Regression

It is to use Lasso (Tibshirani, 1996) as a variable selection method
to identify the neighborhood of each variable, and thus the
nonzero elements of the concentration matrix.

Consider a linear regression

0 = XD+ 3 pOX0 4 ), 2)

reV\{j,i}

where €) is a zero—mean Gaussian random error. Let

SO = {r- ﬁr # 0} denote the set of explanatory variables
identified by Lasso for XU). The GGM can then be constructed
using the “or"-rule: estimate an edge between vertices i and j
—ieSWorje S0 orthe “and’-rule: estimate an edge
between vertices i and j <= i € SU) and j € S().



Graphical Lasso

Yuan and Lin (2007) proposed to directly estimate the
concentration matrix by minimizing

— log(det(C)) + trace(p e C) + A|C|, (3)

where ¥y denotes the maximum likelihood estimator of ¥, IIC]|
denotes the norm of C, and A\ is the regularization parameter.
Later, the algorithm is accelerated by Friedman et al. (2008) and
Banerjee et al. (2008).



Graph Theory

An undirected graph is a pair G = (V, E), where V is the set of
vertices and E = () is the adjacency matrix.

>

>

>

If two vertices i,j € V forms an edge then we say that / and j
are adjacent and set ej; = 1.

The boundary set of a vertex v € V, denoted by bg(v), is the
set of vertices adjacent to v, i.e., bg(v) = {j : e,j = 1}.

A path of length / > 0 from vy to v; is a sequence

vo, V1, ..., Vv of distinct vertices such that e,, ,,, =1 for all
k=1,...,1.

The subset U C V is said to separate | C V from J C V if
for every i € I and j € J, all paths from i to j have at least
one vertex in U.

For a pair of vertices i # j with e =0, a set U C V is called
a {i,j}-separator if it separates {i} and {/} in G.

Let Gjj be a reduced graph of G with ej; being set to zero.
Then both the boundary sets bg,(i) and bg,(j) are
{i,j}-separators in Gj;.



Graph Theory (continuation)

Definition 1 We say that Py satisfies the Markov property with
respect to G if for every triple of disjoint sets I, J, U C V, it holds
that X; L X,| Xy whenever U separates I and J in G.

Definition 2

We say that Py satisfies the adjacency faithfulness condition with
respect to G: If two variables X and XU) are adjacent in G,
then they are dependent conditioned on any subset of Xy ;3.



Equivalent Measure

» Let G = (V,€) denote the correlation graph of Xi,..., X,
where £ = (&) is the edge set, and &; =1 if rjj # 0 and 0
otherwise.

> Let &, ;= {v:|f| >} \ {j} denote a reduced
neighborhood of node i in Gj;, where Gj; denotes a reduced
graph of G with &; being set to 0, and ; denotes a threshold
value.

> g:m = {v :|fy| > 7i} as a reduced neighborhood of node i in
g.

For any pair of vertices i and j, we define the partial correlation
coefficient 1;; by

Vij = Ppij|s; (4)
where Sij = c‘j\,yl.,,'7,j if |(‘j\ I.,,'7,j| < ‘€7j7j,,f| and Sij = EA'YN',,J'
otherwise.



Equivalent Measure
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Figure: lllustrative plot for calculation of v-partial correlation

coefficients, where the solid and dotted edges indicate the direct and

indirect associations, respectively.



Equivalent Measure

Theorem 1 Suppose that a GGM G = (V, E) satisfies the
assumption of faithfulness and bg (i) C SA%,- is true for each node
i. Then v;; defined in (4) is an equivalent measure of the partial
correlation coefficient pj;\\ (i j) in the sense that

Yij = 0= pijv\(ijy = 0-



Equivalent Measure

Remarks:

1. There are many examples where the faithfulness assumption is
violated, see Biihlmann and van de Geer (2011, pp.446-448)
for some examples. However, as pointed out in Koller and
Friedman (2009, p.1041), these examples usually correspond
to particular parameter values, which are a set of measure
zero within the space of all possible parameterizations.

2. There are many ways to specify the separator Sj;. For
example, we can set Sj to be &,.; _; or SAA,J.,J;_,- for which the
cardinality is larger, or even set S;; = 57,,,-7_1- U EA%,-,_,-. Under
these settings, 1 is still an equivalent measure of pj;j\\ (i j1-
However, since 1;; has an approximate variance of
1/(n—|Sj| — 3), we prefer to set S;; to c‘f%,-,,j or fw,,,- for
which the cardinality is smaller.



1-Learning Algorithm

(a) (Correlation screening) Determine the reduced neighborhood
éAZYh,- for each variable X(:

(i) Conduct a multiple hypothesis test to identify the pairs of
vertices for which the empirical correlation coefficient is
significantly different from zero. This step results in a so-called
correlation network.

(ii) For each variable X(7), identify its neighborhood in the
correlation network, and reduce the size of the neighborhood
to O(n/ log(n)) by removing the variables having lower
correlation (in absolute value) with X().

(b) (v-calculation) For each pair of vertices i and j, identify the
separator S;; based on the correlation network resulted in step

(a) and calculate 9j; by inverting the subsample covariance

matrix indexed by the variables in S; U {/,j}.

(c) (w-screening) Conduct a multiple hypothesis test to identify
the pairs of vertices for which 1;; is significantly different from
zero, and set the corresponding elements of E to be 1.



Consistency

(A1) The distribution P(") satisfies the conditions:
(i) P(" is multivariate Gaussian;
(i) P(") satisfies the Markov property and adjacency faithfulness
condition with respect to the undirected graph G™ for all
neN.

(A2) The dimension p, = O(exp(n?)) for some 0 < § < 1.
(A3) The correlation satisfy

min{|rj;rj #0, i,j=1,2,...,pn, i #j}>con ", (5)
for some constants ¢y > 0 and 0 < k < (1 —9)/2, and
max{|rjl;i,j=1,...,pn, i #j} < M, <1, (6)

for some constant 0 < M, < 1.



Consistency

Define

~(n) .. ..
E - {(17.]) : IOI_[‘V\{I,_]} 7é 07 I, = ]-7 B 7pn}7 (7)
EM ={(i,j)  ry #0, i,j=1,...,pa},

as the edge sets of G(" and G(", respectively.

Since E(n) C g("), there exist constants ¢c; > 0 and 0 < k' < Kk
such that

min{|r;|; (1,/) € E(n), ihj=1,....,pn} > cln_”,. (8)



Consistency

Lemma 1 Assume (A;), (A2), and (A3) hold. Let v, = 2/3c;n~".
Then there exist constants ¢, and c3 such that

P(E(n) g SA%) > 1-— Co exp(—c3n1*2“')7

P(bG(")(I) g é’Yn,l') 2 1 — C2 eXP(*anl_z’{/)_



Consistency

(As) There exist constants ¢4 > 0 and 0 < 7 < 1 — 2« such that
Amax(X) < can”, where ¥ denotes the covariance matrix of
Xi, and Amax(X) is the largest eigenvalue of .

Lemma 2 Assume (A1), (A2), (A3), and (A4) hold. Let
Vp = 2/3c1n_"‘/. Then for each node i/,

P (1,01 < O(nF7)] = 1 -y exp(—can =),

where ¢; and c¢3 are as given in Lemma 1.



Consistency

Lemma 3 Assume (A1)-(i), (A2), and (A3). If n, = 1/2con™",
then B
P, =EM =1-0(1), asn— .



Consistency

The faithfulness implies that E(n)

Lemma 3 that

- g, Further, it follows from

PIE™ c & 1=1-o(1). 9)

Based on Lemma 1, Lemma 2 and (9), we propose to restrict the
neighborhood size of each node in calculation of v-partial
correlation coefficients to be

min {|én"’i|’§,,|o:;(n)}’ (10)

where 7, can be determined through a multiple hypothesis test.



Consistency

Let (, denote the threshold value of 1-partial correlation used in
the 9)-screening step, and let E, denote the final network obtained
through thresholding -partial correlation. That is, we define

Ec, = {(id) [yl > o ind = 1,2, pn}.
(As) The t)-partial correlation coefficients satisfy

Inf{wljrwlj 7&07 I?J: ]-a"'vpm 175./7 |Slj‘ < qn} > Cﬁn_da

where g, = O(n***7), 0 < ¢ < 0o and 0 < d < (1 — §)/2
are some constants. In addition,

SUP{T/)uvhJ: 1)~'-7pn7 175.]7|Suy < qn} < M'z/) < 17

for some constant 0 < M, < 1.



Consistency

Theorem 2 Consider a GGM with distribution P(") and underlying
conditional independence graph G(". Assume (A;)—(As) hold.
Then

P[E;, = E(n)] >1-0(1), asn— oc.



An lllustrative Example

Consider an auto-regressive process of order two with the
concentration matrix given by

05, iflj—il=1i=2,...,(p—1),

025, iflj—il=1i=3,...,(p—2),

Gj = o
1, ifi=j,i=1,...,p,
0, otherwise.

This example has been used by Yuan and Lin (2007) and
Mazumder and Hastie (2012) to illustrate their glLasso algorithms.
We are interested in it because all the variables in it are dependent,
either directly or indirectly, and thus it can serve as a good
example for testing whether or not the proposed v-learning
algorithm can distinguish direct dependencies from indirect ones.



An lllustrative Example
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Figure: Precision-recall curves of the 1-learning, glLasso, nodewise
regression, gp-average, PC, partial correlation, and correlation methods
for one dataset simulated with (n, p) = (500,200). Under this setting,
the true partial correlation is available and thus included for comparison.



An lllustrative Example
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Figure: Precision-recall curves of the 1-learning, glasso, nodewise
regression, gp-average, PC, partial correlation, and correlation methods
for one dataset simulated with (n, p) = (100,200). Under this setting,
the true partial correlation is not available.



Partial Correlation Scores

The true partial correlation score is defined by

. 1 1+ pijjv\giyj 5
z,-jzilog [1 il \{’J}], Z;=0 (2¢ \/n—7|zu| )

~ Pilv\{ij} (11)

where n — p — 1 is its effective sample size.

The 1-score is defined by

1, [l4+yy] . .
zj =3 lg[l_%} Z; =071 (20(y/n—|Sy - 3|z;) - 1),
(12)

where S;; denotes the conditional set, and n — |S;;| — 3 is its
effective sample size.




An lllustrative Example
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Figure: Comparison of i-scores and sample partial correlation scores. (a) Histogram
of 1-scores. (b) Boxplots of 1-scores for the first-order dependent nodes (labeled by
1), the second-order dependent nodes (labeled by 2) and other nodes (labeled by 3).
(c) Histogram of sample partial correlation scores. (d) Boxplots of sample partial
correlation scores for the first-order dependent nodes (labeled by 1), the second-order
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An lllustrative Example

Table: Average areas under the Precision-Recall curves resulting from
different methods: 1-learning, true partial correlation, glasso, nodewise
regression, gp-average, PC, and correlation. The numbers in parentheses

represent the standard deviation of the average area.

n P partial glasso nodewise gp-ave PC
0.9940 0.9831 0.8259 0.9466 0.7268 0.5285
500 1 )0002) (0.0011) (0.0010) (0.0019) (0.0025)  (0.0040)
0.7925 — 0.5336 0.6207 0.5819 0.4945
100

(0.0086) — (0.0030)  (0.0024)  (0.0030)  (0.0026)




T-cell Data

This dataset results from one experiment investigating the
expression response of human T-cells to phorbol myristate acetate
(PMA). It contains the temporal expression levels of 58 genes for
10 unequally spaced time points. At each time point there are 34
separate measurements. The data have been log-transformed and
quantile normalized and are available at the R package longitudinal
(Opgen-Rhein and Strimmer, 2008). As in other work, we ignore
its longitudinal structure and treat the observations as independent
in studying the GGM.



T-cell Data

Figure: Networks identified by (a) the 1-learning method with g-value=0.01, (b)
the 1)-learning method with g-value=0.0001, (c) glasso, and (d) nodewise regression
for the T-cell data.



Phase Transition

The correlation and partial correlation screening suffers from a
phase transition phenomenon: As the threshold decreases, the
number of discoveries increases abruptly.

This explaines the 1-learning method outperforms the other
methods in the high-precision region, while this is reversed in the
low-precision region.



T-cell Data: Power Law

To assess the quality of the networks resulted from different
methods, we fit the power law to them. A nonnegative random
variable X is said to have a power law distribution if

for some positive constant a. The power law states that the
majority of vertices are of very low degree, although some are of
much higher degree—two or three orders of magnitude higher in
some cases.



T-cell Data
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Figure: Log-log plots of the degree distributions of the four networks
shown in Figure 5: (a) ¥-learning with g-value=0.01; (b) 1-learning with
g-value=0.0001; (c) glasso; and (d) nodewise regression.



Breast Cancer Data

This dataset contains 49 breast cancer samples and 3883 genes
arising in a study of molecular phenotypes for clinical prediction
(West et al., 2001). The cleaned data is available at
http://strimmerlab.org/ data.html. The full graph consists
of 7,536,903 edges.



Breast Cancer Data

Figure: Networks identified by (a) the v-learning method with g-value=0.01, (b)
glasso, and (c) nodewise regression for the breast cancer data.



Breast Cancer Data
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Figure: Edges of the network identified by the 1-learning method for the
breast cancer data, where the genes numbered by 590, 3488, 1537, and
992 are CD44, IGFBP-5, HLA, and STARD3, respectively.



Biological Results

Based on the result of 1)-learning, 13 hub genes are identified by setting the cutoff
value of connectivity at 5, and the top 4 genes are STARD3, IGFBP-5, CD44 and
HLA. Our examination shows very exciting results: All of the 13 genes are related to
breast cancer.

» STARD3 (also named as MLN64 and CABL1) is in the 17q11-q21 region in
which amplification is found in about 25% of primary breast carcinomas, and its
gene expression is associated with poor clinical outcome, such as increase risk of
relapse and poor prognosis (http://atlasgeneticsoncology.org/).

» IGFBP-5 has been shown to play an important role in the molecular mechanism
of breast cancer, especially in metastasis (Akkiprik et al., 2008), and it is
considered to be a potential therapeutic target for breast cancer.

» CD44 is involved in many essential biological functions associated with the
pathology activities of cancer cells, and CD44 expression is commonly used as a
marker for breast cancer stem cells (Louderbough et al., 2011).

»> HLA expression is associated with the genetic susceptibility (Chaudhuri et al.,
2000), tumor progression and recurrent risk of breast cancer (Kaneko et al.,
2011).



Data Integration

To integrate multiple sources of data, the i-partial correlation
coefficient can be transformed to a Z-score via Fisher's
transformation:

Vn—1S; =3 1+ .
Vg = log =, iLj=12,...,p. (13)

Then 1),-scores from different sources of data can be combined
using the meta-analysis method:

. Z/f:l qu/Jgj)

/IZ)CU - K 2 b)
\ D k=1 Wi

where K denotes the total number of data sources, wé,ﬁ’ denotes
the 1),-score from source k, and wy denotes the weight assigned
on source k.

ij=12...,p, (14)



Network Comparison

e, = W — v @1/v2, (15)

(i) (¢)-correlation calculation) Perform steps (a) and (b) of the
1-learning algorithm independently for each source of data.

(ii) (wg-score calculation) Calculate the difference of v-scores in
in (15).

(iii) (o q-score screening) Conduct a multiple hypothesis test to
identify the pairs of vertices for which 1y, is differentially
distributed from the standard normal N(0,1).



An lllustrative Example (continuation)

Generate two datasets from N(0,1C~1) and N(0, C1),
respectively, where C is as early specified with p = 200. Both
datasets have a sample size of n = 100.



An lllustrative Example

Figure: Histograms of v, (left) and v (right) for the two simulated
datasets.



An lllustrative Example
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Figure: Networks identified by the v-learning algorithm for the
simulation experiment: (a) network for dataset 1
(precision,recall)=(0.963,0.388), (b) network for dataset 2
(precision,recall)=(0.958,0.343), and (c) integrated network of dataset 1
and dataset 2 (precision,recall)=(0.934,0.602).



Covariate Adjustment

> Let Wi,..., Wy denote the external variables. To adjust their
effects, we can replace the the empirical correlation coefficient
used in step (a) of the t)-learning algorithm by the p-value
obtained in testing the hypotheses
Ho : Bg+1 =0 < Hy : Bg41 # O for the regression

XD = By + BiWi + -+ BgWy + Bg1 XY + €, (16)

where € denotes a vector of Gaussian random errors.

» Similarly, we replace the 1-correlation coefficient used in step
(c) of the t-learning algorithm by p-value obtained in testing
the hypotheses Hp : Bq+1 =0 < Hi : Bg4+1 # 0 for the
regression

XU = o+ Wi+ + BgWa + B XD+ D~ X e,
kES,'j
(17)
where Sj;, as defined previously, denotes the selected separator
of X() and XU).



Time Complexity

In terms of p, the computational complexity of the 1-learning
algorithm is bounded by O(p?(log p)?), where b = 3(2+’ + 7)/9,
O(p?) is for the total number of v-scores that need to calculate,
and O((log p)®) is for the computational complexity of inverting a
neighboring matrix of size O(n?%+7).

When § > 0, the computational complexity of the algorithm is
nearly O(p?).



Time Complexity

» The glasso algorithm is known to have a computational
complexity of O(p3). With its fast implementation (Witten et
al., 2011; Mazumder and Hastie, 2012), which makes use of
the block diagonal structure in graphical lasso solutions, the
computational complexity can be reduced to O(p?>*), where
0 < v <1 may depend on the number of blocks and the size
of each block.

» Since the ordinary Lasso has a computational complexity of
O(npmin(n, p)) (Meinshausen, 2007), the nodewise
regression algorithm has a complexity of O(p3(log p)%/?) if
p > nand O(p*(log p)'/?) otherwise.

» Other algorithms usually have higher computational
complexities. For example, the PC algorithm (Spirtes et al.,
2000) has a computational complexity bounded by O(p?>*™),
where m is the maximum size of the neighborhoods.



Time Complexity

We have compared the CPU times of t-learning and glasso (the
fastest regularization method) for the breast cancer example. On a
single core of Intel® Xeon® CPU E5-2690(2.90Ghz), 1/-learning
took 61 minutes, and glasso took 6,993 minutes.

Here glasso was implemented in the package huge and run under
its default setting with the regularization parameter being
determined using the stability approach.



Discussion

» We have provided a general framework for inference of GGMs
based on the equivalent measure of partial correlation
coefficient.

» The key idea is correlation screening and the key strategy is
split-and-merge.

P> Extension to Multiple Datasets Integration, covariate
adjustment, network comparison, and non-normality data are
all simple under the framework.
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