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Motivation Example

Consider the Markov transition probability matrix

Pθ =

(
1− θ θ
θ 1− θ

)
,

on the state space X = {1, 2} for some fixed θ ∈ (0, 1). It is easy
to see that for any θ, Pθ leaves π = (1/2, 1/2) invariant; that is,
πPθ = π. However, if we let θ : X → (0, 1) be a function of the
current state X , i.e., introducing self-adaptation of proposals, then
the transition probability matrix becomes

P̃ =

(
1− θ(1) θ(1)
θ(2) 1− θ(2)

)
,

which admits (θ(2)/(θ(1) + θ(2)), θ(1)/(θ(1) + θ(2))) as its
invariant distribution.
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This example implies that introduction of self-adaptation of
proposals might not preserve the stationarity of the target
distribution.
For the above example, to recover the target distribution π, one
can either remove or diminish the dependence of Pθ on X with
iterations. This has led to some adaptive MCMC algorithms
developed in the literature. These algorithms can be roughly
divided into the following four categories:
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▶ Stochastic approximation-based adaptive algorithms: The
algorithms diminish the adaptation gradually with iterations.

▶ Adaptive independent MH algorithms: The algorithms work
with proposals which are adaptive, but do not depend on the
current state of the Markov chain. The diminishing
adaptation condition may not necessarily hold for them.

▶ Regeneration-based adaptive algorithms: The algorithms are
designed based on a basic property of the Markov chain,
whose future outputs become independent of the past after
each regeneration point.

▶ Population-based adaptive algorithms: The algorithms work
on an enlarged state space, which gives us much freedom to
design adaptive proposals and to incorporate sophisticated
computational techniques into MCMC simulations.
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Stochastic Approximation-based Adaptive Algorithms

Haario et al. (2001) prescribed an adaptive Metropolis algorithm
which learns to build an efficient proposal distribution on the fly;
that is, the proposal distribution is updated at each iteration based
on the past samples. Under certain settings, it was shown that the
proposal distribution will converge to the “optimal” one. Andrieu
and Robert (2001) observed that the algorithm of Haario et al.
(2001) can be viewed as a stochastic approximation algorithm
(Robbins and Monro, 1951). Then, under the framework of
stochastic approximations, Atchadé and Rosenthal (2005) and
Andrieu and Moulines (2006) proved the ergodicity of more general
adaptive algorithms. Andrieu and Moulines (2006) also proved a
central limit theorem result. The theory on the adaptive MCMC
algorithms was further developed by Roberts and Rosenthal (2007)
and Yang (2007). They present somewhat simpler conditions,
which still ensure ergodicity for specific target distributions.
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Ergodicity and Weak Law of Large Numbers

Let π(·) be a fixed target distribution defined on a state space
X ⊂ Rd with σ-algebra F . Let {Pθ}θ∈Θ be a collection of Markov
chain transition kernels on X , each of which admits π(·) as the
stationary distribution, i.e., (πPθ)(·) = π(·). Assuming that Pθ is
irreducible and aperiodic, then Pθ is ergodic with respect to π(·);
that is, limn→∞ ∥Pn

θ (x , ·)− π(·)∥ = 0 for all x ∈ X , where
∥µ(·)− ν(·)∥ = supA∈F ∥µ(A)− ν(A)∥ is the usual total variation
distance. So, if θ is kept fixed, then the samples generated by Pθ

will eventually converge to π(·) in distribution.
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However, some transition kernel Pθ may lead to a far less efficient
Markov chain than others, and it is hard to know in advance which
transition kernel is preferable. To deal with this, adaptive MCMC
algorithms allow the transition kernel to be changed at each
iteration according to some specific rules. Let Γn be a Θ-valued
random variable, which specifies the transition kernel to be used at
iteration n. Let Xn denote the state of the Markov chain at
iteration n. Thus,

Pθ(x ,A) = P(Xn+1 ∈ A|Xn = x , Γn = θ,Gn), A ∈ F ,

where Gn = σ(X0, . . . ,Xn, Γ0, . . . , Γn) is a filtration generated by
{Xi , Γi}i≤n.
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Define

An((x , θ),B) = P(Xn ∈ B|X0 = x , Γ0 = θ), B ∈ F ,

which denotes the conditional probabilities of Xn given the initial
conditions X0 = x and Γ0 = θ, and

T (x , θ, n) = ∥An((x , θ), ·)− π(·)∥ = sup
B∈F

|An((x , θ),B)− π(B)|,

which denotes the total variation distance between the distribution
of Xn and the target distribution π(·).
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To ensure ergodicity of the adaptive Markov chain, i.e.,
limn→∞ T (x , θ, n) = 0 for all x ∈ X and θ ∈ Θ, Roberts and
Rosenthal (2007) prescribes two conditions, namely the bounded
convergence condition and the diminishing adaptation condition.
Let

Mϵ(x , θ) = inf{n ≥ 1 : ∥Pn
θ (x , ·)− π(·)∥ ≤ ϵ},

be the convergence time of the kernel Pθ when starting in state
x ∈ X . The bounded convergence condition is that for any ϵ > 0,
the stochastic process {Mϵ(Xn, Γn)} is bounded in probability given
the initial values X0 = x and Γ0 = θ.
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Let
Dn = sup

x∈X
∥PΓn+1(x , ·)− PΓn(x , ·)∥.

The diminishing adaptation conditions states that limn→∞Dn = 0,
which can be achieved by modifying the parameters by smaller and
smaller amounts as in the adaptive Metropolis algorithm of Haario
et al. (2001), or by doing the adaption with smaller and smaller
probability as in the adaptive evolutionary Monet Carlo algorithm
of Ren et al. (2008). In summary, Roberts and Rosenthal (2007)
proved the following theorem:

Theorem 1
For an MCMC algorithm with adaptive proposals, if it satisfies the
bounded convergence and diminishing adaptation conditions, then
it is ergodic with respect to the stationary distribution π(·).
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Since the quantity Mϵ(x , θ) is rather abstract, Roberts and
Rosenthal (2007) gave one condition, simultaneous geometrical
ergodicity, which ensures the bounded convergence condition. A
family {Pθ}θ∈Θ of Markov chain transition kernels is said to be
simultaneously geometrically ergodic if there exists C ∈ F , a drift
function V : X → [1,∞), δ > 0, λ < 1 and b < ∞, such that
supx∈C V (x) = v < ∞ and the following conditions hold:

(i) (Minorization condition) For each θ ∈ Θ, there exists a
probability measure νθ(·) on C with Pθ(x , ·) ≥ δνθ(·) for all
x ∈ C .

(ii) (Drift condition) PθV ≤ λV + bI (x ∈ C ), where I (·) is the
indicator function.
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This results in the following theorem:

Theorem 2
For an MCMC algorithm with adaptive proposals, if it satisfies the
diminishing adaptation condition and the family {Pθ}θ∈Θ is
simultaneously geometrically ergodic with E (V (X0)) < ∞, then it
is ergodic with respect to the stationary distribution π(·).
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In addition to the ergodicity of the Markov chain, in practice, one
often interests in the weak law of large numbers (WLLN), i.e.,
whether or not the sample path average (1/n)

∑n
i=1 h(Xi ) will

converge to the mean Eπh(x) =
∫
h(x)π(x)dx for some function

h(x). For adaptive MCMC algorithms, this is even more important
than the ergodicity to some extent. Under slightly stronger
conditions, the simultaneous uniform ergodicity and diminishing
adaptation conditions, Roberts and Rosenthal (2007) showed that
(1/n)

∑n
i=1 h(Xi ) will converge to Eπh(x), provided that h(x) is

bounded. A family {Pθ}θ∈Θ of Markov chain transition kernels is
said to be simultaneously uniformly ergodic if
sup(x ,θ)∈X×ΘMϵ(x , θ) < ∞. In summary, the WLLN for adaptive
MCMC algorithms can be stated as follows:
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Theorem 3
For an MCMC algorithm with adaptive proposals, if it satisfies the
simultaneous uniform ergodicity and diminishing adaptation
conditions, then for any starting values x ∈ X and θ ∈ Θ,

1

n

n∑
i=1

h(Xi ) → Eπh(x),

provided that h : X → R is a bounded measurable function.
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Adaptive Metropolis Algorithm

Let π(x) denote the target distribution. Consider a Gaussian
random-walk MH algorithm, for which the proposal distribution is
q(x , y) = N(y ; x ,Σ), and N(y ; x ,Σ) denotes the density of a
multivariate Gaussian with mean x and covariance matrix Σ. It is
known that either too small or too large a covariance matrix will
lead to a highly correlated Markov chain. Under certain settings,
Gelman et al. (1996) showed that the “optimal” covariance matrix
for the Gaussian random-walk MH algorithm is (2.382/d)Σπ,
where d is the dimension of x and Σπ is the true covariance matrix
of the target distribution π(·). Haario et al. (2001) proposed to
“learn Σπ on the fly”; that is, estimating Σπ from the empirical
distribution of the available Markov chain outputs, and thus
adapting the estimate of Σ while the algorithm runs.
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▶ Initialize X0, µ0 and Σ0.
▶ At iteration k + 1, given Xk , µk and Σk

a. Generate Xk+1 via the MH kernel Pθk (Xk , ·), where
θk = (µk ,Σk).

b. Update

µk+1 = µk + γk+1(Xk+1 − µk),

Σk+1 = Σk + γk+1

[
(Xk+1 − µk)(Xk+1 − µk)

T − Σk

]
.
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Let λΣk denote the covariance matrix used by the adaptive
Metropolis algorithm at iteration k , where λ is preset at 2.382/d
as suggested by Gelman et al. (1996). As pointed out by Andrieu
and Thoms (2008), if λΣk is either too large in some directions or
too small in all directions, the algorithm will have either a very
small or a very large acceptance probability, rendering a slow
learning of Σπ due to limited exploration of the sample space X .
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To alleviate this difficulty, Andrieu and Thoms (2008) proposed to
simultaneously adapt the parameter λ and the covariance matrix Σ
in order to coerce the acceptance probability to a preset and
sensible value, e.g., 0.234. Roberts and Rosenthal (2001) showed
that, for large d , the optimal acceptance rate of the random-walk
Metropolis algorithm is 0.234 when the components of π(·) are
approximately uncorrelated but heterogeneously scaled. Assuming
that for any fixed covariance matrix Σ the corresponding expected
acceptance rate is a non-increasing function of λ, the following
recursion can be used for learning λ according to the
Robbins-Monro algorithm (Robbins and Monro, 1951):

log(λk+1) = log(λk) + γk+1[α(Xk ,X
∗)− α∗],

where X ∗ denotes the proposed value, and α∗ denotes the targeted
acceptance rate, e.g., 0.234.
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▶ Initialize X0, λ0, µ0 and Σ0.
▶ At iteration k + 1, given Xk , λk , µk and Σk

a. Draw X ∗ from the proposal distribution N(Xk , λkΣk), set
Xk+1 = X ∗ with probability α(Xk ,X

∗), and set Xk+1 = Xk

with the remaining probability.
b. Update

log(λk+1) = log(λk) + γk+1[α(Xk ,X
∗)− α∗],

µk+1 = µk + γk+1(Xk+1 − µk),

Σk+1 = Σk + γk+1

[
(Xk+1 − µk)(Xk+1 − µk)

T − Σk

]
.

The adaption of λ can be very useful in the early stage of the
simulation, although it is likely not needed in the long run.
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Adaptive independent MH algorithm

Holden et al. (2009) describes an independent MH algorithm, for
which the proposal is adaptive with (part of) past samples, but
avoids the requirement of diminishing adaptation. The algorithm
can be described as follows.
Let qt(z |yt−1) denote the proposal used at iteration t, where yt−1

denotes the set of past samples used in forming the proposal.
Since the basic requirement for the independent MH algorithm is
that its proposal is independent of the current state xt , yt−1 can
not include xt as an element. Suppose that z has been generated
from the proposal qt(z |yt−1). If it is accepted, then set xt+1 = z
and append yt−1 with xt . Otherwise, set xt+1 = xt and append
yt−1 with z . The difference between the traditional independent
MH algorithm and the adaptive independent MH algorithm is only
that the proposal function qt(·) may depend on a history vector,
which can include all samples that π(x) has been evaluated except
for the current state of the Markov chain.
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▶ Set y0 = ∅, and generate an initial sample x0 in X .
▶ For t = 1, . . . , n:

(a) Generate a state z from the proposal qt(z |yt−1), and calculate
the acceptance probability

α(z , xt , yt−1) = min

{
1,

π(z)qt(xt |yt−1)

π(xt)qt(z |yt−1)

}
.

(b) If it is accepted, set xt+1 = z and yt = yt−1 ∪ {xt}.
Otherwise, set xt+1 = xt and yt = yt−1 ∪ {z}.
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Holden et al. (2009) showed the following theorem for the
algorithm, which implies that the chain never leaves the stationary
distribution π(x) once it is reached.

Theorem 4
The target distribution π(x) is invariant for the adaptive
independent MH algorithm; that is, pt(xt |yt−1) = π(xt) implies
pt(xt+1|yt) = π(xt+1), where pt(·|·) denotes the distribution of xt
conditional on the past samples.
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