Lecture Notes for STAT546: Computational
Statistics
—Lecture 11: Monte Carlo

Faming Liang
Purdue University

September 25, 2024

Smoothing SAMC for Bayesian model selection

SSAMC is different from SAMC in two aspects. First, the gain

factor sequence used in SSAMC is a little more restrictive than

that used in SAMC. In SSAMC, the gain factor sequence is

required to satisfy the following condition:

(B1) The sequence {7:} is positive and non-increasing, and satisfies
the conditions:

(o] o0
(i) Jlim et =vehl < oo, (i) Y e =00, (iii) Y ¢ < oo,
t=1 t=1

(1)
for any ¢ > 1.

The trade-off with the condition (Aj) is that a higher order noise
term can be included in updating 6; as prescribed in (6). For
example, {~:} can be set as

where tg is a pre-specified number.

Second, SSAMC allows multiple samples to be generated at each

(1)

where pt fE fa,(x)dx is the limiting probability that a sample is
(1) (x)

drawn from E; at iteration t. Let x; /,...,x; ~ denote the samples
generated by a MH kernel with the invariant distribution fy, (x).
Since k is usually a small number, say, 10 to 20, the samples form

a sparse frequency vector e; = (egl)7 ol eﬁ'")) with

=2 (Ve Ej).
As suggested by many authors, see e.g., Burman (1987) and Hall
and Titterington (1987), the frequency estimate can be improved
by a smoothing method. Since the partition has been assumed to
be smooth, information in nearby subregions can be borrowed to
help produce more accurate estimates of p;.

|terat|on and employs a smoothed estimate of p;’ in updating 6;,

Liang (2009a) smoothed the frequency estimator e;/r using the
Nadaraya-Watson kernel method. Then

s ()d

T enw(fG2) e

where W(z) is a kernel function with bandwidth h;, and A is a
rough estimate of the range of A(x), x € X. Here, W(z) is chosen
to have a bounded support; that is, there exists a constant C such
that W(z) = 0 if |z| > C. With this condition, it is easy to show
/Sgi) — egi)//ﬁ = O(h¢). There are many choices for W(z), e.g., an
Epanechnikov kernel or a double-truncated Gaussian kernel.

The former is standard, and the latter can be written as

W(z) = exp(—22/2), if |z| < C,)
- 0, otherwise.

The bandwidth h; is chosen as a power function of 4;; that is,

h; = ay? for a > 0 and b € (0, 1], where b specifies the decay rate
of the smoothing adaptation in SSAMC. For a small value of b,
the adaptation can decay very slowly.

In Liang (2009a), W/(z) was set to the double-truncated Gaussian
kernel with C = 3 and

e range{A(xV), ..., A"
h: = min {yf’, 2(1 + log, ()) (5)

where b = 1/2, and the second term in min{-, -} is the default
bandwidth used in conventional density estimation proceduress.

SSAMC algorithm

()

Sampling: Simulate samples xt(i)l, . ,xfi)l using the MH

algorithm from the distribution fy,(x) as defined in (??). The
simulation should be done in an iterative manner; that is,
generating xt(:gl) with a proposal q(xgzl, -), where
50— (5)

t+1 = Xt

Smoothing: Calculate p; = (/3&1), ce ﬁ(t”’)) in (3).

Weight updating: Set
01 = e ea (B —). (6)

If 9t+% €0, set Ory1 = 0t+%; otherwise, set

*

Ori1 = 0t+% + c*, where ¢* = (c*,...,c*) can be any vector

which satisfies the condition 6t+; +c* € 0o.
2

Table 1: Estimated posterior probability for the change-point example.

(Recompiled from Liang, 2009a)

SSAMC SAMC MSAMC RIMCMC

k [P(%) SD | P(%) SD | P(%) SD | P(%) SD

7 | 0.101 0.002 | 0.094 0.003| 0.098 0.002 | 0.091 0.005
8 | 55.467 0.247 | 55.393 0.611 | 55.081 0.351 | 55.573 0.345
9 | 33.374 0.166 | 33.373 0.357 | 33.380 0.223 | 33.212 0.205
10 | 9.298 0.103 | 9.365 0.279 | 9.590 0.135 | 9.354 0.144
11| 1566 0.029 | 1.579 0.069 | 1.646 0.030 | 1.569 0.040
12| 0.177 0.004 | 0.180 0.010| 0.187 0.004 | 0.185 0.010
13| 0.016 0.001 | 0.015 0.001 | 0.017 0.000 | 0.017 0.001
14 | 0.002 0.000 | 0.001 0.000 | 0.002 0.000 | 0.001 0.000

Annealing SAMC

Like conventional MCMC algorithms, SAMC is able to find the
global energy minima if the run is long enough. However, due to
the broadness of the sample space, the process may be slow even
when sampling has been biased to low energy subregions. To
accelerate the search process, Liang (2007b) proposed to shrink
the sample space over iterations.

Suppose that the subregions Ej, ..., E, have been arranged in
ascending order by energy; that is, if i < j, then H(x) < H(y) for
any x € Ej and y € Ej. Let w(u) denote the index of the
subregion that a sample x with energy u belongs to. For example,
if x € Ej, then w(H(x)) =j. Let A} denote the sample space at
iteration t. Annealing SAMC initiates its search in the entire
sample space Xy = |J"; E;, and then iteratively searches in the set

@ (uf+R)
X, = U E, t=1,2,..., (7)
i=1

where uj denotes the best function value obtained by iteration ¢,
and N > 0 is a user specified parameter which determines the
broadness of the sample space at each iteration. Since the sample
space shrinks iteration by iteration, the algorithm is called
annealing SAMC. Let ©; denote the state space of 6;. In
summary, ASAMC consists of the following steps:

Annealing SAMC algorithm

(a)

Initialization: Partition the sample space X’ into m disjoint
subregions E, ..., E; according to the objective function
H(x); specify a desired sampling distribution 7r; initialize xo
by a sample randomly drawn from the sample space X,

6o = (6",...,6{™) = (0,0,...,0), X, and X = U™, Es:
and set the iteration number t = 0.

Sampling: Draw sample x;41 by a single or few MH moves
which admit the following distribution as the invariant
distribution,

@ (uf +R)

5, (x) o Z} ex;”{(;g)i)}/(xea), (8)

where I(x € E;) is the indicator function,
P(x) = exp{—H(x)/7}, and 7 is a user-specified parameter.

(c)

Working weight updating: Update the log-weight 0; as
follows:

01 = 0 + i1 [(xt41 € E)—m), i=1,...,@(uj +R),

where the gain factor sequence {7} is subject to the
condition (A;). If 0,1 €0O,set 01 =0, 1; otherwise, set
2 2
*

Or+1=0,,1 + c*, where ¢* = (c*,...,c*) and c* is chosen
2
such that 0t+; +c* € 0.
2
Termination: Check the termination condition, e.g., a fixed

number of iterations has been reached. Otherwise, set
t — t+ 1 and go to step (b).

Learning neural networks for a two-spiral problem

Over the past several decades, feed-forward neural networks,
otherwise known as multiple-layer perceptrons (MLPs), have
achieved increased popularity among scientists, engineers, and
other professionals as tools for knowledge representation. Given a
group of connection weights x = («, 3,7), the MLP approximator
can be written as

p M p
F(zilx) = 0o | 00+ > _jzig + > cion(Bio + > Bizig) |
=1 i—1 =1

(9)
where M is the number of hidden units, p is the number of input
units, zx = (zk1,- .., Zkp) is the kth input pattern, and «;, 8jj and

7 are the weights on the connections from the ith hidden unit to
the output unit, from the jth input unit to the ith hidden unit, and
from the jth input unit to the output unit, respectively.

The connections from input units to the output unit are also called
the shortcut connections. In (9), the bias unit is treated as a
special input unit with a constant input, say 1. The functions
wn(+) and @, () are called the activation functions of the hidden
units and the output unit, respectively. Popular choices of op(+)
include the sigmoid function and the hyperbolic tangent function.
The former is defined as ¢p(z) = 1/(1 + e %) and the latter
©h(z) = tanh(z). The choice of () is problem dependent. For
regression problems, ¢, (+) is usually set to the linear function
©vo(z) = z; and for classification problems, ¢,(+) is usually set to
the sigmoid function.

The problem of MLP training is to minimize the objective function

XN:(k—fzk\x) + Za +ZZﬁ ++Zvj :

k=1 i=1 j=0

(10)
by choosing appropriate connection weights, where y; denotes the
target output corresponding to the input pattern zx, the second
term is the regularization term, and X is the regularization
parameter. The regularization term is often chosen as the sum of
squares of the connection weights, which stabilizes the
generalization performance of the MLP. Henceforth, H(x) will be
called the energy function of the MLP.

Table 2: Comparison of ASAMC, SAMC, SA and BFGS for the
two-spiral example. (Liang, 2007b)

Algorithm Mean SD Min Max Prop lteration(x10°%) Time

ASAMC 0.620 0.191 0.187 3.23 15 7.07 94m
SAMC 2,727 0.208 1.092 4.089 0 10.0 132m
SA-1 17.485 0.706 9.02 22.06 0 10.0 123m
SA-2 6.433 0.450 3.03 11.02 0 10.0 123m
BFGS 1550 0.899 10.00 24.00 0 — 3s

Figure 1: Classification maps learned by ASAMC with a MLP of 30
hidden units. The black and white points show the training data for two
different spirals. (a) Classification map learned in one run. (b)
Classification map averaged over 20 runs. This figure demonstrates the
success of ASAMC in minimization of complex functions. (Liang, 2007b)

Annealing Evolutionary SAMC

Like the genetic algorithm, AESAMC works on a population of
samples. Let x = (xi,..., x,) denote the population, where n is
the population size, and x; = (X1, ..., Xiq) is a d-vector and is
called an individual or chromosome in terms of genetic algorithms.
Clearly, the minimum of H(x) can be obtained by minimizing the
function H(x) = >_7_; H(x;). An unnormalized Boltzmann density
can be defined for the population as follows,

P(x) =exp{—H(x)/7}, xe€X", (11)

where X" =X x --- x X is a product sample space. The sample
space can be partitioned according to the function H(x) into m
subregions: E; = {x: H(x) < w1}, E = {x:u1 < H(x) < w},
oy Em—1={x:um—2 < H(x) < upm_1}, and

E,,={x:H(x)>un-1}, where uyy < up < ... < up_1arem—1
known real numbers. Note that the sample space is not necessarily
partitioned according to the function H(x). For example, it can
also be partitioned according to A(x) = min{H(x1),...,H(xa)}.

The population can then evolve under the framework of ASAMC
with an appropriate proposal distribution for the MH moves. At
iteration t, the MH moves admit the following distribution as the
invariant distribution,

w(uf+R)

P(x)
i=1 eXP{egi)}

where u; denotes the best value of H(x) obtained by iteration t.

£y, (x) I(x€E), xeXx (12)

Table 3: Average optimality gap values over the 40 test functions.

(Liang, 2009d)

Algorithm 5000° 100007 200007 500007
Genocop 1P 636.37 399.52 320.84 313.34
Scatter Search? 4.96 3.60 3.52 3.46
C-GRASP© 6.20 4.73 3.92 3.02
DTSY 4.22 1.80 1.70 1.29
ASAMCe(N = 10) 4.11(0.11) 2.55(0.08) 1.76(0.08) 1.05(0.06)
ASAMCe(X = 5) 3.42(0.09) 2.36(0.07) 1.51(0.06) 0.94(0.03)
ASAMCe(R = 1) 3.03(0.11) 2.02(0.09) 1.39(0.07) 0.95(0.06)
SAS(thigh = 20) 3.58(0.11) 2.59(0.08) 1.91(0.06) 1.16(0.04)
SAS(thigh = 5) 3.05(0.11) 1.80(0.09) 1.17(0.06) 0.71(0.03)
SAS(thigh = 2) 2.99(0.12) 1.89(0.09) 1.12(0.06) 0.69(0.03)
SAS(thigh = 1) 2.36(0.11) 1.55(0.08) 1.06(0.06) 0.67(0.03)
SA®(thigh = 0.5) 2.45(0.11) 1.39(0.07) 1.06(0.07) 0.75(0.06)
AESAMCf(N =10) 1.59(0.08) 0.82(0.02) 0.68(0.01) 0.50(0.01)
AESAMCf(N =1) 1.93(0.27) 0.79(0.01) 0.66(0.02) 0.49(0.01)

Trajectory Averaging: Toward optimal convergence rate

Consider the stochastic approximation algorithm:

Otv1 = 0t + yer 1 H(Or, Xeg1) + thifn(XtH), (13)

where, as previously, v¢+1 denotes the gain factor, 7 > 0, n(-) is a
bounded function, and X;;1 denotes a stochastic disturbance
simulated from f,(x), x € X C RY, using a MCMC sampler. This
algorithm can be rewritten as an algorithm for search of zeros of a
function h(6),

Or11 = 0 + vyer1[h(0:) + €41, (14)

where h(0:) = [, H(0:, x)fp,(x)dx corresponds to the mean effect
of H(Ht, Xt+1) and €t+1 = H(Qt, Xt+1) — h(@t) + ’}/;-+177(Xt+]_) is
the observation noise.

It is well known that the optimal convergence rate of (14) can be
achieved with v; = —F~1/t, where F = dh(6,)/00, and 0,
denotes the zero point of h(f). In this case, (14) is reduced to
Newton's algorithm. Unfortunately, it is often impossible to use
this algorithm, as the matrix F is generally unknown. Then, in a
sequence of papers, Ruppert (1988), Polyak (1990), and Polyak
and Juditsky (1992) showed that the trajectory averaging
estimator is asymptotically efficient; that is,

f, = Z 0./n (15)
t=1

can converge in distribution to a normal random variable with
mean 6, and covariance matrix ¥, where ¥ is the smallest possible
covariance matrix in an appropriate sense.

The trajectory averaging estimator allows the gain factor sequence
{7¢} to be relatively large, decreasing slower than O(1/t). As
discussed by Polyak and Juditsky (1992), trajectory averaging is
based on a paradoxical principle, a slow algorithm having less than
optimal convergence rate must be averaged.

Liang (2009¢e) showed that the trajectory averaging estimator can
also be applied to general stochastic approximation MCMC
(SAMCMC) algorithms. In Liang (2009¢), the bias term n(x) in
(13) was assumed to be 0, while some other conditions previously
imposed on SAMC have been relaxed. For example, the solution
space © has been relaxed from a compact set to R? based on the
varying truncation technique introduced by Chen (1993), and the
uniform boundedness condition sup,cy V(x) < co has been
weakened to sup,cy, V(x) < oo for a subset Xp C &'

	Lecture 11: Markov Chain Monte Carlo

