Lecture Notes for STAT546: Computational
Statistics
—Lecture 10: Monte Carlo

Faming Liang
Purdue University

September 11, 2024

Multicanonical Monte Carlo
Multicanonical Monte Carlo (Berg and Neuhaus, 1991, 1992) seeks
to draw samples in an ensemble where each configuration with
energy u = H(x) is assigned a weight

1

— e_s(u)’
g(u)

wm(u) o

where S(u) = log(g(u)) is called the microcanonical entropy. A
simulation with this weight function will yield a uniform
distribution of energy:

Pm(u) < g(u)wm(u) = constant,

and lead to a free random walk in the space of energy. This allows
the sampler to escape any energy barriers, and to explore any
regions of the sample space even for those with small g(u)’s. The
samples generated in the simulation will form a flat histogram in
the space of energy, hence, the multicanonical algorithm is also
called a flat histogram Monte Carlo algorithm.

Suppose that the energy function U only takes values on a finite
set {u1,...,Un}. Let x1,...,xy denote the MCMC samples drawn
from fr(x), and let N7(i) = #{x; : H(x;) = uj} denote the
number of samples with energy u;. As N — oo,

1
] N ——— e uil/ T | = m
Nr(i)/N Z(T)g(u,)e , i=1,...,m,

then the spectral density can be estimated by

B NT(I')eu"/T
Sy Nr(j)ew/T”
In practice, the temperature T should be sufficiently high such

that each value of the energy can be visited with reasonably large
frequency.

&(ur) i=1,....m.

g ooy

Given the initial spectral density estimate, the multicanonical
algorithm iterates between the following two steps:

1. Run a MCMC sampler, say, the MH algorithm, sufficiently
long according to the current weighting function

_
8:(H(x))’

where t indexes the stages of the simulation.

(1)

W,(nt)(x) x

2. Update the spectral density estimate by

log (g¢+1(ui)) = c+log (ge(ui))+log (7e(i) + i), i=1,...,m,
(2)

where the constant c is introduced to ensure that log(g:+1) is

an estimate of log(g), and 7(/) is the relative sampling

frequency of the energy u; at stage t, and ag,...,apn are

small positive constants which serve as “prior values” to

smooth out the estimate g.

Since the number of iterations performed in step 1 is sufficiently
large, it is reasonable to assume that the simulation has reached
equilibrium, and thus

me(i =) =1,....,m. 3
(i) ox ge(ui) I " G)

Substituting (3) into (2), then
log (8¢+1(ui)) = ¢ + log(g(ui)), i=1,...,m, (4)

which implies the validity of the algorithm for estimating g(u) (up
to a multicanonical constant). On the other hand, in equation (4),
the independence of g:11(u) on the previous estimate g;(u) implies
that the spectral density estimate can only reach limited accuracy,
which is determined by the length of the simulation performed in
step 1. After certain stage, increasing the number of stages will
not improve accuracy of the spectral density estimate.

1/k-ensemble sampling

Similar to multicanonical Monte Carlo, 1/k-ensemble sampling
(Hesselbo and Stinchcombe, 1995) seeks to draw samples in an
ensemble where each configuration x with energy u = H(x) is

assigned a weight

wik(u) o k(lu),

where k(u) =3, -, g(u'), i.e., the cumulative spectral density
function of the distribution. Hence, 1/k-ensemble sampling will
produce the following distribution of energy:

g(u) _ dlog k(u)
k(u) du

Py /ic(u) o<

Since, in many physical systems, k(u) is a rapidly increasing
function of u, log k(u) =~ log g(u) for a wide range of u, and the
simulation will lead to an approximately random walk in the space
of entropy. Recall that S(u) = log g(u) is called the
microcanonical entropy of the system. Comparing to
multicanonical Monte Carlo, 1/k-ensemble sampling is designed to
spend more time in exploring low energy regions, hence, it is
potentially more suitable for optimization problems. Improvement
over multicanonical Monte Carlo has been observed in ergodicity of
the simulations for the Ising model and travel salesman problems
(Hesselbo and Stinchcombe, 1995).

Wang-Landau algorithm

Like multicanonical Monte Carlo, the Wang-Landau algorithm
(Wang and Landau, 2001) seeks to draw samples in an ensemble
where each configuration with energy u is assigned a weight

where g(u) is the spectral density. The difference between the two
algorithms is on their learning procedures for the spectral density.
Suppose that the sample space X is finite and the energy function
H(x) takes values on a finite set {uy, ..., un}. The simulation of
the Wang-Landau algorithm consists of several stages. In the first
stage, it starts with an initial setting of g(u1),...,8(um), say
g(u1) =...=g(um) =1, and a random sample xo drawn from X,
and then iterates between the following steps:

The Wang-Landau algorithm

» Simulate a sample x by a single Metropolis update which
admits the invariant distribution f(x) o< 1/g(H(x)).

> Set g(u;) < g(u;)d'HI=ti) for i =1,... m, where § is a
modification factor greater than 1 and /(-) is the indicator
function.

The algorithm iterates till a flat histogram has been produced in
the space of energy. A histogram is usually considered to be flat if
the sampling frequency of each u; is not less than 80% of the
average sampling frequency. Once this condition is satisfied, the
estimates g(u;)’'s and the current sample x are passed on to the
next stage as initial values, the modification factor is reduced to a
smaller value according to a specified scheme, say, § < /3, and
the sampler collector is resumed. The next stage simulation is then
started, continuing until the new histogram is flat again. The
process is repeated until § is very close to 1, say, log(§) < 1078,

Stochastic approximation Monte Carlo

Consider the problem of sampling from the distribution (77).
Suppose the sample space X has been partitioned according to a
function A(x) into m subregions, E; = {x : A\(x) < u1},
E2:{X2 u </\(X)§ U2}, R

Em—1={x:Um-o2 < ANx) < um-1}, Em={x:A(X) > um-1},
where —oco < u; < -+ < Up_1 < 00. Here A(+) can be any
function of x, such as a component of x, the energy function
H(x), etc. Let ¥(x) be a non-negative function with

0 < [y ¥(x)dx < oo, which is called the working function of
SAMC. In practice, one often sets 1)(x) = exp(—H(x)/7). Let
gi = fEl_zp(x)dx fori=1,...,m, and g =(g1,...,8m). The
subregion E; is called an empty subregion if g; = 0.

An inappropriate specification of the cutoff points u;'s may result
in some empty subregions. Technically, SAMC allows for the
existence of empty subregions in simulations. To present the idea
clearly, we temporarily assume that all subregions are nonempty;
that is, assuming g; > 0 for all i = 1,..., m. SAMC seeks to
sample from the distribution

m

f(x) <Y 0 e E), (5)

i=1

1

where 7;'s are pre-specified frequency values such that 7; > 0 for
all i and >0, mi = 1. It is easy to see, if g1,...,8m are known,
sampling from f;(x) will result in a “random walk" in the space of
subregions with each subregion being visited with a frequency
proportional to 7;. The distribution 7 = (71, ...,7m) is called the
desired sampling distribution of the subregions.

Let HE') denote the estimate of log(g;/m;) obtained at iteration t,
and let 0; = («99), . .,0,(5'")). Since m is finite, the partition
Ei,...,Enis fixed, and 0 < [, 1(x) < oo, there must exist a
number € > 0 such that

1
€< mmIog <g> < maxlog <g,> < -
i i €’

which implies that #; can be restricted to taking values on a
compact set. Henceforth, this compact set will be denoted by ©.
In practice, © can be set to a huge set, say, © = [—10100, 10100]’".
As a practical matter, this is equivalent to set © = R™. Otherwise,
if one assumes © = R™, a varying truncation version of this
algorithm can be considered as in Liang (2009¢e). For both
mathematical and practical simplicity, © is restricted to be
compact in this chapter.

Let {v:} denote the gain factor sequence, which satisfies the

condition (A;):

(A1) The sequence {7:} is positive and non-increasing, and satisfies
the conditions:

o0 oo
(1) Jim et =yl < oo, (i) Y e =00, (iii) Y 4l < oo,
t=1 t=1

(6)
for some 7 € (1, 2].
In practice, one often sets
to
=, t:0,1,2,...7 7
Tt max{to, t*} @

for some pre-specified values ty > 1 and % <¢&< 1.

SAMC starts with a random sample xp generated in the space X
and an initial estimate g = (6[()1), e ,Gém)) =(0,...,0), then
iterates between the following steps:

The SAMC algorithm

(a) Sampling: Simulate a sample x;11 by a single MH update
which admits the following distribution as its invariant
distribution:

) Y w (< B (8)

(a.1) Generate y in the sample space X" according to a proposal
distribution g(x;, y).
(a.2) Calculate the ratio

o) _ oo P(y)q(y, xe)
Y(xe)a(xe, y)

(a.3) Accept the proposal with probability min(1, r). If it is
accepted, set x;+1 = y; otherwise, set x;11 = X;.

r=e

(b) Weight updating: For i=1,...,m, set

05‘2% - Hgl) + Y1 (I{Xt+1€Ei} - 77/') . (9)
If 9t+% €0, set 011 = 9t+%; otherwise, set
Ory1 =0, .1+ €*, where " = (c*,..., c") can be any
2
constant vector satisfying the condition 6, 1 + ¢* € ©.
2

Remark 1:

In the weight updating step, 0,1 is adjusted by adding a constant
2
vector ¢* when 9t+% ¢ ©. The validity of this adjustment is simply

due to the fact that fy,(x) is invariant with respect to a location
shift of 6;.

The compactness constraint on 6; should only apply to the
components of 6 for which the corresponding subregions are
unempty. In practice, one can place an indicator on each subregion,
indicating whether or not the subregion has been visited or is
known to be unempty. The compactness check for 9t+% should be
done only for the components for which the corresponding
subregions have been visited or are known to be unempty.

Remark 2:

The explanation for the condition (A1) can be found in advanced
books on stochastic approximation, see, e.g., Nevel’son and
Has'minskii (1973). The condition "°°, ~; = oo is necessary for
the convergence of 6;. Otherwise, it follows from step (b) that,
assuming the adjustment of 9t+% did not occur,

o) e} o
Z |9£21 - 9£I)| < Z%Jrl“{x(t“)eE,-} —mj| < Z’YtJrl < 0.
t=0 t=0 t=0

Thus, 6 cannot reach log(g/m) if, for example, the initial point 6
is sufficiently far away from log(g /7). On the other hand, 7; can
not be too large. An overly large v; will prevent convergence. It
turns out that the third condition in (6) asymptotically damps the
effect of random errors introduced by new samples. When it holds,
we have 7t+1|l{xt+1€5} —7i| <7t41 — 0 as t — 0.

Remark 3:

A remarkable feature of the SAMC algorithm is that it possesses
the self-adjusting mechanism: If a proposed move is rejected at an
iteration, then the weight of the subregion that the current sample
belongs to will be adjusted to a larger value, and the total rejection
probability of the next iteration will be reduced. This mechanism
enables the algorithm to escape from local energy minima very
quickly. The SAMC algorithm represents a significant advance for
simulations of complex systems for which the energy landscape is
rugged.

Convergence

Theorem 1
Assume (A1) and the drift condition (By) hold. Then, as t — oo,

C + log([, ¥(x)dx) — log(mi +v), if E; #0,

if E; =1,
(10)

where C is an arbitrary constant, v =} ;cq;.p._gy mj/(m — mo),

and mg is the number of empty subregions.

To ease verification of the drift condition, one may assume further

that the proposal distribution g(x, y) satisfies the following local

positive condition:

(Az) For every x € X, there exist €1 > 0 and e, > 0 such that

—0OQ.

) — 6l — {

Ix =yl < e1 = q(x,y) > e2, (11)

where ||x — y|| denotes a certain distance measure between x

and y.

Convergence Rate

The following theorem concerns the convergence rate of 6;, which
gives a L? upper bound for the mean squared error of 6.

Theorem 2
Assume the gain factor sequence is chosen in (7) and the drift
condition (By) holds. Then there exists a constant \ such that

E[|6: — 6.]1> < Mve,

where 0, = (0,(‘1), . ,G,Em)) is as specified in (10).

Monte Carlo Integration

In addition to estimating the normalizing constants g;'s, SAMC
can be conveniently used for Monte Carlo integration, estimating
the expectation E¢p(x) = [, p(x) for an integrable function

p(x). Let (x1,61), ..., (X,,,H) denote the samples generated by
SAMC during the first n iterations. Let yj, ...,y denote the
distinct samples among xi,...,x,. Generate a random
variable/vector Y such that

Seaeolt e =y) _,
00 , i=1,...,n, (12)
Yl el
where /(-) is the indicator function. Under the assumptions (A1),

(A2) and the compactness of X, Liang (2009b) showed that Y is
asymptotically distributed as f(+).

P(Y =yi) =

Theorem 3

Assume (A1) and the drift condition (Bz) hold. For a set of
samples generated by SAMC, the random variable/vector Y
generated in (12) is asymptotically distributed as f(-).

This theorem implies that for an integrable function p(x), Efp(x)
can be estimated by

o St el h(x)
fp(X) - n (J(xt)) :
Sy exp{of)

(13)

As n — oo, ET,O(\X) — Efp(x) for the same reason that the usual
importance sampling estimate converges (Geweke, 1989).

Some Implementation Issues

For an effective implementation of SAMC, several issues need to
be considered.

» Sample space partition. This can be done according to our
goal and the complexity of the given problem. For example, if
we aim to minimize the energy function, the sample space can
be partitioned according to the energy function. The
maximum energy difference in each subregion should be
bounded by a reasonable number, say, 2, which ensures that
the local MH moves within the same subregion have a
reasonable acceptance rate. Note that within the same
subregion, sampling from the working density (8) is reduced
to sampling from 1(x). If our goal is model selection, then
the sample space can be partitioned according to the index of
models, as illustrated in §77.

» The desired sampling distribution. If our goal is to estimate
g, then we may set the desired distribution to be uniform.
However, if our goal is optimization, then we may set the
desired sampling distribution biased to low energy regions. As
illustrated by Hesselbo and Stinchcombe (1995) and Liang
(2005b), biasing sampling to low energy regions often
improves the ergodicity of the simulation.

» The choice of the gain factor sequence and the number of
iterations. To estimate g, 7+ should be very close to 0 at the
end of simulations. Otherwise, the resulting estimates will
have a large variation. Under the setting of (7), the speed of
vt going to zero is controlled by £ and tg. In practice, one
often fixes £ to 1 and choose ty according to the complexity
of the problem. The more complex the problem, the larger the
value of ty one should choose. A large to will force the
sampler to reach all subregions quickly, even in the presence
of multiple local energy minima.

Example |

The distribution consists of 10 states with the unnormalized mass
function P(x) being given below. It has two modes which are well
separated by low mass states.

x |1 2 3 4 6 7 8 9 10
P(x)[1 100 2 1 31

5
3 200 2 1

& |
< e _
S | —— SAMC !

| ~ WL, n=1000 ;

| ---- WL, n=2500 o ;

| ——- WL, n=5000 | M —
o i — WL, n=10000 ; T
S | | ™
O ‘\

0.15

Estimation error
0.10

g -
=TT

O

4

-

.

-

4

-~

.

.

sampling frequency error(%)
0

\
e S s Stk S A

Sttt — |
i i [E
i [E
~ | | [

100000 200000 300000 400000 500000
Number of energy evaluations subregions

0.05

[‘

0.0
k

Figure 1. Comparison of the WL and SAMC algorithms. (a) Average
€e(t) curves obtained by SAMC and WL. The vertical bars show the
“+one-standard-deviation of the average of the estimates. (b) Box-plots
of {er(E;)} obtained in 100 runs of SAMC. (Liang, Liu and Carroll, 2007)

Table 1: Comparison of SAMC and MH for the 10-state example.
(Liang, 2009b)

Algorithm | Bias (x10~3) Standard Error (x10~3) CPU time (seconds)
SAMC -0.528 1513 0.38
MH -3.685 4.634 0.20

(a) MH samples (b) SAMC samples (c) Log-weight of SAMC samples

o o
o~

£y @

S s

© © -

S =

5 &

< <

< <

S s o

o o

= =
T

. Ml

s s

0 10 20 30 40 50 0 10 20 30 40 50 0 100 200 300 400 500
Lag Lag iterations (in thousands)

Figure 2: Computational results for the 10-state example. (a)
Autocorrelation plot of the MH samples. (b) Autocorrelation plot of the
SAMC samples. (c) Log-weights of the SAMC samples. (Liang, 2009b)

Example Il

This problem is to sample from a multimodal distribution defined
by f(x) oc exp{—H(x)}, where x = (x1,x2) € [1.1,1.1] and

H(x) = — {x1sin(20x2) 4 x2 sin(20x;)}? cosh {sin(10x;)x; }
— {x1 cos(10x2) — xo sin(10x1)} cosh {cos(20x2)x2 } .

0

10

Figure 3: (a) Contour of H(x). (b) Sample path of SAMC. (c) Sample
path of MH at the temperature T = 5. (Liang, Liu and Carroll, 2007)

(a) Contour

(c) MH

N

Do

W
Ao

AR

WOO%

0
C

i

o C

i
i

i
i

b

it]
gl

: il*«'\w

[) ,{ ,,' i é\m\r
o ‘M o "7{‘\&\”'
(N

%“g&\ :

	Lecture 10: Markov Chain Monte Carlo

