Chapter 9: Regression Diagnostics

Regression diagnostics are used after fitting to
check if a fitted mean function and assumptions
are consistent with observed data. The basic statis-

tics here are the residuals or possibly rescaled resia-



uals.

A related issue is the importance of each case
on estimation and other aspects of the analysis. In
some datasets, the observed statistics may change
In iImportant ways if one case is deleted from the
data. Such a case is called influential, and we shall

learn to detect such cases.



1 The Residuals

The basic multiple linear regression model is given
by
Y + X3 +e, Varle)=o"I,

where X is a known matrix with n rows and p’
columns, including a columns of 1s for the inter-
cept if the intercept is included in the mean func-
tion. We will further assume that X has a full col-

umn rank, meaning that (X' X )~! exists.



Defining the hat matrix
H=XX'X)'X'
The vector of residuals € is given by

e=Y-Y=Y - X3
~Y -HY =(I-H)Y.



1.1 Difference between € and e

The errors e are unobservable random variables,
assumed to have zero mean and uncorrelated ele-
ments, each with common variance o2.

For the residuals €, we have
E(e) =0, Var(e)=oc"(I - H).

Although the residuals have mean zero, but each
residual may have a different variance, and the

residuals are correlated.



If the intercept is included in the mean function,

then » ~e; = 0. In scalar form, the variance of the

1th residual is
Var(¢;) = °(1 — hy), (1)

where h;; is the 1th diagonal element of H .



1.2 The Hat Matrix

The hat matrix has the following properties:

(1) HX = X orequivalently (I — H)X = 0.

(2) h* = H or equivalently H (I — H) = 0.
The second property implies that

Cov(e,Y) =Cov((I — HY HY)
—o°(l - H)H = 0.



Another name for H is the orthogonal projec-

tion on the column space of X. The elements of

H are given by
hz’j = LE%(X/X)_le = hﬁ

Many helpful relationships can be found between

the h;;. For example,

E”: hii = p’
i=1



and, if the mean function includes an intercept,

As can be seen from (1), cases with large val-
ues of h;; will have small values for Var(e;); as h;;
gets closer to 1, this variance will approach to O.
For such a case, no matter what value if y; is ob-

served for the 1th case, we are nearly certain to



get a residual near 0. In addition,

Z hzgyj — hzzyz - Z hzgyj

J7
It shows that as h;; approaches 1, y; gets closer
to y;. For this reason, h;; is called the leverage of

the 7th case.



1.3 Residuals and the Hat Matrix with Weights

When Var(e) = ¢?W ! with W a known diag-
onal matrix of positive weights, all results so far in
this section require some modification. A useful

version of the hat matrix is given by
H=W"X(XWX) ' X'W?

and the leverages are the diagonal elements of
this matrix. The fitted values are given as usual
by Y = X 3, where 3 is now the WLS estimator.



The definition of the residuals is a little trickier.

The obvious choice y; — B/a:i nas important defi-
ciencies. First, the sum of squares of these resid-
uals will not equal the residual sum of squares be-
cause the weights are ignored. Second, the vari-
ance of the 1th residual will depend on the weight
of case 7. Both of these problems can be solved

by defining

e = \@(yz -0 a?z)



The sum of squares of these residuals is the resid-

ual sum of squares, and the variance of the resid-

uals does not depend on the weight.



1.4 The Residuals When the Model is Correct

Suppose that U is equal to one of the terms in
the mean function, or some linear combination of
the terms. Residuals are generally used in scat-
terplots of the residuals € against U. The key
features of these residual plots when the correct

model is fit are as follows.



1. The mean function £ (e|U) = 0. This means
that the scatterplot of residuals on the horizon-
tal axis versus any linear combination of the
terms should have a constant mean function

equal to 0.

2. Since Var(e;|U) = (1 — h;i), the variance
function is not quite constant. The variability
will be smaller for high-leverage cases with h;;

close to 1.



3. The residuals are correlated, but this correla-
tion is generally unimportant and not visible In

residual plots.

When the model is correct, residual plots should

look like null plots.



1.5 The Residuals When the Model Is Not Correct

If the fitted model is based on incorrect assump-
tions, there will be a plot of residuals versus some
term or combination of terms that is not a null plot.
Here are some generic features of the residual plot

for a simple linear regression problem.

(1) No problems: Null plots.

(2) Nonconstant variance.



(3) Curvature: an incorrectly specified mean func-

tion.

(4) Both curvature and nonconstant variance.

In models with many terms, we cannot neces-
sarily associate shapes in a residual plot with a
particular problem with the assumptions. For ex-
ample, Figure 1 shows a residual plot for the fit of
the mean function E(Y | X = x) = By + 121 +

3219 for a set of artificial data. The plot suggests



nonconstant variance. But these data were actu-

ally generated using a mean function

EY|X =z) =

with constant variance, with scatterplot matrix given
iIn Figure 2. The real problem is that the mean
function is wrong, even though from the residual
plot, nonconstant variance appear to be the prob-
lem. A nonnull residual plot in multiple regres-

sion indicates that something is wrong but does



not necessarily tell what is wrong.

1.6 Fuel Data

According to theory, if the mean function and other
assumptions are correct, then all possible resid-
ual plots of residuals versus any function of the
terms should resemble a null plot, so many plots
of residuals should be examined. Usual choices

iInclude plots versus each of the terms and versus
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Figure 1: Residual plot for the caution data.




0.5

0.0

-0.5

0 S0 00 g0~ 80 90 70 20 00
1 1 1 ] 1 1 1 1 ]
o o
o [} °Q
o o
o o
o o
o o o o
o o
o 0 o ° >
oo o oooo % ° oooo )
o o
00 ) 0o @
[} 0 00
o o A
o ® 00 o
? [
o 00 o ° ® o o
0g° o® 00 o° 0 o e & o
o o 0 & o
% ° %o °o a’ e
Qo 00 w@ o ®% ,o0 o
0 0,0 o o 0o 0o (<]
00 0 o
@%d 282 ol |e o@%o @ °, o
%
o© @ 8
00 o 0y
o o oo
@ 0° 0 g &
o ® o o %,
- ° @o ] 0 50
% o o @ 80%0
@ o
o 00 o o
§ '% 08
o o
1° 80 o A ° 0%o0
o X o
oo 0 0o 0
o° ° o ° o 0 ° &
0o %o R ° Mo S o
o o o
0 8 0 o o
o o & °
0 o 0
— %w“v o 0 ° (o] o
o o [)
9 o
o 00 & o 8%
o o3, 0 8, ©
o o
o ] o 6 o
i %o ° o
o o
o o
[¢] o o o8 [
o
oo o mo o °0°%%%
0y 0° o o 06°
0 o o o
o [
o "y o o o ©
o o © o o %0 o
0 o o o oo
[} o [¢] o o
o o o e o %o w
k s %o o}
~— o o
X 8 ?
o ® o 2
[) o o%
8 )
o ° 0 oo [ 0% o
o o [
o ®
o 0000 ® ° oo o @
o o o e 53
° o % o % o
o o
o Q
o
e P, 0 o8g0 ©

0l G0 00 §0- 01

0.8

0.6

0.4

0.2

0.0

1.0

0.5

0.0

-0.5

ion data.

for the caut

IX

Scatterplot matri

Figure 2



fitted values, as shown in Figure 8.5 for the fuel

data. None of the plots versus individual terms
In Figure 3(a)-(d) suggest any particular problems,
apart from the relatively large positive residual for

Wyoming and large negative residual for Alaska.



Figure 3(e) is a plot of residuals versus fitted
values, which are just a linear combinations of the
terms. There is a hint of curvature in this plot, pos-
sibly suggesting that the mean function is not ade-

qguate for the data.
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2 Testing for Curvature

Tests can be computed to help decide if residual
plots such as those in Figure 3 are null plots or
not. Suppose we have a plot of residuals € ver-
sus a quantity U on the horizontal axis, where U
could be a term in the mean function or a combi-
nation of terms. A simple test for curvature is to
refit the original mean function with an additional

term for U? added. The test for curvature is then



based on the t-statistic for testing the coefficient
for U to be 0. If U does not depend on estimated
coefficients, then a usual t-test of this hypothesis
can be used. If U is the fitted mean, Turkey’s test
for nonadditivity can be used.

Table 1 gives the lack-of-fit tests for the residual
plots in Figure 3. None of the tests have small
significance levels, providing no evidence against

the mean function.



term Test Stat.  Pr(> |t|)

tax -1.08 0.29

Dlic -1.92 0.06
Income -0.09 0.93
log(Miles) -1.35 0.18
Fitted values -1.45 0.15

Table 1: Significance levels for the lack-of-fit tests for the residual plot in Figure 3.



A second example, consider again the United
Nations data from Section 3.1 with response log(Fertility)
and two predictors log(PPgdp) and Purban. The
scatterplot matrix shown in Figure 4 suggests that

the mean function
E(log(Fertility)|log(PPgdp), Purban)
= By + 51 log(PPgdp) + o Purban,

should be appropriate for these data Plots of resid-

uals are shown in Figure 5. The visual appearance



term Test Stat.  Pr(> |t])

logPPgdp 3.22 0.0015
Purban 3.37 0.0009
Tukey test 3.65 0.0003

Table 2: Significance levels for the lack-of-fit tests for the residual plot in Figure 5.

of these plots is satisfactory. However, the curva-

ture tests given in Table 2 tell a different story.
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Figure 4: Scatterplot matrix for three variables in the UN data.
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3 Nonconstant Variance

A nonconstant variance function in a residual plot
may indicate that a constant variance assumption
Is false. There are at least four basic remedies for

nonconstant variance.
(1) Using a variance stabilizing transformation.

(2) Finding empirical weights that could be used

In weighted least squares. If replication is avail-



able, then within group variances may be used

to provide approximate weights.

(3) Using the bootstrap method to get more accu-
rate results. Estimates of parameters, given
a misspecified variance function, remain unbi-
ased, if somewhat inefficient. Tests and confi-
dence intervals computed with the wrong vari-
ance function will be inaccurate, but the boot-

strap is helpful in this scenario.



(4) Using generalized linear models, which can
account for the nonconstant variance that is

a function of the mean.

In this section, we consider primarily the first

two options.



3.1 Variance stabilizing transformations

Suppose that the response is strictly positive, and

the variance function before transformation is
Var(Y | X = 2) = 0°g(E(Y|X = 2)),

where g(E(Y|X = x)) is a function that is in-
creasing with the value of its argument. For exam-
ple, if the distribution of Y| X has a Poisson distri-
bution, then g(E(Y | X =x)) = E(Y|X = z).

For distributions in which the mean and vari-



ance are functionally related, Scheffe (1959) pro-
vides a general theory for determining transforma-
tions that can stabilize variance. Table 3 lists the

common variance stabilizing transformations.

3.2 A Diagnostic for Nonconstant Variance

Suppose that Var(Y | X') depends on an unknown
vector parameter A and a known set of terms Z

with observed values for the 1th case z;. For ex-



Yo Comments

VY Used when Var(Y|X) o« E(Y|X), as for Poisson distributed data. Y =

\/? -+ \/m can be used if all the counts are small.

log(Y) Used if Var(Y'|X) o [E(Y|X)]?. In this case, the errors behave like a
percentage of the response, +=10%, rather than an absolute deviation, =10
units.

1/Y The inverse transformation stabilizes variance when Var(Y|X) o
[E(Y'|X)]*. It can be appropriate when responses are mostly close to 0,
but occasional large values occur.

sin_l(\/?) The arcsine square-root transformation is used if Y is a proportion between
0 and 1, but if can be used more generally if y has a limited range by first

transforming Y to the range (0,1), and then applying the transformation.

Table 3: Common variance stabilizing transformations.



ample, if Z

= Y, then variance depends on the

response. Similarly, Z may be the same as X or

a subset of X. We assume that

Var(Y|X, 7 = z) = 0" exp(X\'2).

It says that variance depends on z and \ but only

through the
then Var(Y

inear combination X'z: andif A = 0,
X,Z = z) = o* The results of

Chen (1983) suggest that the tests described here

are not very sensitive to the exact functional form



used above, and any form that depends on the lin-
ear combination A’z would lead to very similar in-
ference.

Assuming that errors are normally distributed, a
score test of A = ( can be carried out using the

following steps:
(1) Compute the OLS fit with the mean function
E(Y|X =2) = Bz,

as if A\ = 0, i.e., constant variances. Save the



residuals ¢;.

(2) Compute scaled squared residuals
Ui = neQ/ ZZ 1 j Combine the u; into a

variable U .

(3) Compute the regression with the mean func-
tion E(U|Z = z) = A\g+\'z. Obtain S5,
for this regression with df = ¢, the number of
components in Z. If the variance is thought

to be a function of the responses, then S5,



will have 1 df.

(4) Compute the score test, S = SS,.,/2. The
significance level for the test can be obtained
by comparing S with its asymptotic distribu-
tion, which, under the hypothesis A = 0, is
x2(q). F X # 0, then S will be too large, so
large values of .S provide evidence against the

hypothesis of constant variance.



snow Geese 1 he relationship between photo=photo
count, obsl=count by observer 1, and obs2=count
by observer 2 of flocks of snow geese in the Hud-
son bay area of Canada is discussed in chapter
5. The data are displayed in Figure 6. We see In
the graph that (1) there is substantial disagreement
between the observers; (2) the observers cannot
predict the photo count very well, and (3) the vari-

ability appears to be large for larger flocks.



Use the first observer only, we illustrate compu-
tation of the score test for constant variance. The
first step is to fit the OLS regression of photo on
obs1. The fitted mean function is E (photo|obsl) =
26.55 4+ 0.880bsl. From this, we can compute
the residuals and wu;s, and regress U on obs1.
The score test for nonconstant variance is S =
SSreq/2 = 81.41, which, when compared with

the chi-squared distribution with one df, gives an



extremely small p-value. The nonconstant vari-

ance evident is almost certain in the data.

4 Graphs for Model Assessment

Residual plots are used to examine regression mod-
els to see if they fail to match observed data. If sys-
tematic failures are found, then models may need
to reformulated to find a better fitting model. A

closely related problem is assessing how well a
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model matches the data. We now look at this is-
sue from a graphical point of view using marginal
model plots.

We lllustrate the idea first with a problem with
just one predictor. In Section 7.1, we discussed
the regression of Height on Dbh for a sample of

western red cedar trees. The mean function
E(Height|Dbh) = 8y + B1Dgh

was shown to be a poor summary of these data, as



can be seen in Figure 7. If we judge these two fits,
the OLS fit and the loess fit, to be different, then
we have visual evidence against the simple linear
regression mean function. The loess fit is clearly
curved, so the linear mean function is not a very

good summary of this regression problem.
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150 200 250 300 350 400
| | | | | |

100
|

T T T T T
200 400 600 800 1000

Diameter, Dbh

Figure 7: Model checking plot for the simple linear regression for western red cedar

trees at upper flat creek.



4.1 Checking mean functions

With more than one predictor, we will look at marginal
models to get a sequence of two-dimensional plots
to examine. We will draw a plot with the response
Y on the vertical axis. On the horizontal axis, we

will plot a quantity U that will consist of any func-

tion of X we think is relevant, such as fitted values,
any of the individual terms in X, or even transfor-

mations of them.



Under the model, we have
EY|U=u)=FEY|X =2)|U = .
This implies
E(Y|U =u) ~ E[Y|U = ul.

Hence, we can estimate F/(Y |U = u) by smooth-
ing the scatterplot with U on the horizontal axis,
and the fitted values Y on the vertical axis. If the
model is correct, then the smooth of Y versus U

and the smooth of Y versus U should agree; if



the model is not correct, these smooths may not

agree.

As an example, we return to the United Nations

data, starting with the mean function given below,

E(log(Fertility)| log(PPgdp), Purban)
= 6y + 51 log(PPgdp) + By Purban,

and suppose t
suggests that t

quate.

nat U = log(PPgdp). Figure 8

ne above mean function is not ade-
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Figure 8: Plots for log( F'ertility) versus log( P Pgdp) and i versus log( P Pgdp).
In both plots, the curves are loess smooths. If the model has the correct mean function,

then these two smooths estimate the same quantity.



4.2 Checking variance functions

Mode

mode

checking plots can also be used to chec

iInadequacy in the variance function, w

K for

nich

for the multiple linear regression problem means

checking the constant variance assumption. The



checking is based on the following calculation:
Var(Y|U) = EVar(Y|X)|U| + Var| E(Y | X)|U]
~ BE(c*|U) + Var(Y|U)
= o + Var(Y|U)
(2)
Equation (2) holds for the linear regression model

2 s

in which the variance function Var(Y' | X) = o
constant. According to this result, we can estimate

Var(Y'|U) under the model by getting a variance



smooth of Y versus U, and then adding to this an
estimate of % from the OLS fit of the model. We

will call the square root of this estimated variance

function S D,040(Y|U). If the model is appro-
priate for the data, then apart from sampling er-
rofr, SDguo(Y|U) = SD,oqer(Y|U), but if the
model is wrong, these two functions need not be
equal.

For visual display, we show the mean function



estimated from the plot £.5D 444, (Y |U ) using solid
lines and the mean function estimated from the
model +5D,,,,4.1(Y |U) using dashed lines.
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(a) Fitted values, original model (b) Fitted values, quadratic term added

Figure 9: Marginal model plots with standard deviation smooths added.



5 Outliers

In some problems, the observed response for a
few of the cases may not seem to correspond to
the model fitted to the bulk of the data. Cases
that do not follow the same model as the rest of
the data are called outliers, and identifying these
cases can be useful.

We use the mean shift outlier model to define

outliers. Suppose that the 1th case is a candidate



for an outlier. We assume that the mean function
for all other cases is /(Y |X = x;) = x 3, but
for case ¢ the mean functionis £(Y | X = x;) =
x'3 + J. The expected response for the ith case
is shifted by an amount 0, and atestof 0 = 0 is
a test for a single outlier in the i2th case. In this

development, we assume Var(Y'| X) = o~

1. Cases with large residuals are candidates for

outliers. Whatever testing procedure we de-



velop must offer protection against declaring

too many cases to be outliers.

. Outlier identification is done relative to a spec-
ified model. If the form of the model is modi-
fied, the status of individual cases as outliers

may change.

. Some outliers will have greater effect on the
regression estimates than will others, a point

that is pursued shortly.



5.1 An outlier test

Suppose that the 1th case is suspected to be an

outlier. Define a dummy variable
0 7 #7,

1 j=i.

Uj =

Then, simply compute the regression of the re-
sponse on both the terms in X and U. The esti-
mated coefficient for U is the estimate of the mean

shift 0. The t-statistic can then be used to test if



0 = 0.

We will now consider an alternative approach
that will lead to the same test, but from a different
point of view. Again suppose that the :th case is
suspected to be an outlier. We can proceed as

follows:

1. Delete the 1th case from the data, son — 1

cases remain in the reduced data set.

2. Using the reduced data set, estimate 3 and



o”. Call these estimates 6@-) and 3(21.) to re-
mind us that case 72 was not used in estima-

tion. The estimator E(Qi) hasn — p' — 1 df.

. For the deleted case, compute the fitted value
Vi) = ;B(;. Since the ith case was not
used in estimation, ¥; and ¥;;y are indepen-

dent. Then

Var(yl- —@'(z)) — 02+02$2(X/(7;)X(i))_137i7



where X ;) is the matrix X with the 7th row
deleted.

4. Assuming normal errors, a Student’s t-test for
the hypothesis 0 = 0 is given by

Yi — /y\z(z)

t, = .

o / _

O (4) \/1 + acg(X(i)X(Z-)) la;

Thistesthasn — p’ — 1 df.

(3)

There is a simple computational formula for ¢; in

(3). We first define an intermediate quantity often



called a standardized residual, by
I
ov/1— hi;

where the h;; is the leverage for the 7th case. It is

T

easy to verify that r; has mean 0 and variance 1.
With the aid of Appendix A.12, one can show that

t; can be computed as

, n—p —1\" e
= T — = -
TL—p/—fl“i2 O'(Z)\/l—hm

The residual t; is called a studentized residual.




This result shows that ¢; can be computed from
the residuals, the leverages and o2, so we don't
need to delete the ith case, or to add a variable U,

to get the outlier test.



5.2 Significance levels for the outlier test

Testing the case with the largest value of |t;| to be
an outlier is like performing n significance tests,
one for each of n cases. If, for example, n = 69,
p' = 4, the probability that a ¢ statistic with df 60
exceeds 2.0 in absolute is 0.05; however, the prob-
ability that the largest of 65 independent t-tests
exceeds 2.0 is 0.964, suggesting quite clearly the

need for a different critical value for a test based



on the maximum of many tests. Since tests based

on the t; are correlated, this computation is only a
guide.

The technigue we use to find critical values is
based on the Bonferroni inequality, which states
that for n tests each of size a, the probability of
falsely labeling at least one case as an outlier is
no greater than na. Hence, choosing the critical

value to be the (a/n) x 100% point of ¢ will give



a significance level of no more than n(a/n) = a.
We would choose a level of 0.05/65 = 0.00077
for each test to give an overall level of no more than
65(.00077) = 0.05.

In Forbes’ data, case 12 was suspected to be
an outlier because of its large residual. The outlier
test is £19 = 12.4. The nominal two-sided p-value
corresponding to this test statistic when compared
with the ¢(14) distributed is 6.13 x 1077. The



Bonferroni-adjusted p-valueis 17X 6.13x 107" =

1.04 x 10~7". This very small value supports case

12 as an outlier.

The test locates an outlier, but it does not tell us

what to do about it.

e If we believe the case is an outlier because of

a blunder, e.g., an unusually large measure-

ment error, or a recording error, then we mig

delete the outlier and reanalyze the data wit

Nt

’]_



out the outlier.

e [ry to figure out why a particular case is out-

lying. This may be the most important part of

the analysis.



6 Influence of Cases

Single cases or small groups of cases cab strongly
influence the fit of a regression model. Recall Anscombe’s
example, the fitted model depends entirely on the
one point with x = 19.

The general idea of influence analysis is to study
changes in a specific part of the analysis when
the data are slightly perturbed. Whereas statis-

tics such as residuals are used to find problems



with a model, influence analysis is done as if the
model were correct. The most useful and impor-
tant method of perturbing the data is deleting the
cases from the data one at a time. Cases whose
removal causes major changes in the analysis are
called influential.

Figure 10 is a scatterplot matrix of coefficient
estimates for the three parameters in the UN data

obtained by deleting cases one at a time. Every



time a case iIs deleted, different coefficient esti-

mates may be obtained.

6.1 Cook’s Distance

The influence on the estimates of 3 (the informa-
tion shown in Figure 10) can be summarized by

comparing B and B(i). This can be done using
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Cook’s distance (Cook, 1977) given by

(B(@') — B)'(X/X)(B(@') - B)
p/&\Q
Y —=Y) (Y — Y).

p/a\Q

D; =

Case for which D; is large have substantial influ-
ence on both the estimate of 3 and on fitted val-
ues, and deletion of them may result in important
changes in conclusions.

Typically, the case with the largest 1);, or in



large data sets the cases with the largest few D;,
will be of interest. To investigate the influence of
a case more closely, the analyst should delete the

largest 1; case and recompute the analysis to see

exactly what aspects of it have changed.

D, can be computed in a simple form,

= —T, .
Lo L= hy

D, is a product of the square of the ith standard-

ized residual r; and a monotonic function of i;;. A



large value of [J; may be due to large 7;, large h;,

or both.

rat ata AN experiment was conducted to investi-
gate the amount of a particular drug present in the
liver of a rat. Nineteen rats were randomly se-
lected, weighted, and given an oral dose of the
drug. Because large livers would absorb more of

a given dose than smaller livers, the actual dose



an animal received was approximately determined
as 40 mg of the drug per kilogram of body weight.
Liver weight is known to be strongly related to body
weight. After a fixed length of time, each rat was

sacrificed, the liver weighted, and the percent of

the dose in the liver determined. The experimental
hypothesis was that, for the method of determin-
Ing the dose, there is no relationship between the

percentage of the dose in the live (Y) and the body



weight, liver weight and relative dose.
The fitted regression summaries for the regres-

sion of Y on the three predictors are shown below.

Coefficilients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 0.265922 0.194585 1.367 0.1919
BodyWt -0.021246 0.007974 -2.664 0.0177 =
LiverWt 0.014298 0.017217 0.830 0.4193
Dose 4.178111 1.522625 2.744 0.0151 =

Signif. codes: 0 »xxx 0.001 *«x 0.01 » 0.05 . 0.1 1

Residual standard error: 0.07729 on 15 degrees of freedom
Multiple R-Squared: 0.3639, Adjusted R-squared: 0.2367
F-statistic: 2.86 on 3 and 15 DF, p-value: 0.07197
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Coefficients:
FEstimate Std. Error t wvalue Pr(>]|t])

(Intercept) 0.1783569 0.2277755 0.783 0.445
BodyWt 0.0003535 0.0015138 0.234 0.818
LiverWt 0.0123260 0.0204127 0.604 0.554

Residual standard error: 0.09172 on 16 degrees of freedom
Multiple R-Squared: 0.044¢6, Adjusted R-squared: -0.07483
F-statistic: 0.3735 on 2 and 16 DF, p-value: 0.6942



Coefficients:
FEstimate Std. Error t wvalue Pr(>]|t])

(Intercept) 0.117366 0.219094 0.536 0.600
Dose 0.173551 0.286261 0.606 0.553
LiverWt 0.008742 0.020085 0.435 0.669

Residual standard error: 0.09084 on 16 degrees of freedom
Multiple R-Squared: 0.06287, Adjusted R-squared: -0.05427
F-statistic: 0.5367 on 2 and 16 DF, p-value: 0.5948



'he analysis might lead to the conclusion that

while neither BodyWt nor Dose are associated with
the response when the other is ignored, in combi-
nation they are associated with the response. But,
from Figure 11, Dose and BodyWt are almost per-
fectly linearly related.

We turn to case analysis to attempt to resolve
this paradox. The results are shown in Figure 12.

The outlier statistics are not particularly large. How-



ever, Cook’s distance immediately locates a possi-
ble cause: case three has D3 = 0.93; no other
case has D, bigger than 0.27, suggesting that case
3 alone may have large enough influence on the fit

to induce the anomaly. Rat number 3, with weight

190 g, was reported to have received a full dose of
1.0, which was a larger dose than it should have

received according to the rule for assigning doses;

for example, rat 8 with weight of 195g got a lower



dose of 0.98. Deleting this case from the study, the

following regression results are produced.

Coefficients:
Estimate Std. Error t wvalue Pr(>]|t])

(Intercept) 0.311427 0.205094 1.518 0.151
BodyWt —-0.007783 0.018717 -0.416 0.684
LiverWt 0.008989 0.018659 0.482 0.637
Dose 1.4848777 3.713064 0.400 0.695

Residual standard error: 0.07825 on 14 degrees of freedom
Multiple R-Squared: 0.02106, Adjusted R-squared: -0.1887
F-statistic: 0.1004 on 3 and 14 DF, p-value: 0.9585
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7 Normality Assumption

The assumption of normal errors plays only a mi-
nor role in regression analysis. It is needed pri-
marily for inference with small samples, and even
then the bootstrap can be used for inference. Fur-
thermore, nonnormality of the unobservable errors
IS very difficult to diagnose in small samples by ex-

amination of residuals. The relationship between



the errors and the residuals Is

e=(I-HY
= —H)xB +e)
= (I — H)e.

In scalar form, the 1th residual is

mn
€ =€ — Z hije;. (4)
j=1

By the central limit theorem, the sum in (4) will

be nearly normal even if the errors are not normal.



With a small or moderate sample size n, the sec-
ond term can dominate the first, and the residuals
can behave like a normal sample even if the errors
are not normal.

As n increases for fixed p’, the second term in
(4) has small variance compared to the first term,
so it becomes less important, and residuals can be
used to assess normality. Should a test of normal-

ity be desirable, a normal probability plot can be



used.

Suppose we have a sample of n numbers z1,
Z9, ..., Zn, and we wish to examine the hypothesis
that the z’s are a sample from a normal distribution
with known mean (& and variance 0. A useful way

to proceed is as follows:

1. Order the z’'sto get 2(1) < - -+ < 2(y).

2. Consider a standard normal sample of size n.

Let p11) < -+ < Uy be the mean values



of the order statistics. The (i ;) are available
in printed tables or can be well approximated

using a computer program.
3. If zs are normal, then

E(ziy) = p+ oppy,

so that the regression of z(;) on pi;) will be a

straight line. If it is straight, we have evidence

against normality.

Figure 13 shows normal probability plots of the



residuals for the height data and for the transac-

tions data. Both have large enough samples for

normal probability plots to be useful. For heights
data, the plot indicates no evidence against nor-
mality. For the transactions data, normality is doubt
because the plot is not straight. This supports the
earlier claim that the errors for this problem are

likely to be skewed with too many large values.
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Figure 13: Normal probability plots of residuals for (a) the heights data and (b) the

transaction data.



