
Chapter 5: Complex Regressors

1 Factors

Factors allow the inclusion of qualitative or cate-

gorical predictors in the mean function of a multiple



linear regression model. Factors can have two lev-

els, such as male and female, treated or untreated,

and so on, or they can have more than two levels,

such as eye color, location, or type of business.

1.1 One-factor models

Consider the United Nations data described in Sec-

tion 3.1, which is an observational study of all n =

199 localities. The factor we use is called group,



which classified the countries into three categories:

africa, oecd, and other. With no predictors beyond

group, the model we fit returns estimated mean

values for lifeExpF for each level of group. This

is called a one-factor design or a one-way design.

Factor predictors can be included in a multiple

linear regression using dummy variables. Since

group has d = 3 levels, the jth dummy variable

Uj for factor, j = 1, 2, . . . , d has ith value uij,



for i = 1, 2, . . . , n, given by

uij =







1, if groupi = jth category of group,,

0, otherwise.



To avoid the collinearity U1 + U2 + U3 = 1,

provided the intercept term is included, one of the

dummy variables need to be dropped. For exam-

ple, dropping U1, we will have

E(lifeExpF |group) = β0 + β2U2 + β3U3.

Table 1 summarizes the fit of the one-way model.



The means for the three groups are

Ê(lifeExpF |group = oecd) = β̂0 + β̂20 + β̂30

= 82.45,

Ê(lifeExpF |group = other) = β̂0 + β̂21 + β̂30

= 82.45− 7.12,

Ê(lifeExpF |group = oecd) = β̂0 + β̂20 + β̂31

= 82.45− 22.67.



Table 1: Regression summary for a factor model on UN11 data.

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 82.446 1.128 73.095 < 2e-16 ***

factor(group)other -7.120 1.271 -5.602 7.1e-08 ***

factor(group)africa -22.674 1.420 -15.968 < 2e-16 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 6.28 on 196 degrees of freedom

Multiple R-squared: 0.6191,Adjusted R-squared: 0.6152

F-statistic: 159.3 on 2 and 196 DF, p-value: < 2.2e-16



1.2 Comparison of Level Means

To compare the means pairwise in general requires

computing the standard error of the difference be-

tween each pair of means. For example, to com-

pare the means between the groups of other and

africa, i.e., β2 − β3, we let a = (0, 1,−1, 0)′ so

l = a′β = β2 − β3. Therefore



se(l̂|X) = σ̂
√

a′(X ′X)−1a

= σ̂
√
c22 + c33 − 2c23,

where cij is the (i, j)th element of (X ′X)−1. In

R, the function vcov applied to a regression model

returns σ̂2(X ′X)−1.



Table 2: Pairwise comparisons of level means for Group

Comparison Estimate SE t-value p-value

oecd-other 7.12 1.27 5.60 0.000

oecd-africa 22.67 1.42 15.97 0.000

other-africa 15.55 1.04 14.92 0.000

1.3 Adding a Continuous Predictor

As an additional predictor, we add log(ppgdp), the

per person gross domestic product in the country,

as a measure of relative wealth. The model is gen-

erally parameterized using main effects and inter-



actions, as

E(lifeExpF |log(ppgdp) = x, group) = β0

+ β02U2 + β03U3 + β1x + β12U2x + β13U3x.



In R, it can be fitted by

lifeExpF ∼ group+log(ppgdp)+group : log(ppgdp)



Table 3: Regression summary for UN11 data: a model with interaction terms

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 59.2137 15.2203 3.890 0.000138 ***

groupother -11.1731 15.5948 -0.716 0.474572

groupafrica -22.9848 15.7838 -1.456 0.146954

log(ppgdp) 2.2425 1.4664 1.529 0.127844

groupother:log(ppgdp) 0.9294 1.5177 0.612 0.540986

groupafrica:log(ppgdp) 1.0950 1.5785 0.694 0.488703

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 5.129 on 193 degrees of freedom

Multiple R-squared: 0.7498,Adjusted R-squared: 0.7433

F-statistic: 115.7 on 5 and 193 DF, p-value: < 2.2e-16



1.4 The Main Effects Model

Examination of Table 3 suggests that while inter-

cepts might differ for the three levels of group, the

slops may be equal. This suggests fitting a model

that allows each group to have its own intercept,

but all groups have the same slope:

E(lifeExpF |log(ppgdp) = x, group) = β0

+ β02U2 + β03U3 + β1x,



which is called the main effects model. The regres-

sion is summarized in Table 4.



2 Many factors

Increasing the number of factors or the number of

continuous predictors in a mean function can add

considerably to complexity but does not really raise

new fundamental issues. For example, the Wool

data consists of three factors:



Table 4: Regression summary for UN11 data: the main effects model

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 49.529 3.400 14.569 < 2e-16 ***

groupother -1.535 1.174 -1.308 0.193

groupafrica -12.170 1.557 -7.814 3.35e-13 ***

log(ppgdp) 3.177 0.316 10.056 < 2e-16 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 5.109 on 195 degrees of freedom

Multiple R-squared: 0.7492,Adjusted R-squared: 0.7453

F-statistic: 194.1 on 3 and 195 DF, p-value: < 2.2e-16



Table 5: The Wool data

Variable Definition

len Length of test specimen (250, 300, 350

mm)

amp Amplitude of loading cycle (8, 9, 10

mm)

load Load put on the specimen (40, 45, 50g)

log(cycles) Logarithm of the number of cycles until

the specimen fails



Different models can be considered for the data:

log(cycles) ∼ len + amp + load,

log(cycles) ∼ len + amp + load + len : amp

+ len : load + amp : load,

log(cycles) ∼ len + amp + load + len : amp

+ len : load + amp : load + len : amp : load.



Mean function with only factors and interactions

are often called analysis of variance models. These

models are discussed more completely in experi-

mental design books. Analysis of variance mod-

els are really a subset of multiple linear regression

models.



3 Polynomial Regression

If a mean function with one predictor X is smooth

but not straight, integer powers of the predictors

can be used to approximate E(Y |X). The sim-

plest example of this is quadratic regression:

E(Y |X = x) = β0 + β1x + β2x
2.



A more general form is the so-called polynomial

regression:

E(Y |X = x) = β0+β1x+β2x
2+ · · ·+βdx

d.



3.1 Polynomials with several predictors

With more than one predictor, we can consider the

second-order mean function:

E(Y |X1 = x1, X2 = x2) = β0 + β1x1 + β2x2

+ β11x
2

1 + β22x
2

2 + β12x1x2.

With k predictors, the second-order model will

include k(k − 1)/2 interaction terms, which can

be huge for a large value of k.



3.2 Numerical Issues with Polynomials

Numerical problems can arise when using polyno-

mial regressors in a regression. The first problem

is that regressorsXd andXd+1 can be very highly

correlated, and high correlations can cause inac-

curate computation of the OLS estimator. A sec-

ond problem is that for some problems, Xd can be

so large (or, if |X| < 1, so small) that significant

round-off error occurs.



A solution to these computing problems is to

use orthogonal polynomials to define the polyno-

mial regressors. For example, for fitting a cubic

polynomial with regressors X , X2 and X3, we

would fit with regressorsQ1 = X−X̄ , the residues

Q2 from the regression ofX2 onQ1, and the resid-

uals Q3 from the regression of X3 on Q1 and Q2.

The Qs are then rescaled to have unit length. The

resulting Qj are uncorrelated, and so replacing



(X,X2, X3) by the rescaled Qj ’s avoids numeri-

cal problems.

4 Splines

A polynomial fit is really just a weighted sum of

basis function:

E(Y |X = x) = β0 +
d

∑

j=1

βjx
j,



where the basis functions are the monomials {x1, x2,
. . . , xd}.

Splines provide a different set of basis functions,

each of which acts locally, so changing the weight

for one of the basis functions will mostly affect the

fitted curve only for a limited range.



5 Principal Components

Suppose we have variables X1, . . . , Xk with k

large. Our goal is to replace the k variables with

k0 < k linear combinations of them such that the

smaller set of variables represents the larger set

as closely as possible. Let start with k0 = 1. Let

X ′ = (X1, . . . , Xk) be the variables written as a

vector, and let u1 be a k × 1 vector of constants,

subject to the constraint that u′
1u1 = 1. The first



principal component will be a linear combination

Z1 = u′X such that the variance of Z1,

Var(Z1) = Var(u′
1X) = u′

1Var(X)u1,

is as large as possible to retain as much as the

variation in the predictors as possible. The solution

is to set u1 to be the eigenvector corresponding to

the largest eigenvalue of Var(X). For a solution

with k0 principal components, the linear combina-

tions are the eigenvectors corresponding to the k0



largest eigenvalues.

In the usual case, Var(X) is unknown, and the

sample covariance matrix is used in place of the

unknown variance matrix.

Consider the example of “Professor Ratings”.

In this example, about 78% of the variance in

the five ratings is captured by the first PC, and

about 98% of the variance is captured by the first

three PCs.



Table 6: PCA for the example of “Professor Ratings”.

eigen() decomposition

$values =variance

[1] 2.393079 0.386789 0.220536 0.056929 0.001344

$cumulative proportions

0.78 0.91 0.98 1.00 1.00

$vectors

[,1] [,2] [,3] [,4] [,5]

[1,] -0.5354480 -0.1549957 -0.1502569 -0.046226 0.8152041

[2,] -0.5291273 -0.1356586 -0.1362543 -0.700748 -0.4381879

[3,] -0.5365282 -0.1882817 -0.1671211 0.710877 -0.3786976

[4,] -0.3357585 0.9164092 0.2145889 0.037289 -0.0046301

[5,] -0.1808964 -0.2869097 0.9406805 0.008903 0.0005212



The eigenvector û1 gives almost equal weight

to the first three scales, and lower weight to the re-

maining scales. The eigenvector û2 is essentially

for the rating ”easiness” (with a big weight for it),

and û3 is essentially for “raterInterest”.

5.1 Using Principal Components

PCs are sometimes used in regression problems

to replace several variables by just a few linear



combinations of them. For this example, we might

use Zj = X ′ûj for j = 1, 2, 3 as regressors

in the model. In this particular example, we might

choose to use the three regressors consisting the

average of the first three ratings, easiness, and ra-

terInterest, because they are much easier to inter-

pret.



6 Missing Data

In many problems, some variables will be unrecorded

for some cases. The methods we study in this

course generally assume and require complete data,

without any missing values. The literature on miss-

ing data problems is very large, and our goal is

more to point out the issues than to provide solu-

tions.



An alternative to deleting cases with missing

values is to “fill in” the missing data with plausi-

ble values. A solution to this is using multiple im-

putation, in which several filled in data sets are

created a complete data analysis is performed for

each data set, the results are averaged to get an

overall analysis.


