
Chapter 4: Interpretation of Main Effects



The computations that are done in multiple lin-

ear regression, including drawing graphs, creation

of terms, fitting models, and performing tests, will

be similar in most problems. Interpreting the re-

sults, however, may differ by problems, even if the

outline of the analysis is the same. Many issues

play into drawing conclusions, and some of them

are discussed in this chapter.



1 Understanding parameter estimates

Parameters in mean functions have units attached

to them. For example, the fitted mean function for

the fuel consumption data is

R(Fuel|X) = 154.19− 4.23tax + 0.47Dlic

− 6.14Income + 18.54 log(Miles).



1.1 Rate of change

The usual interpretation of an estimated coefficient

is as a rate of change: increasing Tax rate by one

cent should decrease consumption, all other fac-

tors being held constant, by about 4.23 gallons per

person. This assumes that a predictor can in fact

be changed without affecting the other terms in the

mean function and that the available data will ap-

ply when the predictor is so changed. Other coef-



ficients can be interpreted similarly.

1.2 Signs of estimates

The sign of a parameter estimate indicates the di-

rection of the relationship between the term and

the response. In multiple regression, if the terms

are correlated, the sign of a coefficient may change

depending on the other terms in the model.



1.3 Interpretation depends on other terms in the mean function

The value of a parameter estimate not only de-

pends on the other terms in a mean function but

it can also change if the other terms are replaced

by linear combinations of the terms.

Berkeley Guidance Study Data from the Berkeley Guidance

Study on the growth of boys and girls are given in

Problem 3.1. Here we will view Soma as the re-



sponse, and WT2, WT9 and WT18 as predictors.

Figure 1 shows the scatterplot matrix of the data.

Since each of the two-dimensional plots appear to

be well summarized by a straight-line mean func-

tion, the regression of the response on the original

predictors without transformation is likely to be ap-

propriate. In addition, we consider the following

linear combinations of the predictors:



• WT2=Weight at age 2

• DW9=WT9-WT2=Weight gain from age 2 to 9

• DW18=WT18-WT9=Weight gain from age 9 to

18

Table 1 shows the resulting coefficient estima-

tors from two models.

Model 1 leads to the unexpected conclusion that

heavier girls at age two may tend to be thinner,

have lower expected somatotype, at age 18. The
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Figure 1: Scatterplot matrix for the girls in the Berkeley Guidance Study.



Table 1: Regression of Soma on different combinations of three weight variables for the

n = 70 girls in the Berkeley Guidance Study.

Term Model 1 Model 2 Model 3

(intercept) 1.5921 1.5921 1.5921

WT2 -0.1156 -0.0111 -0.1156

WT9 0.0562 0.0562

WT18 0.0483 0.0483

DW9 0.1046 NA

DW18 0.0483 NA



t-statistic for testing this coefficient equal to zero

has a significance level of about 0.06. The sign,

and the weak significance may be due to the cor-

relations between the terms.

Model 2 is much better in this respect. The

estimate is close to 0, and the corresponding t-

statistics is -0.21. Thus, we can conclude that the

effect of WT2 is negligible.



1.4 Rank deficient and over-parameterized mean functions

Model 3 in Table 1 gives the estimates produced

when we tried to fit using an intercept and the five

terms WT2, WT9, WT18, DW9, and DW18. The

program set some coefficients to “NA”, a code for

a missing value, as the predictors are linearly de-

pendent. The maximum number of linearly inde-

pendent terms that could be included in a mean

function is called the rank of the data matrix.



Mean functions that are over-parameterized oc-

cur most often in designed experiments. Suppose

that a unit is assigned to one of three treatment

groups, and let X1, X2 and X3 be the indica-

tor variable of the three groups, respectively. We

therefore cannot fit the model

E(Y |X) = β0 + β1X1 + β2X2 + β3X3

because X1 +X2 +X3 = 1. To fit a model, we

must do something else. The options are



• Place a constraint like β1 + β2 + β3 = 0 on

the parameters.

• Exclude one of the Xj from the model.

• Leave out an explicit intercept.

All of these options will in some sense be equiv-

alent, since the same R2, σ2 and overall F -test

and predictions will result.



1.5 Tests

Even if the fitted model were correct and errors

were normally distributed, tests and confidence state-

ments for parameters are difficult to interpret be-

cause correlations among the terms lead to a mul-

tiplicity of possible tests. Sometimes, tests of ef-

fects adjusted for other variables are clearly desir-

able, such as in assessing a treatment effect after

adjusting for other variables to reduce variability.



1.6 Dropping terms

Suppose that the true mean function is

E(Y |X1 = x1, X2 = x2) = β0+β′
1x1+β′

2x2

but we want to fit a mean function with X1 only.

The mean function for Y |X1 is obtained by aver-

aging over X2,

E(Y |X1 = x1) = E(β0 + β′
1X1 + β′

2X2 + e|X1 = x1

= β0 + β′
1x1 + β′

2E(X2|X1 = x1).



We cannot, in general, simply drop a set of terms

from a correct mean function, but we need to sub-

stitute the conditional expectation of the terms dropped

given the terms that remain in the mean function.

Variances are also affected when terms are dropped,

Var(Y |X1 = x1)

= Var(β0 + β′
1X1 + β′

2X2 + e|X1 = x1)

= σ2 + β′
2Var(X2|X1 = x1)β2.



1.7 Logarithms

If we starts with the simple regression mean func-

tion,

E(Y |X = x) = β0 + β1x.

A useful way to interpret the coefficient β1 is as the

first derivative of the mean function with respect to

x,
dE(Y |X = x)

dx
= β1.



When the predictor is replaced by log(x), the mean

function β0+β1 log(x) is no longer a straight line,

but rather it is a curve. The tangent at the point

x > 0 is
dE(Y |X = x)

dx
=

β1
x
.

When the response is in log scale, we haveE(log(Y )|Y =

x) = β0 + β1x and E(Y |X = x) ≈ eβ0+β1x.

Differentiating it gives

dE(Y |X = x)

dx
= β1E(Y |X = x).



2 Experimentation versus Observation

There are fundamentally two types of predictors

that are used in a regression analysis, experimen-

tal and observational. Experimental predictors have

values that are under the control of the experimenter,

while for observational predictors, the values are

observed rather than set.

Consider, for example, a hypothetical study of

factors determining the yield of a certain crop. Ex-



perimental variables might include the amount and

type of fertilizers used, and the space of plants.

Observational predictors might include character-

istics of the plots in the study, such as soil fertility

and weather variables.

The primary difference between experimental

and observational predictors is in the inferences

we can make. From experimental data, we can

often infer causation. If we assign the level of fer-



tilizer to plots, usually on the basis of a random-

ization scheme, and observe differences due to

levels of fertilizer, we can infer that the fertilizer

is causing the difference. Observational predic-

tors allow weaker inferences. We might say that

weather variables are associated with yield, but the

causal link is not available for variables that are

not under the experimenter’s control. Some exper-

imental designs, including those that use random-



ization, are constructed so that the effects of ob-

servational factors can be ignored or used in anal-

ysis of covariance.

3 Computationally Intensive Methods

Suppose we have a sample y1, . . . , yn from a par-

ticular distribution G, for example a standard nor-

mal distribution. What is a confidence interval for

the population median?



We can obtain an approximate answer to this

question by computer simulation, set up as follows.

1. Obtain a simulated random sample y∗1, . . . , y
∗
n

from the known distribution G.

2. Compute and save the median of the sample

in step 1.

3. Repeat steps 1 and 2 a large number of times,

say B times. The larger the value of B, the

more precise the ultimate answer.



4. If we takeB = 999, a simple percentile-based

95% confidence interval for the median is the

interval between the sample 2.5 and 97.5 per-

centiles, respectively.

In most interesting problems, G is unknown and

so this simulation is not available. Efron (1979)

pointed out that the observed data can be used

to estimate G, and then we can sample from the

estimate Ĝ. The algorithm becomes:



1. Obtain a random sample y∗1, . . . , y
∗
n from Ĝ

by sampling with replacement from the observed

values y1, . . . , yn. In particular, the i-th ele-

ment of the sample y∗i is equally likely to be

any of the original y1, . . . , yn. Some of the yi

will appear several times in the random sam-

ple, while others will not appear at all.

2. Continue with steps 2-4 of the first algorithm.

A test at the 5% level concerning the popu-



lation median can be rejected if the hypothe-

sized value of the median does not fall in the

confidence interval computed in step 4.

Efron called this method the bootstrap.

3.1 Regression Inference without Normality

For regression problems, when the sample size

is small and the normality assumption does not

hold, standard inference methods can be mislead-



ing, and in these cases a bootstrap can be used

for inference.

Transactions Data Each branch makes transactions of

two types, and for each of the branches we have

recorded the number of transactions T1 and T2, as

well as Time, the total number of minutes of labor

used by the branch in type 1 and type 2 transac-



tions. The mean response function is

E(T ime|T1, T2) = β0 + β1T1 + β2T2

possibly with β0 = 0 because zero transactions

should imply zero time spent. The data are dis-

played in Figure 2. The marginal response plots

in the last row appear to have reasonably linear

mean functions; there appear to be a number of

branches with no T1 transactions but many T2 trans-

actions; and in the plot of Time versus T2, variabil-



ity appears to increase from left to right.

The errors in this problem probably have a skewed

distribution. Occasional transactions take a very

long time, but since transaction time is bounded

below by zero, there cannot be any really extreme

“quick” transactions. Inferences based on normal

theory are therefore questionable.

A bootstrap is computed as follows.

1. Number the cases in the dataset from 1 to
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Figure 2: Scatterplot matrix for the transactions data.



n. Take a random sample with replacement

of size n from these case numbers.

2. Create a dataset from the original data, but

repeating each row in the dataset the number

of times that row was selected in the random

sample in step 1.

3. Repeat steps 1 and 2 a large number of times,

say, B times.

4. Estimate a 95% confidence interval for each of



Table 2: Summary for B = 999 case bootstraps for the transactions data.

Normal Theory Bootstrap

Estimate Lower Upper Estimate Lower Upper

Intercept 144.37 -191.47 480.21 136.09 -254.73 523.36

T1 5.46 4.61 6.32 5.48 4.08 6.77

T2 2.03 1.85 2.22 2.04 1.74 2.36

the estimates by the 2.5 and 97.5 percentiles

of the sample of B bootstrap samples.

Table 2 summarizes the percentile bootstrap for

the transaction data.



The 95% bootstrap intervals are consistently wider

than the corresponding normal intervals, indicat-

ing that the normal-theory confidence intervals are

probably overly optimistic.

3.2 Nonlinear functions of parameters

One of the important uses of the bootstrap is to

get estimates of error variability in problems where

standard theory is either missing, or, equally of-



ten, unknown to analyst. Suppose, for example,

we wanted to get a confidence interval for the ra-

tio β1/β2 in the transactions data. The point es-

timate for this ratio is just β̂1/β̂2, but we will not

learn how to get a normal-theory confidence inter-

val for a nonlinear function of parameters like this

until Chapter 6.

Using bootstrap, this computation is easy: just

compute the ratio in each of the bootstrap samples



and then use the percentiles of the bootstrap dis-

tribution to get the confidence interval. For these

data, the point estimate is 2.68 with 95% confi-

dence interval from 1.76 to 3.86.


