
Chapter 2: Simple Linear Regression



1 The model

The simple linear regression model for n obser-

vations can be written as

yi = β0 + β1xi + ei, i = 1, 2, · · · , n. (1)

The designation simple indicates that there is only

one predictor variable x, and linear means that

the model is linear in β0 and β1. The intercept

β0 and the slope β1 are unknown constants, and



they are both called regression coefficients; ei’s

are random errors. For model (1), we have the

following assumptions:

1. E(ei) = 0 for i = 1, 2, · · · , n, or, equiva-

lently E(yi) = β0 + β1xi.

2. var(ei) = σ2 for i = 1, 2, · · · , n, or, equiva-

lently, var(yi)) = σ2.

3. cov(ei, ej) = 0 for all i 6= j, or, equivalently,

cov(yi, yj) = 0.



2 Ordinary Least Square Estimation

The method of least squares is to estimate β0

and β1 so that the sum of the squares of the differ-

ence between the observations yi and the straight

line is a minimum, i.e., minimize

S(β0, β1) =

n∑

i=1

(yi − β0 − β1xi)
2.
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Figure 1: Equation of a straight line E(Y |X = x) = β0 + β1x.



The least-squares estimators of β0 and β1, say β̂0

and β̂1, must satisfy

−2

n∑

i=1

(yi − β̂0 − β̂1xi) = 0 (2)

−2

n∑

i=1

(yi − β̂0 − β̂1xi)xi = 0 (3)



Simplifying these two equations yields

nβ̂0 + β̂1

n∑

i=1

xi =

n∑

i=1

yi

β̂0

n∑

i=1

xi + β̂1

n∑

i=1

x2i =

n∑

i=1

yixi

(4)

Equations (4) are called the least-squares nor-

mal equations. The solution to the normal equa-



tions is

β̂1 =

∑n
i=1

xiyi − nx̄ȳ∑n
i=1

x2i − nx̄2
=

∑n
i=1

(xi − x̄)(yi − ȳ)∑n
i=1

(xi − x̄)2

=
Sxy
Sxx

,

β̂0 = ȳ − β̂1x̄.

The difference between the observed value yi

and the corresponding fitted value ŷi is a residual,

i.e.,

êi = yi−ŷi = yi−(β̂0+β̂1xi), i = 1, 2, · · · , n



Using Forbe’s data, we have

x̄ = 202.95294, ȳ = 139.60529

Sxx = 530.78235, Sxy = 475.31224,

Syy = 427.79402.

Thus, the parameter estimates are

β̂1 =
Sxy
Sxx

= 0.895, β̂0 = ȳ−β̂1x̄ = −42.138.

The estimate line, given by either of the equations

Ê(Lpress|temp) = −42.138 + 0.895Temp.



The fit of this line to the data is excellent as shown

in Figure 2.
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Figure 2: Regression for log(pressure) versus temp.



3 Properties of the least-squares estimators and the fit-

ted regression model

If the three assumptions in section 1 hold, then

the least squares estimators β̂0 and β̂1 are unbi-

ased and have minimum variance among all linear

unbiased estimates (best linear unbiased estima-

tors). (The corresponding Gauss-Markov theorem



is proved in Appendix).

E(β̂1) = β1,

E(β̂0) = β0,

var(β̂1) =
σ2

Sxx

var(β̂0) = σ2(
1

n
+
x̄2

Sxx
)



There are several other useful properties of the

least squares fit:

1. The sum of the residuals in any regression

model that contains an intercept β0 is always

zero, that is,

n∑

i=1

(yi − ŷi) =

n∑

i=1

êi = 0.

2. The sum of the observed values yi equals the



sum of fitted values ŷi, or

n∑

i=1

yi =

n∑

i=1

ŷi.

3. The least squares regression line always passes

through the centroid (the point (ȳ, x̄)) of the

data.

4. The sum of the residuals weighted by the cor-

responding value of the regressor variable al-



ways equals zero, that is

n∑

i=1

xiêi = 0.

5. The sum of the residuals weighted by the cor-

responding fitted value always equals zero, that

is,
n∑

i=1

ŷiêi = 0,

or ŷ
′
ê = 0.



4 Estimation of σ2

The estimate of σ2 is obtained from the residual

sum of squares (SSRes) or sum of squared error

(SSE),

SSRes =

n∑

i=1

e2i =

n∑

i=1

(yi − ŷi)
2.



The related formulas are regression sum of squares

(SSR) and total sum of squares (SST )

SSR =

n∑

i=1

(ŷi − ȳ)2 = β̂1Sxy,

SST =

n∑

i=1

(yi − ȳ)2.

And they satisfy the following equation,

SST = SSR + SSRes.



An unbiased estimate of σ2 is

σ̂2 =
SSRes
n− 2

=MSRes.



5 The models in the centered form

Suppose we redefine the regressor variable xi as

the deviation from its own average, say xi − x̄.

The regression model then becomes

yi = β0 + β1(xi − x̄) + β1x̄ + ǫi

= (β0 + β1x̄) + β1(xi − x̄) + ǫi

= β′
0
+ β1(xi − x̄) + ǫi



It is easy to show that β̂′
0
= ȳ, the estimator of

the slope is unaffected by the transformation, and

Cov(β̂′
0
, β̂1) = 0.



6 Hypothesis testing on the slope and intercept

Hypothesis testing and confidence intervals (next

section) require that we make the additional as-

sumption that the model errors ǫi are normally dis-

tributed. Thus, the complete assumptions are that

ǫi ∼ N(0, σ2).

Suppose that we wish to test the hypothesis that

the slope equals a constant, say β10. The appro-



priate hypotheses are

H0 : β1 = β10

H1 : β1 6= β10
(5)

Since ei ∼ N(0, σ2), we have yi ∼ N(β0 +

β1xi, σ
2) and β̂1 ∼ N(β, σ2/Sxx). Therefor,

Z0 =
β̂1 − β10√
σ2/Sxx

∼ N(0, 1)

if the null hypothesis H0 : β1 = β10 is true. If σ2

were known, we could use Z0 to test the hypothe-



sis (5).

If σ2 is unknown, we know that (1)MSRes is an

unbiased estimator of σ2; (2) (n − 2)MSRes/σ
2

follows a χ2

n−2
distribution; and (3)MSRes and β̂1

are independent. Therefore,

t0 =
β̂1 − β10√
MSRes/Sxx

=
β̂1 − β10

se(β̂1)

follows a tn−2 distribution if the null hypothesisH0 :



β1 = β10 is true. The null hypothesis is rejected if

|t0| > tα/2,n−2.

To test

H0 : β0 = β00

H1 : β0 6= β00,
(6)

we could use the test statistic

t0 =
β̂0 − β00√

MSRes(
1

n +
x̄2

Sxx
)
=
β̂0 − β00

se(β̂0)
.



A very important special case of the hypothesis

in (5) is

H0 : β1 = 0

H1 : β1 6= 0,
(7)

Failing to reject the null hypothesis implies that there

is no linear relationship between x and y.



Consider the snowfall data, β̂1 = 0.2035, and

se(β̂1) = 0.1310. Thus, t = (0.20335−0)/0.1310 =

1.553. Comparing twith the critical value t(0.05, 91) =

1.986, we conclude that early and late season snow-

falls are independent.



7 The analysis of variance

We may also use an analysis of variance approach

to test significance of regression. The analysis of

variance is based on the fundamental analysis of

variance identity for a regression model, i.e.,

SST = SSR + SSRes.

SST has dfT = n − 1 degrees of freedom be-

cause one degree of freedom is lost as a result of



constraint
∑n

i=1
(yi− ȳ) on the deviations yi− ȳ;

SSR has dfR = 1 degree of freedom because

SSR is completely determined by one parameter,

namely, β̂1; SSRes has dfRes = n− 2 degrees of

freedom because two constraints are imposed on

the deviations yi − ŷi as a result of estimating β̂0

and β̂1. Note that the degrees of freedom have an



additive property:

dfT = dfR + dfRes

n− 1 = 1 + (n− 2)

We can show: (1) that SSRes/σ
2 = (n −

2)MSRes/σ
2 follows a χ2

n−2
distribution; (2) that

if the null hypothesis H0 : β1 = 0 is true, then

SSR/σ
2 follows aχ2

1
distribution; and (3) thatSSRes

and SSR are independent. By the definition of an



F statistic,

F0 =
SSR/dfR
SSRes/dfRes

=
SSR/1

SSRes/(n− 2)
=

MSR
MSRes

follows the F1,n−2 distribution. If

F0 > Fα,1,n−2

we reject the null hypothesis H0 : β1 = 0. The

rejection region is single-sided, due to that (Ap-

pendix C.3)

E(MSRes) = σ2, E(MSR) = σ2 + β2

1
Sxx,



Source of Sum of Degrees of Mean F0

Variation Squares Freedom Square

Regress SSR = β̂1Sxy 1 MSR
MSR

MSRes

Residual SSRes = SST − β̂1Sxy n− 2 MSRes

Total SST n− 1

Table 1: Analysis of Variance (ANOVA) for testing significance of regression

that is, it is likely that the slope β1 6= 0 if the ob-

served value of F0 is large.

The analysis of variance is summarized in the

following table.

The analysis of variance for Forbes’ data is given



Source of Sum of Degrees of Mean F0

Variation Squares Freedom Square

Regress 425.639 1 425.639 2962.79

Residual 2.155 15 0.144

Table 2: Analysis of Variance (ANOVA) for Forbes’ data.

in Table 2.



8 Coefficient of determination

The quantity

R2 =
SSR
SST

= 1− SSRes
SST

is called the coefficient of determination. For Forbes’

data,

R2 =
425.63910

427.79402
= 0.995,

and thus about 99.5% of the variability in the ob-

served values is explained by boiling point.



In the below, we list some properties of R2.

1. The range ofR2 is 0 ≤ R2 ≤ 1. If all the β̂j ’s

were zero, except for β̂0, R
2 would be zero.

(This event has probability zero for continuous

data.) If all the y-values fell on the fitted sur-

face, that is, if yi = ŷi, i = 1, 2, · · · , n, then

R2 would be 1.

2. Adding a variable x to the model increases

(cannot decrease) the value of R2.



3. R2 is invariant to a scale change on x and y.

4. R2 does not measure the appropriateness of

the linear model, for R2 will often be large

even though y and x are nonlinearly related.



9 Interval estimation in simple linear regression

9.1 Confidence intervals on β0, β1 and σ2

The width of these confidence intervals is a mea-

sure of the overall quality of the regression line.

If the errors are normally and independently dis-

tributed, then the sampling distribution of both

β̂1 − β1

se(β̂1)
and

β̂0 − β0

se(β̂0)

is t with n − 2 degrees of freedom. Therefore,



a 100(1 − α) percent confidence interval on the

slope β1 is given by

β̂1−tα/2,n−2se(β̂1) ≤ β1 ≤ β̂1+tα/2,n−2se(β̂1)

and a 100(1 − α) percent confidence interval on

the intercept β0 is

β̂0−tα/2,n−2se(β̂0) ≤ β0 ≤ β̂0+tα/2,n−2se(β̂0)



Frequency interpretation: If we were to take repeated

samples of the same size at the sample x levels

and construct, for example, 95% confidence inter-

vals on the slope for each sample, then 95% of

those intervals will contain the true value of β1.

For Forbes’ data, se(β̂0) = 0.37903(1/17 +

(202.95294)2/530.78235)1/2 = 3.340, and se(β̂1) =

σ̂/
√
Sxx = 0.0164. For a 90% confidence inter-



val, t(0.05, 15) = 1.753, and the interval is

−42.138− 1.753(3.340) ≤ β0 ≤ −42.138 + 1.753(3.340)

−47.993 ≤ β0 ≤ −36.282.

A 95% confidence interval for the slope is

0.8995− 2.131(0.0164) ≤ β1 ≤ 0.8995 + 2.141(0.0164)

0.867 ≤ β1 ≤ 0.930.

If the errors are normally and independently dis-

tributed, then the sampling distribution of

(n− 1)MSRes/σ
2



is chi-square with (n − 2) degrees of freedom.

Thus,

P
{
χ2

1−α/2,n−2
≤ (n− 2)MSRes

σ2
≤ χ2

α/2,n−2

}
= 1−α

and consequently a 100(1−α) percent confidence

interval on σ2 is

(n− 2)MSRes
χ2

α/2,n−2

≤ σ2 ≤ (n− 2)MSRes
χ2

1−α/2,n−2

.



9.2 Interval estimation of the mean response

Let x0 be the level of the regressor variable for

which we wish to estimate the mean response, say

E(y|x0). We assume that x0 is any value of the

regressor variable within the range of the original

data on x used to fit the model. An unbiased point

estimator of E(y|x0) is

Ê(y|x0) = µ̂y|x0 = β̂0 + β̂1x0.



The variance of µ̂y|x0 is

V ar(µ̂y|x0) = V ar[ȳ+β̂1(x0−x̄)] = σ2[
1

n
+
(x0 − x̄)2

Sxx
]

since cov(ȳ, β̂1) = 0. Thus, the sampling distribu-

tion of

µ̂y|x0 − E(y|x0)√
MSRes(1/n + (x0 − x̄)2/Sxx)

is t with n− 2 degrees of freedom. Consequently,

a 100(1 − α) percent confidence interval on the



mean response at the point x = x0 is

µ̂y|x0 − tα/2,n−2

√
MSRes(1/n + (x0 − x̄)2/Sxx)

≤ E(y|x0) ≤
µ̂y|x0 + tα/2,n−2

√
MSRes(1/n + (x0 − x̄)2/Sxx)

(8)



10 Prediction of new observations

An important application of the regression model

is prediction of new observations y corresponding

to a specified level of the regressor variable x. If

x0 is the value of the regressor variable of interest,

then

ŷ0 = β̂0 + β̂1x0

is the point estimate of the new value of the re-

sponse y0. Now consider obtaining an interval es-



timate of this future observation y0. The confi-

dence interval on the mean response at x = x0

is inappropriate for this problem because it is an

interval estimate on the mean of y (a parameter),

not a probability statement about future observa-

tions from the distribution.



Let ψ = y0 − ŷ0 is normally distributed with

mean 0 and variance

V ar(ψ) = σ2[1 +
1

n
+

(x0 − x̄)2

Sxx
].

Thus, the 100(1−α)% percent prediction interval



on a future observation at x0 is

ŷ0 − tα/2,n−2

√
MSRes(1 + 1/n + (x0 − x̄)2/Sxx)

≤ y0 ≤
ŷ0 + tα/2,n−2

√
MSRes(1 + 1/n + (x0 − x̄)2/Sxx)

(9)

By comparing (8) and (9), we observe that the

prediction interval at x0 is always wider than the

confidence interval at x0 because the prediction

interval depends on both the error from the fitted



model and the error associated with future obser-

vations.

We may generalize (9) somewhat to find a 100(1−
α) percent prediction interval on the mean of m

future observations on the response at x0. The



100(1− α)% prediction interval on ȳ0 is

ŷ0 − tα/2,n−2

√
MSRes(1/m + 1/n + (x0 − x̄)2/Sxx)

≤ ȳ0 ≤
ŷ0 + tα/2,n−2

√
MSRes(1/m + 1/n + (x0 − x̄)2/Sxx).

(10)

For prediction of 100 × log(Pressure) for a

location with x0 = 200, the point prediction is

ŷ0 = −42.13778 + 0.89549(200) = 136.961,



with standard error of prediction

0.37903

(
1 +

1

17
+

(200− 202.95294)2

530.78235

)1/2

= 0.393.

Thus, a 99% predictive interval is

136.961− 2.95(0.393) ≤ ŷ0 ≤ 136.961 + 2.95(0.393),

135.803 ≤ ŷ0 ≤ 138.119.



A a 99% predictive interval for Pressure is

10135.803/100 ≤ Pressure ≤ 10138.119/100

i.e.,

22.805 ≤ Pressure ≤ 24.054.



11 The Residuals

Plots of residuals versus other quantities are used

to find failures of assumptions. The most common

plot, especially useful in simple regression, is the

plot of residuals versus the fitted values.

• A null plot indicate no failure of assumptions.

• Curvature might indicate that the fitted mean

function is inappropriate.



• Residuals that seem to increase or decrease

in average magnitude with the fitted values might

indicate nonconstant residual variance.

• A few relatively large residuals may be indica-

tive of outliers, case for which the model is

somehow inappropriate.

The plot of residuals versus fitted values for the

heights data is shown in Figure 3. This is a null

plot.



The fitted values and residuals for Forbes’ data

are plotted in Figure 4. This plot indicates that

case 12 is an outlier. Delete this point from the

dataset. Refitting the model resulting in the follow-

ing results (Table 3):



Table 3: Summary statistics for Forbes’ data with all data and with case 12 deleted.

Quantity All data Delete case 12

β̂0 -42.138 -41.308

β̂1 0.895 0.891

se(β̂0) 3.340 1.001

se(β̂1) 0.016 0.005

σ̂ 0.379 0.113

R2 0.995 1.000
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Figure 3: Residuals versus fitted values for the heights data.
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Figure 4: Residual plot for Forbes’ data.


