
Chapter 11: Binomial and Poisson Regression



1 Distribution for Counted Data

1.1 Bernoulli Distribution

Suppose the random variable Y has two possible

values, perhaps called “success” or “failure”, with

probability of success equal to θ, where 0 ≤ θ ≤

1. We label Y = 1 if success occurs, and Y =

0 otherwise. We will say that Y has a Bernoulli

distribution with probability of success θ:

E(Y ) = θ, Var(Y ) = θ(1− θ).



An important feature of the Bernoulli distribution is

that the variance depends on the mean.



1.2 Binomial Distribution

The binomial distribution generalizes the Bernoulli.

Suppose we havem random variablesB1, B2, . . . , Bm,

such that (1) each Bj has a Bernoulli distribution

with the same probability θ of success, and (2) all

the Bj ’s are independent. Then if Y is the num-

ber of successes in the m trials, Y =
∑

Bj, we

say that Y has a binomial distribution with m trials

and probability of success θ. The probability mass



function is

P (Y = j) =

(

m

j

)

θj(1− θ)m−j,

for j ∈ {0, 1, . . . , m}. The mean and variance of

the distribution are

E(Y ) = mθ, Var(Y ) = mθ(1− θ).



1.3 Poisson Distribution

The Poisson distribution is the number of events of

a specific type that occur in a fixed time of space.

A Poisson variable Y can take the value of any

nonnegative integer {0, 1, 2, . . .}. The probability

mass function of the Poisson distribution is given

by

P (Y = y) = exp(−λ)λy/y!, y = 0, 1, 2, . . . ,



The mean and variance are given by

E(Y ) = λ, Var(Y ) = λ.



2 Regression Model for Counts

The big idea is that the parameter for the counted

distribution, θ for the binomial or λ for the Poisson,

can depend on the values of predictors.

2.1 Binomial Regression

We assume that θ(x) depends on the values x of

the regressors only through a linear combination



β′x for some unknown β:

θ(x) = m(β′x),

where β′x is called the linear predictor. For logis-

tic regression, we have

θ(x) = m(β′x) =
exp(β′x)

1 + exp(β′x)
=

1

1 + exp(−β′x)
,

Most presentation of logistic regression work with

the link function, which is the inverse of the kernel



mean function; that is,

log

(

θ(x)

1− θ(x)

)

= β′x,

where the left side is called a logit or log-odds, and

the ratio
θ(x)

1−θ(x) is called the odds of success.

Logistic regression models are not fit with OLS.

Rather, maximum likelihood estimation is used, based

on the binomial distribution.



> g1 <- glm(cbind(died, m-died) ˜ log(d), family=binomial, data=BlowBS)

> summary(g1)

glm(formula = cbind(died, m - died) ˜ log(d), family = binomial,

data = BlowBS)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -7.8925 0.6325 -12.48 <2e-16 ***

log(d) 3.2643 0.2761 11.82 <2e-16 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 250.856 on 34 degrees of freedom

Residual deviance: 49.891 on 33 degrees of freedom

AIC: 117.52

Number of Fisher Scoring iterations: 4
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Figure 1: Plot of the blowdown fraction versus d, with the horizontal axis in log scale.



2.2 Deviance

In multiple linear regression, the residual sum of

squares provides the basis for tests for compar-

ing mean functions. In logistic and Poisson regres-

sion, the residual sum of squares is replaced by

the deviance, which is often called G2. The de-

viance is defined for logistic regression to be

G2 = 2

n
∑

i=1

[

yi log

(

yi
ŷi

)

+ (mi − yi) log

(

mi − yi
mi − ŷi

)]

,



where ŷi = miθ̂i(xi) are the fitted number of suc-

cesses in mi trials. The df associated with the

deviance is equal to the number of cases n used

in the calculation minus the number of elements of

β.

Methodology for comparing models parallels the

results in multiple linear regression. Write

β′x = β′
1x1 + β′

2x2,



and consider testing

NH :θ(x) = m(β′x),

AH :θ(x) = m(β′
1x1 + β′

2x2).

Obtain the deviance G2
NH and degrees of free-

dom dfNH under the null hypothesis, and then ob-

tain G2
AH and dfAH under the alternative hypoth-

esis. As with linear models, we will have evidence

against the null hypothesis if G2
NH − G2

AH is too

large. To get a p-value, we compare the differ-



ence G2
NH − G2

AH with the χ2 distribution with

df = dfNH − dfAH , not with an f -distribution as

was done for linear models.



3 Poisson Regression

When the data are to be modeled as if they are

Poisson counts, the rate parameter is assumed to

depend on the regression with linear predictorsβ′x

through the link function

log[λ(β′x)] = β′x.

Poisson regression models are often called log-

linear models.



Maximum likelihood estimation is the usual method

used to fit Poisson regression models. The de-

viance for Poisson regression is given by

G2 = 2

n
∑

i=1

[yi log(yi/ŷi)− (yi − ŷi)],

where ŷi us the fitted value exp(β̂
′
xi).



> p1 <- glm(count ˜ (type + sex + citizen)ˆ3, poisson, AMSsurvey)

> summary(p1)

(Intercept) 3.21888 0.20000 16.094 < 2e-16

typeI(Pu) 0.14842 0.27292 0.544 0.586557

typeII 0.69315 0.24495 2.830 0.004658

typeIII 0.44469 0.25621 1.736 0.082623

typeIV 1.43508 0.22254 6.449 1.13e-10

typeVa -0.73397 0.35119 -2.090 0.036622

sexMale 1.15057 0.22947 5.014 5.33e-07

citizenUS -0.22314 0.30000 -0.744 0.456990

typeI(Pu):sexMale 0.34967 0.30795 1.135 0.256181

typeII:sexMale -0.57396 0.28964 -1.982 0.047525

typeIII:sexMale -0.84384 0.31172 -2.707 0.006788

typeIV:sexMale -1.00051 0.26529 -3.771 0.000162

typeVa:sexMale -0.30327 0.41437 -0.732 0.464239

typeI(Pu):citizenUS 0.41120 0.39122 1.051 0.293233

typeII:citizenUS 0.16127 0.36232 0.445 0.656249



typeIII:citizenUS 0.02532 0.38326 0.066 0.947331

typeIV:citizenUS -0.44183 0.34357 -1.286 0.198445

typeVa:citizenUS 0.37729 0.49473 0.763 0.445690

sexMale:citizenUS 0.31960 0.33786 0.946 0.344173

typeI(Pu):sexMale:citizenUS -0.49239 0.43872 -1.122 0.261722

typeII:sexMale:citizenUS -0.18202 0.42081 -0.433 0.665351

typeIII:sexMale:citizenUS -0.24192 0.45955 -0.526 0.598589

typeIV:sexMale:citizenUS -0.19597 0.40556 -0.483 0.628947

typeVa:sexMale:citizenUS -0.27960 0.57796 -0.484 0.628552

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1



3.1 Goodness of Fit Tests

If a Poisson mean function is correctly specified,

the residual deviance G2 will be distributed as a

χ2(n−p′) random variable, wheren is the number

of cells and p′ is the number of regressor fit. If the

mean function is not correctly specified, or if the

Poisson assumption is wrong, then G2 will gener-

ally be too large, and so a lack of fit test can be

obtained by comparing the value of G2 to the rel-



evant χ2 distribution. The same idea can be used

for binomial regression when the sample sizes are

larger than 1.

An alternative to using G2 for lack of fit testing

is to use Pearson’s χ2 for testing, given by the fa-

miliar formula

X2 =

n
∑

i=1

(yi − ŷi)
2

ŷi
.

Like G2, X2 is compared with χ2(n − p′) to get



significance levels. In large samples, the two tests

will give the same inference, but in smaller sam-

ples χ2 is generally more powerful.

In binomial regression with all or nearly all the

mi = 1, neither G2 nor X2 provides a lack of fit

tests.



4 Transferring what you know about linear models

Most of the methodology developed in this book

transfers to problems with binomial or Poisson re-

sponses. In this section, important connections

are briefly summarized.

4.1 Scatterplots and Regression

Graphing data is just as important in binomial and

Poisson regression as it is in linear regression. In



problems with a binary response, plots of the re-

sponse versus predictors or regressors are gen-

erally not very helpful because the response only

has two values. Smoothers, however, can help

look a these plots as well. Plots of predictors with

color used to indicate the level of the response can

also be helpful.



4.2 Simple and Multiple Regression

The general ideas in Chapters 2 and 3 apply to

binomial and Poisson models, even if the details

differ. With the counted data models, estimates

β̂ and Var(β̂|X) are computed using the appro-

priate maximum likelihood methods, not with the

formulas in these chapters. Once these are found,

they can be used in these formulas and methods

given in the text. For example, a point estimate



and standard error for a linear combination of the

elements of β is given by

l̂ = a′β, se(l̂|X) = σ̂
√

a′(X ′X)−1a,

for linear regression. For the binomial and Poisson

fit, we can replace σ̂ by 1 and replace (X ′X)− by

the covariance matrix of β̂. Confidence intervals

and tests use the standard normal rather than a

t-distribution.



4.3 Testing and Analysis of Deviance

The t-tests discussed in Chapters 2, 3, and 6 are

replaced by z-tests for binomial and Poisson mod-

els. The F -tests in Chapter 6 are replaced by χ2

tests based on changes in deviance. The marginal-

ity principle, Section 6.2, is the guiding principle for

testing with counted responses.

In linear models, the t-tests and F -tests for the

same hypothesis have the same value, and so they



are identical. With binomial and Poisson responses,

the tests are identical only for very large samples,

and in small samples they can give conflicting sum-

maries. The G2 tests are generally preferred.

4.4 Variances

Failure of the assumptions needed for binomial or

Poisson fitting may be reflected in overdispersion,

meaning that the variation between observations



given the predictors is larger than the value re-

quired by the model. One general approach to

overdispersion is to fit models that allow for it, such

as the binomial or Poisson mixed models similar to

those in Section 7.4. Other models, for example,

using negative binomial distributions rather than bi-

nomial, can account for overdispersion.



4.5 Transformations

Transformation of the response is not relevant with

binomial and Poisson models. Transformation of

predictors is relevant, however, and all the method-

ology in Chapter 8 can be used.

4.6 Regression Diagnostics

Many diagnostic methods depend on residuals. In

binomial and Poisson models, the variance depends



on the mean, and any useful residuals must be

scaled to account for variance. A generalization

of the Pearson residuals defined in Section 9.1.3,

is appropriate for most purposes.

4.7 Variable Selection

All the ideas discussed in Chapter 10 carry over to

binomial and Poisson models.



5 Generalized Linear models

The multiple linear regression, logistic, and Pois-

son log-linear models are particular instances of

generalized linear models. They share three basic

characteristics:

1. The conditional distribution of the responseY |X

is distributed according to an exponential fam-

ily distribution. The important members of this

class include the normal, binomial, Poisson,



and gamma distributions.

2. The response Y depends on the regressors

only through the linear combinations of terms

β′x.

3. The mean E(Y |X = x) = m(β′x) for

some kernel mean function m. For the mul-

tiple linear regression model, m is the identity

function, and for logistic regression it is the lo-

gistic function. The Poisson was specified us-



ing the log link, so its m is the inverse of the

log, or the exponential function. Other choices

of the kernel mean function are possible but

are used less often in practice.

These three components are enough to specify

completely a regression problem along with meth-

ods for computing estimates and making inferences.

The methodology for these models generally builds

on these methods in this book, usually with only



minor modification.


