
Chapter 1: Scatterplots and Regression

1 Introduction

Regression is a statistical technique for investigat-

ing and modeling the relationship between vari-

ables. It can be used to answer questions such



as

• Does changing class size affect success of

students?

• Do countries with higher per person income

have lower birth rates than countries with lower

income?

• Do changes in diet result in changes in choles-

terol level?

• · · · · · ·



2 Scatterplots

Data consists of values (xi, yi), i = 1, . . . , n, of

(X, Y ) observed on each of n units or cases. The

goal of regression is to understand how the values

of Y change as X is varied over its range of pos-

sible value. The scatterplot provides a graphical

way to look at how Y changes as X is varied.

Inheritance of heights During the period 1893-1898, E.S.

Pearson organized the collection of n = 1375



heights of mothers in the UK under the age of 65

and one of their adult daughters over the age of

18.
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Figure 1: Scatterplot of mothers’ and daughters’ heights in the Pearson and Lee data.



Here are some important characteristics of Fig-

ure 1.

(1) The range of heights appear to be about the

same for mothers and for daughters.

(2) Mothers’ heights and daughters’ heights are

not independent.

(3) The scatter of points in the graph appears to

be more or less elliptically shaped, with the

axis of the ellipse tilted upward.



(4) Scatterplots are important for finding separated

points, which are either points with values on

the horizontal axis that are well separated from

the other points or points with values on the

vertical axis that, given the value on the hor-

izontal axis, are either much too large or too

small. These two types of separated points

are called leverage points and outliers, respec-

tively.



Forbes’ data In an 1857 article, James D. Forbes dis-

cussed a series of experiments that he had done

concerning the relationship between atmospheric

pressure and the boiling point of water. The scat-

terplot of pressure versus temp is shown in Figure

1.3.
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Figure 2: Forbes data



If the data is modeled by a straight line, the cur-

vature in the residual plot is clearly visible. Forbes

had a physical theory that suggested that log(Pressure)

is linearly related to Temp. The residual plot in

Figure 3(b) confirms that the derivations from the

straight line are not systematic.
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Figure 3: Forbes data



Length at age for smallmouth bass The smallmouth bass is

a favorite game fish in inland lakes. One tool in

the study of fish populations is to understand the

growth pattern of fish such as the dependence of

a measure of size like fish length on age of the fish.

Figure 1.5 displays the Length at capture in

mm versus Age at capture for n = 439 small-

mouth bass measured in West Bearskin Lake in

Northeastern Minnesota in 1991. Only fish of age

seven or less are included in this graph. Fish scales



have annular rings like trees, and these can be

counted to determine the age of fish.

The predictor Age can only take on integer val-

ues, so we are really plotting seven distinct popu-

lations of fish. As might expected, length gener-

ally increases with age, but the longest fish at age-

one fish exceeds the length of the shortest age-

four fish, so knowing the age of a fish will not allow

to predict its length exactly.
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Figure 4: Length (mm) versus age for West Bearskin Lake smallmouth bass.



Predicting the weather Can early season snowfall from

September 1 until December 31 predict snowfall in

the remainder of the year, from January 1 to June

30? Figure 5 suggests that early winter snowfall

and late winter snowfall may be completely unre-

lated, or uncorrelated. Interest in this regression

problem will therefore be in testing the hypothesis

that the two variables are uncorrelated versus the

alternative that they are correlated.
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Figure 5: Plot of snowfall for 93 years from 1900 to 1992 in inches.



Turkey Growth Pens of turkeys were grown with an iden-

tical diet, except that each pen was supplemented

with a dose of the amino acid methionine as a per-

centage of the total diet. The response is aver-

age weight gain in grams of all the turkeys in the

pen. Weight gain seems to increase with increas-

ing Dose, but the increase does not appear to be

linear, meaning that a straight line does not seem

to be a reasonable representation of the average

dependence of the response on the predictor.
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Figure 6: Weight gain versus dose of methionine for turkeys. The three symbols for the

points refer to three different sources of methionine.



3 Mean Functions

Imagine a generic summary plot of Y versus X .

The mean function is defined by

E(Y |X) = a function that depends on the value of x.

(1)

For example, in the heights data, we might believe

that

E(Dheight|Mheight = x) = β0 + β1x, (2)



where the parameters β0 and β1 are called the in-

tercept and the slope, respectively.

Note all summary graphs will have a straight-

line mean function. In the turkey data and other

growth models, a nonlinear mean function might

be more appropriate, such as

E(Y |Dose = x) = β0 + β1[1− exp(−β2x)].

(3)

This three-parameter mean function will be consid-

ered in Chapter 11.



4 Variance Function

The variance function is defined by Var(Y |X =

x); that is, the variance of the response distribution

given that the predictor is fixed at X = x.

A frequent assumption in fitting linear regres-

sion models is that the variance function is the same

for every value of x. This is usually written as

Var(Y |X = x) = σ2. (4)



5 Summary Graph

The scatterplots for the above examples are all

typical. Examination of the summary graph is a

first step in exploring the relationships these graphs

portray. Anscombe (1973) provided the artificial

data that consists of 11 pairs of points (xi, yi),

to which the simple linear regression mean func-

tion with the same estimated slope, intercept, and

other summary statistics, but the visual impression

of each of the graph is very different.
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Figure 7: Four hypothetical data sets (from Anscombe, 1973).



6 Tools for looking at scatterplots

Because looking at scatterplots is so important to

fitting regression models, we establish some com-

mon vocabulary for describing the information in

them and some tools to help us extract the infor-

mation they contain.

Size To extract all the available information from

a scatterplot, we may need to interact with it by

changing scales, by resizing, or by removing linear



trends.

Transformations In some problems, either or both of X

and Y can be replaced by transformations so the

summary graph has desirable properties. Most of

the time, we will use power transformations, re-

placing, for example, X by Xλ for some number

λ.



Smoothers for the mean function Although many authors dis-

cuss nonparametric regression as an end in itself,

we will generally use smoothers as plot enhance-

ments to help us understand the information avail-

able in a scatterplot and to help calibrate the fit of

a parametric mean function to a scatterplot.



The loess smooth estimates E(Y |X = x) at

the point x by fitting a straight line to a fraction of

the points closet to x; we used the fraction of 0.2 in

Figure 8 because the sample size is so large, but

it is more usual to set the fraction to about 2/3.
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Figure 8: Heights data with the OLS line and a loess smooth with span=0.1.



7 Scatterplot Matrices

When there are many predictors, the scatterplot

matrix can be used to look at the regression re-

lationship between the response and the potential

predictor.

Fuel Consumption The goal of this example is to un-

derstand how fuel consumption varies over the 50

Unites States. The variables considered in this ex-

ample are as follows.



• Drivers: Number of licensed drivers in the state

• Fuel: Gasoline sold for road use, thousands of

gallons

• Income: Per person personal income for the

year 2000, in thousands of dollars

• Miles: Miles of Federal-aid highway miles in

the state

• Pop: 2001 population age 16 and over

• Tax: Gasoline state tax rate, cents per gallon



• State: State name

• Fuel: 1000 × Fuel/Pop

• Dlic: 1000 × Drivers/Pop

• log(Miles): Base-two logarithm of Miles

The scatterplot matrix for the fuel data is shown

in Figure 9. Each plot in a scatterplot matrix is

relevant to a particular one-predictor regression of

the variable on the vertical axis, given the variable

on the horizontal axis.
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Figure 9: Scatterplot matrix for the fuel data.


