
2.14 
2.14.1 
The sample function in R will select a random sample for you. The set.seed function 
below provides a starting point for the random number generator, and if you use the 
same seed you will get exactly the same results shown here. 

set.seed(54321) 
n <- dim(Heights)[1] 
sel <- sample(1:n, floor(2*n/3)) 
m0 <- lm(dheight ~ mheight, Heights) 
m1 <- lm(dheight ~ mheight, Heights, subset=sel) 
compareCoefs(m0, m1) 

 
The fit m0 is to all the cases, and m1 is to the construction set only. The estimates are 
quite similar but as should be expected the standard errors of the estimates are larger 
in m1 because the sample size is smaller. 

2.14.2 

First, obtain predictions for the cases not used in computing the estimates. 

preds <- predict(m1, newdata=Heights[-sel, ]) 

Next, compute the prediction errors and square them. 

sqPredErrors <- (Heights$dheight[-sel] - preds)^2 

Compute and print summaries 

meanError <- mean(sqPredErrors) 
round(c("Ave. sq. pred error"= meanError, 
"SD of pred" = sqrt(meanError)), 2) 

 
Thus the SD for prediction is about 2.3 inches for a future value sampled from a 
population like the population from which this sample was drawn. 

2.14.3 
The R function predict can be used to get standard errors of fitted values, 

se.fit <- predict(m1, new.data=Heights[-sel, ], se.fit=TRUE)$se.fit 

The squared standard errors of prediction are �̂�2 + 𝑆𝐸𝑓𝑖𝑡
2 , and so the average prediction 

variance is 
predvar <- mean(sigmaHat(m1)^2 + se.fit^2) 
round(c("Ave. sq. pred error"= predvar, 



"SD of pred" = sqrt(predvar)), 2) 

 
The linear regression model appears to match these data quite closely and so it is no 
surprise that the parametric approach of this subproblem matches the approach of the 
last subproblem. If the simple regression model were inadequate, results could have 
been quite different. 
 

2.16 
2.16.1 
m1 <- lm(log(fertility) ~ log(ppgdp), UN11) 
summary(m1) 

 

 
2.16.2 
The scatterplot function in the car makes this very easy: 
scatterplot(fertility ~ ppgdp, data=UN11, log="xy", smooth=FALSE) 

 



The scatterplot function always draws the fitted line unless you suppress it using 
the argument reg.line=FALSE. You could suppress the boxplots with the argument boxplots=FALSE. 
Alternatively, you can get the same graph, but with the ticks labeled in log-units, using 
scatterplot(log(fertility) ~ log(ppgdp), UN11, smooth=FALSE) 

2.16.3 
The 𝑡-test can be used, 𝑡 = −14.79 with 197 df. The 𝑝-value is essentially 0, so the 
one-sided 𝑝-value will also be near 0. We have strong evidence that 𝛽1 < 0, suggesting 
that countries with higher log(ppgdp) have on average lower log(fertility). 

2.16.4 
𝑅2= 0.526, so about 52.6% of the variability in log(fertility) can be explained by 
conditioning on log(ppgdp). 

2.16.5 

If ppgdp = 1000, then log(ppgdp) = 3. The prediction and its standard error can be 
obtained using the formulas in the chapter. To do the computation in R, we can use 
the predict function as follows. 
new.data <- data.frame(ppgdp=1000) 
(pred1 <- predict(m1, new.data, interval="prediction")) 

 
This may require a bit of explanation. The first argument to the predict function is 
the name of a regression object. If no other arguments are given, then predictions are 
returned for each of the original data points. To get predictions for a different point, 
its values must be supplied as the second argument. The function expects an object 
called a data frame to contain the values of the predictors for the new prediction. The 
variable new.data above is a data frame with just 1 value, ppgdp=1000. We do not 
need to take logarithms here because of the way that m1 was defined, with the log 
in the de_nition of the mean function, so m1 will take the log for us. If we wanted 
predictions at, say ppgdp = 1000, 2000, 5000, we would have defined new.data to be 
data.frame(ppgdp=c(1000, 2000, 5000)). 
The predict function was then used with the additional argument interval="prediction" 
to give the 95% prediction interval in log scale. Exponentiating the end points 

 
gives a surprisingly wide interval for the predicted fertility. 

2.16.6 
This problem should be solved using an interactive program. Although R is weak in 
general on interactive graphics, the identify function will do the trick: 
plot(log10(fertility) ~ log10(ppgdp), UN11) 
abline(m1) 
with(UN11, identify(log10(ppgdp), log10(fertility), 
row.names(UN11))) 
Niger, followed by Somalia and Zambia, have the largest fertility rates, while Bosnia- 
Herzegovina, Macao and Hong Kong have the lowest. To find the residuals, it is 
convenient to plot the residuals versus either the _tted values or the predictor. You 
can use the residualPlot function in the car package for this purpose 



residualPlot(m1, id.n=4) 
Equatorial Guinea and Angola have the largest positive residuals, and are therefore the 
2 countries with fertility rates that are much larger than expected after conditioning 
on ppgdp. Moldova, and Bosnia-Herzegovina have negative residuals, and so have low 
fertility rates given their ppgdp. 

3.2 
3.2.1 

 
All the variables appear to be strongly linearly related. Thus both of the predictors 
appear to be marginally related to fertility. 

3.2.2 
summary(m1 <- lm(fertility ~ log(ppgdp), UN11))$coef 

 
summary(m2 <- lm(fertility ~ pctUrban, UN11))$coef 

 
3.2.3 
Although the outline of Section 3.1 could be followed, if using Rth added-variable 
plots can be obtained directly: 
m3 <- update(m2, ~ . + log(ppgdp)) 
summary(m3) 



 
avPlots(m3, id.n=1) 

 
The plot for log(ppgdp) suggests that this is an important variable adjusting for pctUrban,  
but the added-variable plot for pctUrban shows essentially no linear trend and it is quite  
likely that the variability explained by this variable is a subset of the variability explained  
by log(ppgdp). 

3.2.4 
m4 <- lm(log(ppgdp) ~ pctUrban, UN11) 
m5 <- lm(residuals(m2) ~ residuals(m4)) 
summary(m5)$coef 

 
The coefficients for log(ppgdp) are identical in m3 and m5, although one is printed in 
scientific notation and the other is standard notation and not very many digits are 
shown. 

3.2.5 
The residuals can be shown to be the same by either plotting one set against the other 
or by subtracting them. 



3.2.6 
The added-variable plot computation has the df wrong, with 1 extra df. After correcting 
the df, the computations are identical. 

3.4 
3.4.1 
Since 𝑋2 is an exact linear function of 𝑋1, the residuals from the regression of 𝑋2 on 
𝑋1 will all be 0, and so the plot will look like this: 

 
Since 𝑋1 and 𝑋2 are the same apart from a constant multiplier, 𝑋2 explains no extra 
variation after 𝑋1 and a model that includes 𝑋1 cannot provide an estimate for the 
effect of 𝑋2 adjusted for 𝑋1. In general, if 𝑋1 and 𝑋2 are highly correlated, the 
variability on the horizontal axis of an added-variable plot will be very small compared 
to the variability of the original variable. The coefficient for such a variable will be 
very poorly estimated. 

3.4.2 
Since 𝑌 = 3𝑋1 the residuals from the regression of 𝑌 on 𝑋1 will all be 0, and so the 
plot will look like 

 
In general, if 𝑌 and 𝑋1 are highly correlated, the variability on the vertical axis of 
an added-variable plot will be very small compared to the variability of the original 



variable, and we will get an approximately null plot. 

3.4.3 
If 𝑋1 is uncorrelated with both 𝑋2 and 𝑌, then these two plots will be the same. 

3.4.4 
Since the vertical variable is the residuals from the regression of 𝑌 on 𝑋1, the vertical 
variation in the added-variable plot is never larger than the vertical variation in the 
plot of 𝑌 versus 𝑋2. 

3.6 
3.6.1 
The scatterplot matrix is 
scatterplotMatrix(~ OPBPC + OPRC + OPSLAKE + BSAAM, water, 
smooth=FALSE, spread=FALSE, diagonal="none") 

 
All the variables are strongly and positively related, which can lead to problems in 
understanding coefficients, since each of the 3 predictors is nearly the same variable. 
The correlation matrix and regression output are 
cor(water[, c("OPBPC", "OPRC","OPSLAKE","BSAAM")]) 

 
3.6.2 
The regression summary is 
summary(m1 <- lm(BSAAM ~ OPBPC + OPRC + OPSLAKE, data=water)) 



 
 

 
The variable OPBPC is unimportant after the others because of its tiny 𝑝-value, in spite 
of its high correlation with the response of more than 0.86. This could be verified using 
the added-variable plot for OPBPC. The value of 𝑅2 = 0.902 suggests that most of the 
variation in BSAAM is explained by these 3 variables. 
 


