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In this article, we apply Bayesian neural networks (BNNs) to time series analysis, and propose a
Monte Carlo algorithm for BNN training. In addition, we go a step further in BNN model selection by
putting a prior on network connections instead of hidden units as done by other authors. This allows
us to treat the selection of hidden units and the selection of input variables uniformly. The BNN model
is compared to a number of competitors, such as the Box-Jenkins model, bilinear model, threshold
autoregressive model, and traditional neural network model, on a number of popular and challenging
data sets. Numerical results show that the BNN model has achieved a consistent improvement over
the competitors in forecasting future values. Insights on how to improve the generalization ability of
BNNs are revealed in many respects of our implementation, such as the selection of input variables,
the specification of prior distributions, and the treatment of outliers.
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1. Introduction

Let yt denote a univariate time series modeled by

yt = f (xt ) + εt , t = 1, 2, . . . , n,

where f (·) is an unknown function, xt = (yt−1, . . . , yt−p) is a
vector of lagged values of yt , and {εt } is iid noise with mean 0
and finite variance σ 2. In the context of time series, εt is often
called an innovation or disturbance, and p is called the order
of the autoregressive model. The determination of the function
f (·) has been one of central topics in statistics for a long time.

An ARIMA(p, d, q) model (Box and Jenkins 1970) assumes
f (·) is of the form,

zt = (1 − B)d yt ,

f (xt ) = c +
p∑

i=1

ai zt−i −
q∑

j=1

b jεt− j ,

where p, d, and q are nonnegative integers; c, ai ’s and bi ’s are
parameters; and B is the backshift operator such that Byt = yt−1.
The model identification, parameter estimation and model ad-
equacy checking can be carried out by an iterative procedure
(Box and Jenkins 1970). Once an ARIMA model is built, fore-
casts of future values are simply the conditional expectations,

E(yt+l | y1, . . . , yt ) for l = 1, 2, . . . , which minimize the mean
squared prediction errors.

The ARIMA model works well for linear time series, however,
it is not adequate for nonlinear time series. Two popular nonlinear
models are the bilinear model (Subba Rao and Gabr 1984) and
the threshold autoregressive model (Tong 1990). The bilinear
model of order (p, q, r, s) assumes that f (·) is of the form

f (xt ) =
p∑

i=1

ai yt−i +
q∑

j=1

b jεt− j +
r∑

i=1

s∑
j=1

ci j yt−iεt− j .

The threshold autoregressive model can be regarded as a piece-
wise linear model in which the linear relationship varies with
the values of the process. For example, a self-exciting thresh-
old autoregressive model SETAR(k; p1, . . . , pk) (Tong and Lim
1980) is defined by k different linear functions

f (xt ) =
pi∑

j=1

a(i)
j yt− j , yt−d ∈ Ri , i = 1, . . . , k,

where d is a fixed integer between 1 and max(p1, p2, . . . , pk),
and Ri , i = 1, . . . , k form a partition of the real line, i.e., R =
R1 ∪ R2 ∪ . . . ∪ Rk . For these two nonlinear models, the model
identification and parameter estimation can be carried out by,
for example, maximizing the likelihood function.
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Fig. 1. A fully connected one-hidden-layer feed-forward neural network
with 4 input units, 3 hidden units and 1 output unit. The arrows indicate
the direction of data feeding, where each hidden unit independently
processes the values fed to it by units in the preceding layer and then
presents its output to units in the next layer for further processing

Although these models generally perform well, they have in-
herent limitations. First, without expertise it is possible to mis-
specify the function form of the most suitable model. Second,
the models themselves are limited and may not be able to cap-
ture some kinds of nonlinear behavior. To alleviate these limita-
tions, neural networks have been applied to modeling nonlinear
time series by many authors, for example, Kang (1991), Hill,
O’Connor and Remus (1996), Faraway and Chatfield (1998),
and Park, Murray and Chen (1996). A one-hidden-layer feed-
forward neural network (illustrated by Fig. 1) approximates f (·)
by a function of the form

ˆf (xt ) = α0 +
p∑

i=1

αi yt−i +
M∑

j=1

β jψ

(
γ j0 +

p∑
i=1

γ j i yt−i

)
, (1)

where M is the number of hidden units; α0 denotes the bias of
the output unit, αi denotes the weight on the shortcut connec-
tion from the i th input unit to the output unit; β j denotes the
weight on the connection from the j th hidden unit to the output
unit; γ j0 denotes the bias of the j th hidden unit, γ j i denotes the
weight on the connection from the i th input unit to the j th hidden
unit; and ψ(·) is the activation function of the hidden units. Sig-
moid and hyperbolic tangent functions are two popular choices
for the activation function. Neural networks have two important
advantages over the traditional statistical models. First, neural
networks are universal approximators in that a neural network
with linear output units can approximate any continuous func-
tion arbitrarily well on a compact set by increasing the num-
ber of hidden units (Cybenko 1989, Funahashi 1989, Hornik,
Stinchcombe and White, 1989). Second, neural networks are

able to estimate nonlinear functions, extract residual nonlinear
elements, and at least partially transform the input data if needed
(Hill, O’Connor and Remus 1996 and references therein).

For a given network structure, the weights can be determined
by minimizing the sum of squares of the within-sample one-step
ahead forecast errors, namely,

E =
n∑

t=p

(yt − ˆf (xt ))
2. (2)

To avoid overfitting, (2) is often altered by a regularization term
to

E =
n∑

t=p

(yt − ˆf (xt ))
2 + τ SSw, (3)

where SSw is the sum of squares of all weights, and τ is a smooth-
ing parameter which can be determined by a cross-validation
procedure. The minimization can be accomplished by the back
propagation (Rumelhart, Hinton and Williams 1986), conjugate
gradient, or any other optimization method. To make a distinc-
tion from Bayesian neural networks (BNNs) (Mackay 1992, Neal
1996) described below, henceforth, we will call a neural network
with weights determined by minimizing (2) or (3) a traditional
neural network (TNN).

BNNs were first proposed by Mackay (1992) and further de-
veloped by a number of authors, including Neal (1996), Müller
and Rios Insua (1998), Marrs (1998), Holmes and Mallick
(1998), Freitas and Andrieu (2000), Andrieu, Freitas and Doucet
(2001), and Penny and Roberts (1999, 2000). BNNs are differ-
ent from TNNs in two respects. First, the structure of BNN
is variable, while the structure of TNN is fixed. Typically, the
number of hidden units of BNN is subject to a prior distribu-
tion (Müller and Rios Insua 1998). Second, BNNs are trained
by sampling from the joint posterior of the network structure
and weights by MCMC methods. It avoids the problem of lo-
cal minimum convergence, which is often encountered in TNN
training.

In this study, we apply BNNs to time series analysis, and
propose a Monte Carlo algorithm for BNN training. In addi-
tion, we go a step further in BNN model selection by putting
a prior on network connections instead of hidden units as done
by other authors. This allows us to treat the selection of hidden
units and the selection of input variables uniformly. The model
is compared to a number of competitors, including the Box-
Jenkins model, bilinear model, threshold autoregressive model,
and TNN model, on a number of popular and challenging data
sets. Numerical results show that our BNN model has achieved
a consistent improvement over the competitors in forecasting
future values. In addition, insights on how to improve the gen-
eralization ability of BNNs are revealed in many respects of
our implementation, such as the selection of input variables,
the specification of prior distributions, and the treatment of
outliers.

The remaining part of this article is organized as follows.
In Section 2, we introduce the BNN model. In Section 3, we
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describe the evolutionary Monte Carlo algorithm (Liang and
Wong 2001) which will be used to sample from the posterior
distribution of the BNN model. In Section 4, we present our
numerical results on three time series data sets. In Section 5, we
conclude the paper with a brief discussion.

2. Bayesian neural networks

2.1. Bayesian neural network models

In our BNN model, each connection is associated with an indica-
tor function which indicates the effectiveness of the connection.
The model can be written as

ˆf (xt ) = α0 Iα0 +
p∑

i=1

yt−iαi Iαi

+
M∑

j=1

β j Iβ j ψ

(
γ j0 Iγ j0 +

p∑
i=1

yt−iγ j i Iγ j i

)
, (4)

where Iζ is the indicator function associated with the connection
ζ . In this article, we set ψ(z) = tanh(z) for all examples to
ensure that the output of a hidden unit is 0 if all connections
to the hidden unit from input units have been eliminated. Thus,
the hidden unit can be eliminated from the network without
any effect on the network outputs. This is not the case for the
sigmoid function, which will return a constant of 0.5 if the input
is zero. Extra work is needed to make the constant be absorbed
by the bias term if we want to delete the hidden unit from the
network.

Let 	 be the vector consisting of all indicators in equation
(4). Note that 	 specifies the structure of the network. Let
α = (α0, α1, . . . , αp), β = (β1, . . . , βM ), γ j = (γ j0, . . . , γ j p),
γ = (γ1, . . . ,γM ), and θ = (α	,β	,γ	, σ 2), where α	, β	

and γ	 denote the non-zero subsets of α, β and γ, respectively.
Thus, the model (4) is completely specified by the tuple (θ, 	).
In the following we will denote a BNN model by (θ, 	), and
re-denote ˆf (xt ) by ˆf (xt ,θ, 	). To conduct a Bayesian analy-
sis for model (4), we specify the following prior distributions:
αi ∼ N (0, σ 2

α ) for i = 0, . . . , p, β j ∼ N (0, σ 2
β ) for j =

1, . . . , M , γ j i ∼ N (0, σ 2
γ ) for j = 1, . . . , M and i = 0, . . . , p,

σ 2 ∼ I G(ν1, ν2), where σ 2
α , σ 2

β , σ 2
γ and λ are hyper-parameters

to be specified by users (discussed below). The total number of
effective connections is m = ∑p

i=0 Iαi +
∑M

j=1 Iβ j δ(
∑p

i=0 Iγ j i )+∑M
j=1

∑p
i=0 Iβ j Iγ j i , where δ(z) is 1 if z > 0 and 0 other-

wise. The model 	 is subject to a prior probability that is pro-
portional to the mass put on m by a truncated Poisson with
rate λ,

P(	) =



1

Z

λm

m!
, m = 3, 4, . . . , U ,

0, otherwise,

where U = (M +1)(p+1)+ M is the number of connections of
the full model in which all Iζ = 1, and Z = ∑

	∈ λm/m!. Here

we let  denote the set of all possible models with 3 ≤ m ≤ U .
We set the minimum number of m to three based on our views:
neural networks are usually used for complex problems, and
three has been a small enough number as a limiting network
size. Furthermore, we assume that these prior distributions are
independent a priori, and the innovation εt is distributed ac-
cording to a normal distribution N (0, σ 2). Thus, we have the
following log-posterior (up to an additive constant),

log P(θ, 	 | D)

= Constant −
(

n

2
+ ν1 + 1

)
log σ 2 − ν2

σ 2

− 1

2σ 2

n∑
t=1

(yt − ˆf (xt ))
2 − 1

2

p∑
i=0

Iαi

(
log σ 2

α + α2
i

σ 2
α

)

−1

2

M∑
j=1

Iβ j δ

(
p∑

i=0

Iγ j i

)(
log σ 2

β + β2
j

σ 2
β

)
− 1

2

M∑
j=1

p∑
i=0

Iβ j Iγ j i

×
(

log σ 2
γ + γ 2

j i

σ 2
γ

)
− m

2
log(2π ) + m log λ − log(m!). (5)

We note that an efficient way of sampling from (5) is to first
simulate from the marginal distribution P(γ	, σ 2, 	 | D), and
then to sample α	 and β	 conditional on the samples of γ	,
σ 2, and 	, since α	 and β	 can be integrated out explicitly
as illustrated in Dension et al. (2003). The theoretical basis of
this sampling method is Rao-Blackwell’s theorem (Casella and
Berger, p. 342), which implies that the analytical integration is
helpful in reducing the variance of Monte Carlo computation.
In this article, we simulated from (5) directly, instead of simu-
lating from P(γ	, σ 2, 	 | D). Our sampling algorithm is more
general. It is directly applicable to the cases where the activation
function on the output unit is nonlinear and the innovations do
not follow the normality assumption. In either of the above two
cases, a closed form of P(γ	, σ 2, 	 | D) is not available. In
addition, our sampling algorithm avoids the problem of matrix
inversion in computing α	 and β	 in the stage of prediction.

For data preparation and hyperparameter settings, we have the
following suggestions. To avoid some weights that are trained
to be extremely large or small (in absolute value) to accommo-
date different scales of input and output variables, we suggest
that all input and output variables be normalized before feeding
to the networks. In all examples of this article, the data is nor-
malized by (yt − ȳ)/Sy , where ȳ and Sy denote the mean and
standard deviation of the training data, respectively. Based on
the belief that a network with a large weight variation usually has
a poor generalization performance, we suggest that σ 2

α , σ 2
β , and

σ 2
γ should be set to moderate values to penalize a large weight

variation. In this article, we set σ 2
α = σ 2

β = σ 2
γ = 5 for all exam-

ples. The setting should also be fine for the other problems. We
put a non-informative prior on σ 2 and set ν1 = ν2 = 0.05 for
all examples. The M and λ together control the network size. In
practice, we can apply a cross-validation procedure to determine
an optimal setting for them, or follow the suggestion of Weigend,
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Huberman and Eumelhart (1990) to tune them to suitable val-
ues. Weigend, Huberman and Eumelhart (1990) suggest that the
number of connections of a neural network should be about one
tenth of the number of training patterns. In one of our examples,
we assessed the influence of M and λ on network size, fitting,
and forecasting performance. The numerical results suggest the
performance of our BNN model is rather robust to the variation
of M and λ, although the network size increases slightly as they
increase.

Our BNN model is different from other BNN models ex-
isting in the literature in two important respects. First, in our
BNN model, the input variables are selected automatically by
sampling from the joint posterior of the network structure and
weights. Second, the structure of our BNN model is usually
sparse and its performance is less depending on the initial
specification for the input patterns and the number of hidden
units. It is sparse in the sense that only a small number of
connections are active in the network. For the selection of in-
put variables, a pioneer work has been done by Neal (1996)
in the context of regression and classification, who specified
the so-called automatic relevance determination (ARD) prior
for weights. In the ARD prior, each input variable is associ-
ated with a hyperparameter that controls the magnitudes of the
weights on the connections out of that input unit. Hence, the
ARD prior works as a model selection mechanism for input
variables with a high similarity to the indicator functions of our
model. Comparing to the ARD prior, the indicator functions are
more flexible. They control the effect of each connection sepa-
rately, while the ARD prior controls the effects of all connections
related with the same input unit jointly. Related works can also
be found in Holmes and Dension (2002), which investigates
the nonlinear basis function methods for the selection of input
variables.

2.2. Time series forecasting with BNN models

Suppose that a series of samples, (θ1, 	1), . . . , (θN , 	N ), have
been drawn from the posterior (5). Let ŷt+1 denote the one step
ahead forecast. One good choice of ŷt+1 is

ŷt+1 = 1

N
N∑

i=1

ˆf (xt+1,θi , 	i ). (6)

Following from standard MCMC results (Smith and Roberts
1993), we know

ŷt+1 → E(yt+1 | D) a.s., as N → ∞.

However, for the multi-step case, it is not easy to obtain an
unbiased forecast for neural networks or any other nonlinear
models. In the following we give a multi-step ahead forecast
which is unbiased and calculable with posterior samples. Since

1

N
N∑

i=1

ˆf (xt+h,θi , 	i ) → E(yt+h | D), a.s., as N → ∞,

still holds for any h > 1, the resulting forecast will be unbiased
and calculable if we replace the unknowns yt+h−1, . . . , yt+1 in-
cluded in xt+h by their simulated realizations. A reasonable as-
sumption is that yt+1, . . . , yt+h−1 follow the same process than
yt . In Section 2.1, we have assumed that yt ∼ N ( f (xt ), σ 2). An
unbiased forecast at time t +h can be generated in the following
procedure.

1. For each sample (θi , 	i ), forecast yt+l recursively for l =
1, . . . , h and repeat the process for M times, where

ŷ(i, j)
t+1 = ˆf (yt−p+1, . . . , yt ,θi , 	i ),

ŷ(i, j)
t+2 = ˆf

(
yt−p+2, . . . , yt , ŷ(i, j)

t+1 + e(i, j)
t+1 ,θi , 	i

)
,

...

where (e(i, j)
t+1 , . . . , e(i, j)

t+h−1), i = 1, . . . ,N , j = 1, . . . ,M,
are future disturbances drawn from N (0, σ̂ 2

i ), where σ̂ 2
i is an

element of θi and is itself an unbiased estimate of σ 2.
2. Average ŷ(i, j)

t+h , i = 1, . . . ,N , j = 1, . . . ,M to get the fore-
cast

ŷun
t+h = 1

MN
N∑

i=1

M∑
j=1

ŷ(i, j)
t+h .

For a large value of N , a reasonable choice of M is M = 1 as
used in this article.

Although ŷun
t+h is unbiased, it often has a large variance due to

the extra randomness introduced by the simulated future distur-
bances. In the following we propose an ad hoc forecast for yt+l

by setting the future disturbances to zero. That is,

1. For each sample (θi , 	i ), forecast yt+l recursively for l =
1, . . . , h by the formula

ŷ(i)
t+1 = ˆf (yt−p+1, . . . , yt ,θi , 	i ),

ŷ(i)
t+2 = ˆf

(
yt−p+2, . . . , yt , ŷ(i)

t+1,θi , 	i

)
,

...

2. Average ŷ(i)
t+h , i = 1, . . . ,N to get the forecast

ŷad
t+h = 1

N
N∑

i=1

ŷ(i)
t+h .

Although the forecast ŷad
t+h is biased, it often has a smaller mean

squared prediction error (MSPE) than ŷun
t+h . The h-step MSPE

for a general forecast ŷt+h is defined as

MSPE(h) =
n−h∑
T =t

[yT +h − ŷT +h]2/(n − h − t + 1),

which will be used to evaluate various forecasts in this article.
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3. Computational implementation

Many Monte Carlo methods have been shown to be effective for
training BNNs, for example, hybrid Monte Carlo (Neal 1996),
reversible jump MCMC (Green 1995, Müller and Rios Insua
1998, Marrs 1998, Holmes and Mallick 1998, Andrieu, Freitas
and Doucet 2000, 2001), sequential Monte Carlo (Freitas et al.
2001, Higdon, Lee and Bi 2002), and evolutionary Monte Carlo
(Liang and Wong 2001). Although a comparison of the effi-
ciencies of the above methods is interesting, it is not the focus
of this article. In this article, we only want to show that BNN
outperforms many competitors in forecasting nonlinear time se-
ries, although we also provide a Monte Carlo algorithm for BNN
training. Theoretically, any Monte Carlo method, if it can sample
from the posterior (5) effectively, will have the same forecasting
performance as the evolutionary Monte Carlo (EMC) algorithm
provided in this article.

EMC was originally designed for sampling from a distribution
defined in a fixed dimensional space. In this article, we extend
it to sample from a distribution defined in variable dimensional
spaces. Specific mutation and crossover operators are designed
for BNN models. The algorithm is described as follows.

Suppose that we want to sample from a distribution f (ξ ) ∝
exp(−H (ξ )), where H (·) is called the energy function of ξ

and it corresponds to the negative log-posterior in simulation
from a posterior distribution. In EMC, a sequence of distribu-
tions f1(ξ ), . . . , fN (ξ ) are first constructed as follows: fi (ξ ) ∝
exp{−H (ξ )/ti }, i = 1, . . . , N , where ti is called the tempera-
ture of fi (·). The temperatures form a ladder t = (t1, . . . , tN )
with t1 > · · · > tN ≡ 1. Issues related to the choice of the tem-
perature ladder can be found in Liang and Wong (2000) and the
references therein. Let ξ i denote a sample from fi (·). It is called
an individual or a chromosome in terms of genetic algorithms.
The N individuals, ξ 1, . . . , ξ N , form a population denoted by
z = {ξ 1, . . . , ξ N }, where N is called the population size. By as-
suming that all individuals of the same population are mutually
independent, we have the following Boltzmann distribution for
the population z,

f (z) ∝ exp

{
−

N∑
i=1

H (ξ i )/ti

}
. (7)

The population is updated by mutation, crossover, and ex-
change operators (described in Appendix). The terms muta-
tion and crossover root in genetic algorithms (Holland 1975,
Goldberg 1989). Although they have a high similarity with
those used in genetic algorithms, they have been modified
such that they are reversible and usable as proposal functions
for the Metropolis-Hastings algorithm (Metropolis et al. 1953,
Hastings 1970). One iteration of EMC consists of the following
steps.

• Apply the mutation or the crossover operator to the population
with probability η and 1 − η respectively, where η is called
the mutation rate.

• Try to exchange ξ i with ξ j for N − 1 pairs (i, j) with i being

sampled randomly in {1, . . . , N } and j = i ± 1 with proba-
bility wi, j , where wi,i+1 = wi,i−1 = 0.5 for 1 < i < N and
w1,2 = wN ,N−1 = 1.

EMC is closely related with three algorithms, parallel temper-
ing (Geyer 1991, Hukushima and Nemoto 1996), reversible jump
MCMC (Green 1995), and the genetic algorithm (Holland 1975,
Goldberg 1989). EMC roots in the genetic algorithm, but the ac-
ceptance of the updates are guided by the Metropolis-Hastings
rule. So it falls into the class of MCMC methods. Both EMC and
parallel tempering are multiple chain MCMC algorithms. The
only significant difference between them is that EMC prescribes
more general moves, such as swapping of individual parame-
ters (partial state) between different chains, rather than simply
swapping all parameters (whole state) of the two chains. But
the extra moves have significantly accelerated the mixing of the
Markov chain as shown later. We note that if η = 1, that is, only
the mutation operator is performed, EMC is reduced to parallel
tempering. If η = 1 and N = 1, EMC is reduced to reversible
jump MCMC.

In EMC, the user-specified parameters include the population
size N , mutation rate η, Metropolis step size κ , and tempera-
ture ladder t . For all examples of this article, we set N = 20,
η = 0.6, κ = 0.25, the highest temperature t1 = 20, the
lowest temperature tN = 1, and the intermediate temperatures
are equally spaced in inverse between t1 and tN . We choose
the Metropolis step size such that the mutation operation has
an acceptance rate ranged from 0.2 to 0.4 as suggested by
Gelman, Roberts and Gilks (1996). We choose a slightly large
value of η, since we notice that the crossover operation usu-
ally has a low acceptance rate, for example, it is around 0.065
for the Canadian lynx example. In general, the crossover op-
erator provides a more global move in the parameter space,
and thus, significantly accelerates the mixing of the Markov
chain.

4. Time series forecasting

4.1. Wolfer sunspot numbers

We consider the annual sunspot numbers for the years 1700–
1955 (Waldmeirer 1961). This data has been used by many au-
thors to illustrate various time series models, for example, the
ARIMA model (Box and Jenkins 1970), SETAR model (Tong
and Lim 1980, Tong 1990), bilinear model (Gabr and Subba
Rao 1981), and neural network model (Park, Murray and Chen
1996).

We follow Tong and Lim (1980) and Gabr and Subba Rao
(1981) to use the first 221 observations for model building, and
the next 35 observations for forecasting. To determine the input
pattern for the BNN model, we first plot the partial autocor-
relation function (PACF) of the training data. As suggested by
Chatfield (2001, p. 223), the time plot and the PACF graph might
give us some indication as to what lagged variables should be
included as inputs. For example, we may include lag 12 for
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Fig. 2. The PACF of the training data of the sunspot example

seasonal data with large autocorrelation at lag 12. Figure 2 sug-
gests (yt−9, . . . , yt−1) be probably appropriate as an input pattern
for this example. The later numerical results show that this input
pattern is appropriate for this examle. The input patterns deter-
mined by this method are also appropriate for the other examples
of this article.

4.1.1. Efficiency test

We first test the efficiency of EMC via comparisons with paral-
lel tempering and reversible jump MCMC. In this experiment,
we set the hyperparameter λ = 10 and the maximum number
of hidden units M = 5. The full model (with 9 input units, 5
hidden units and 1 output unit) consists of 65 connections which
should be large enough for this data set. In EMC, the weights
of the BNN model were initialized as follows. They were first
set to some random numbers drawn from the uniform distribu-
tion unif (−0.1, 0.1), and then were updated for 500 iterations
by the “Metropolis” moves. This produced a reasonable initial
guess for the weights. Note that in the 500 iterations, no “death”
or “birth” moves were performed. After the initialization pro-
cess, the algorithm was run for 9100 iterations, and 700 samples
were collected at the lowest temperature level with an equal time
space. The CPU time used by the run was 44 s on a 2.8 GHZ
computer (the same computer was used for all simulations of this
paper). The overall acceptance rates of the mutation, crossover,
and exchange moves are 0.35, 0.03, and 0.53, respectively. Al-

though the acceptance rate of the crossover moves is low, it has
made a significant improvement over its close relative, paral-
lel tempering, in mixing of the Markov chain. Global moves
often have a low acceptance rate in MCMC simulations. To re-
duce the huge within-run variance of the log-posterior values,
we discarded the first 200 samples and used the following 500
samples to diagnose the convergence of the simulation. In par-
allel tempering, the weights of the BNN model were initialized
as in EMC, and then the algorithm was run for 7000 iterations
within the same CPU time as that used by EMC. Totally, 700
samples were collected in the same way as in EMC. The overall
acceptance rates of the mutation and exchange moves are 0.35
and 0.53, respectively. As for EMC, we also discarded the first
200 samples, and used the remaining 500 samples to diagnose
the convergence of the simulation. Note on average one iteration
of parallel tempering costs a longer CPU time than that of EMC.
This is because each individual is updated once in every itera-
tion of parallel tempering, while only 40 percents of individuals
are updated in one iteration of EMC if the crossover operation
is performed. In reversible MCMC, the parameters were ini-
tialized as in EMC and then the algorithm was run for 140000
iterations within the same CPU time. Totally, 700 samples were
collected in the same way as in EMC. The overall acceptance
rate of the mutation moves is 0.28, which suggests that the al-
gorithm has been implemented efficiently. Figure 3 shows ten
convergence paths of the Gelman-Rubin statistic R̂ (Gelman and
Rubin 1992) for each algorithm, where each path was computed
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Fig. 3. Convergence paths of the Gelman-Rubin statistic R̂, where each path is computed with 5 independent runs. (a) EMC; (b) parallel tempering;
(c) reversible jump MCMC

with 5 independent runs (a total of 50 runs were made for each
algorithm). In Fig. 3, we see that EMC has made a significant
improvement in mixing of the Markov chain over both parallel
tempering and reversible jump MCMC. For this example, EMC
converges (R̂ < 1.1) very fast, usually within the first several
thousands of iterations.

4.1.2. Parameter setting

In this section, we demonstrate how the optimal setting of M and
λ can be determined by a cross-validation procedure for the BNN
model. The training data was partitioned into two parts. The first
part consists of the first 200 observations for model training and
the second part consists of the next 21 observations for model
validation. All cross settings were tried with M = 4, 5, 6 versus
λ = 5, 15, 25, 35. For each setting, EMC was run for 10 times
independently. Each run consists of 18000 iterations, where the

first 500 iterations were used for the initialization process, the
following 4500 iterations were discarded for the burn-in process,
and the last 13000 iterations were used for inference. A total of
1000 samples were collected from the last 13000 iterations at
the lowest temperature level with an equal time space. The CPU
time used by a single run was about 78 s. The computational
results are summarized in Table 1, which shows MSPE(1)’s and
MSPE(2)’s for various settings of M and λ. Since the neural
network model generally performs well in the later period of the
forecast horizon (Hill et al. 1996, Kang 1991), we only need to
control its performance in the early period by choosing suitable
parameter values. For this example, the setting of M = 5 and
λ = 25 was chosen by minimizing the sum of MSPE(1) and
MSPE(2) in Table 1. The same procedure was also applied to
other examples of this article. For simplicity, in the examples
below we only report the chosen settings of M and λ, and omit
the details of the cross-validation procedure.
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Table 1. Cross-validation results for BNN models: MSPE (1), MSPE
(2) and their standard errors (the numbers in the parentheses) for the
sunspot example, where each value was calculated based on 10 inde-
pendent runs

λ 5 15 25 35

M = 4 258.7 (3.7) 237.9 (8.0) 245.0 (7.7) 232.8 (6.3)
255.0 (4.2) 239.5 (6.6) 262.8 (13.1) 255.8 (11.3)

M = 5 256.4 (5.4) 234.9 (4.2) 231.1 (7.6) 238.1 (7.6)
252.5 (8.1) 242.6 (9.9) 242.3 (11.3) 260.7 (11.6)

M = 6 252.2 (5.5) 232.9 (5.4) 237.8 (7.9) 235.6 (6.5)
263.6 (11.8) 248.8 (6.5) 265.3 (17.9) 257.5 (8.0)

4.1.3. Forecasting performance

The BNN model was applied to the above data set with M = 5
and λ = 25. EMC was run for 10 times independently. Each run
consists of 31000 iterations. The first 500 iterations were used
for the initialization process, the following 4500 iterations were
discarded for the burn-in process, and the last 26000 iterations
were used for inference. A total of 2000 samples were collected
from the last 26000 iterations at the lowest temperature level
with an equal time space. The CPU time used by a single run was
about 130s. The maximum a posteriori (MAP) neural network
structure sampled by EMC is displayed in Fig. 4. The other
computational results are summarized in Table 2 together with
the results reported in the literature.

For comparison, we first consider the Bayesian AR model
averaging approach. Liang, Truong and Wong (2001) proposed
an automatic prior setting for linear regression. They showed
that the automatic prior results in an improved prediction per-
formance over other priors, such as those used in Raftery,
Madigan, and Hoeting (1997) and Fernández, Ley and Steel
(2001). In addition, they showed that the resulting MAP model

Yt-9 Yt-8 Yt-7 Yt-6 Yt-5 Yt-4 Yt-3 Yt-2 Yt-1

Yt

1

Fig. 4. The maximum a posteriori (MAP) BNN structure sampled by
EMC in a run with M = 5 and λ = 25

coincides with the minimum C p model (Mallows 1973). Here
we adopt the program and apply it to this data set with the
maximum lag value p = 9 as in the BNN model. The pro-
gram was run for 5 times independently. In each run 5000
samples were generated and were then used for prediction.
This is the same for the other two examples of this article.
The computational results are summarized in Table 2. Al-
though the results will be different with different prior settings,
more or less, the results presented here give us an impression
of how the Bayesian AR model averaging approach performs
on time series forecasting. See Barnett, Kohn and Sheather
(1996) for an alternative method for Bayesian AR model
estimation.

The TNN model and a non-Bayesian non-neural nonparamet-
ric model were also applied to this data. The TNN software we
used is available in Splus 6.1 by calling the command nnet(·). To
determine the number of hidden units and the smoothing param-
eter for the TNN model, a cross-validation experiment was also
performed. The training data was partitioned in the same way
as in the above cross-validation experiment for the BNN model.
TNN models (with shortcut connections) were trained with all
cross settings with M = 2, 3, 4, 5, 6 versus τ = 0, 0.0001,
0.001, 0.01, 0.025, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.4, 0.5. The
number of input units was fixed to 9 as in BNN models. For each
setting, the TNN model was trained for 100 times independently
with different starting values, and the averaged MSPE(h)’s were
computed for h = 1, . . . , 6. By minimizing

∑6
h=1 MSPE(h),

the setting M = 6 and τ = 0.5 was chosen. We have also tried
the criterion of minimizing

∑2
h=1 MSPE(h) which was used for

the BNN model. We found the models chosen by minimizing∑2
h=1 MSPE(h) are often overfitted to the training data and thus

have a slightly worse forecasting performance than that reported
in Table 2. This is also true for the other examples of this arti-
cle. With the chosen setting, the TNN model was run for 100
times with the 221 observations as the training data. The fore-
casting performance on the last 35 observations is summarized
in Table 2. The TNN models without shortcut connections were
also tried. The results were not comparable with that shown in
Table 2.

At last, we applied the kernel smoothing approach (Auestad
and Tj∅stheim 1990, Härdle and Vieu 1992) to this data set.
The s-step kernel predictor of ym+s given y1, . . . , ym is defined
by

R̂h(ym−p+1, . . . , ym)

=
∑m−s

i=p yi+s
∏1

j=p Kh(ym− j+1 − yi− j+1)∑m−s
i=p

∏1
j=p Kh(ym− j+1 − yi− j+1)

,

where Kh is the Gaussian kernel, p is the order of the model,
and the bandwidth h is selected to minimize

CV (h) = 1

T − p − s + 1

T −s∑
i=p

[yi+s − R̂i (yi−p+1, . . . , yi )]
2,
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Table 2. Comparison of BNN and other time series models for the sunspot example, where MSE denotes the mean squared fitting error, “size”
denotes the number of parameters, MSPE(h) denotes the mean squared h-step ahead prediction error for h = 1, . . . , 6. In the BMA AR, BNNad ,
BNNun, TNN columns, the numbers preceding to and included in the parentheses are the averaged MSPE (over 10 independent runs) and the
standard errors of the average, respectively. BMA AR: Bayesian AR model averaging; BNNad : BNN models with the ad hoc predictor; BNNun:
BNN models with the unbiased predictor; TNN: traditional neural network models; Kernel: kernel smoothing approach. The results of Full AR,
subset AR, SETAR, and bilinear models were taken from Gabr and Subba Rao (1981)

Model Full AR(9) Subset AR BMA AR SETAR Bilinear BNNad BNNun TNN Kernel

MSE 199.27 203.21 201.43 (0.02) 153.71 124.33 124.74 (1.30) 124.74 (1.30) 162.94 (1.13) 78.51
size 10 4 3.56 (0.02) 19 11 27.18 (0.26) 27.18 (0.26) 76 –
MSPE(1) 190.89 214.1 211.07 (0.11) 148.205 123.77 142.03 (3.84) 142.87 (3.87) 171.99 (0.66) 76.80
MSPE(2) 414.83 421.4 414.26 (0.29) 383.9 337.54 347.85 (9.03) 346.44 (8.81) 407.71 (1.08) 317.30
MSPE(3) 652.21 660.38 646.14 (0.56) 675.59 569.79 509.60 (13.57) 513.99 (12.27) 607.18 (2.27) 549.14
MSPE(4) 725.85 716.08 698.23 (0.62) 773.51 659.047 482.21 (13.04) 521.47 (10.40) 615.52 (4.37) 779.73
MSPE(5) 771.04 756.39 736.81 (0.66) 784.27 718.866 470.35 (14.43) 561.94 (12.58) 617.24 (6.03) 780.16
MSPE(6) – – 756.98 (0.71) – – 468.18 (13.88) 577.79 (16.71) 578.15 (6.92) 736.03

with

R̂i (yi−p+1, . . . , yi )

=
∑T −s

k=p,k 
=i yk+s
∏1

j=p Kh(yi− j+1 − yk− j+1)∑T −s
k=p,k 
=i

∏1
j=p Kh(yi− j+1 − yk− j+1)

.

For this data set, we set T = 221. The value of p was de-
termined by a cross-validation procedure as follows. With the
same training data partition as for the BNN and TNN models,
the settings p = 1, . . . , 12 were tried. By minimizing either∑2

i=1 MSPE(i) or
∑6

i=1

∑6
i=1 M S P E(i), we always chose the

same setting p = 3. The model was then re-trained with p = 3.
The forecasting results are shown in Table 2.

Table 2 shows that BNNad is only inferior to the bilinear and
kernel smoothing models for the one and two-step ahead fore-
casts. As the forecast horizon extends, it outperforms all other
models. This result is consistent with the finding of Hill et al.
(1996) and Kang (1991) that neural network models generally
perform better in the latter period of the forecast horizon. We
have three points to note for this table. First, BNNun performs
equally well as BNNad for the short term forecasts (h ≤ 3).
As the forecast horizon extends, the performance of BNNun is
deteriorated by the future disturbances. Comparing to the other
unbiased predictors, full AR, subset AR, BMA AR, and ker-
nel smoothing, it still has the best performance. The other two
examples also suggest that BNNun is worth of being highly rec-
ommended as an unbiased forecast. Second, for the one and
two-step ahead forecasts, the kernel smoothing approach works
the best, followed by the bilinear and BNN models. The predic-
tors based on linear models perform less satisfactorily. When the
true structure of a time series is complex, a simple parametric
model may not be able to capture enough information for an
accurate forecast. In this case, a suitable nonparametric model
may perform well even for the short term forecasts. This point
will be seen again in the next example. Third, neural network
models usually have more parameters than any other linear or
nonlinear parametric models. This is because the activation func-

tion is bounded and the effect of each connection on outputs is
limited.

4.1.4. Sensitivity analysis

To assess the influence of λ on neural network size, fitting and
forecasting performance, we fixed M = 5 and tried λ = 5, 10,
15, 20, 25, 30, and 35. For each value of λ, EMC was run for
10 times independently. The averaged network sizes, MSEs and
MSPEs are shown in Fig. 5(a) and (b). Figure 5(a) shows the
network size increases as λ increases. However, the increasing
rate is decreasing as λ increases. Figure 5(b) shows in a wide
range of λ, 10 ≤ λ ≤ 35, BNN models have similar perfor-
mances in fitting and forecasting. With λ = 5, the BNN model
is clearly not sufficiently trained. The resulting fitting and fore-
casting performances are inferior to the other BNN models with
large λ values. To assess the influence of M , we fixed λ = 25 and
tried M = 4, 5, and 6. The results are summarized in Fig. 5(c)
and (d). Figure 5(c) shows that the network size increases slightly
as M increases even with the same λ. Figure 5(d) shows that all
these three models have almost the same performances in fitting
and short-term forecasting (h < 3), and the model with M = 4
is slightly inferior to the other two models in long-term forecast-
ing (h ≥ 3). This experiment suggests that a slightly large value
of M is preferred in simulation.

To assess the influence of prior variances, we fixed M = 5
and λ = 25, and tried the settings with σ 2

α = σ 2
β = σ 2

γ =
1, 2, 5, 10, and 100. For each setting, EMC was run for 10
times independently. The computational results are summarized
in Fig. 6. It shows that the performance of BNN models is rather
robust to the prior variance. However, the settings σ 2

α = σ 2
β =

σ 2
γ = 2 and σ 2

α = σ 2
β = σ 2

γ = 5 perform the best. The reason
is as follows. In general, a large prior variance results in a large
posterior variance. Large weights usually have a strong effect
on the network output. If the test data has a deviation from the
training data, even if the deviation is very small, the network
output will likely be far from the target as the deviation will be
amplified or twisted by the large weights. On the other hand, if the



22 Liang

lambda

av
er

ag
e 

nu
m

be
r 

of
 c

on
ne

ct
io

ns

5 10 15 20 25 30 35

5
10

15
20

25
30

35

•

•
•

•
• • •

(a)

forecasting step

M
S

P
E

0 1 2 3 4 5 6

10
0

20
0

30
0

40
0

50
0

lambda=5
lambda=10
lambda=15
lambda=20
lambda=25
lambda=30
lambda=35

(b)

•

•

•

M

av
er

ag
e 

nu
m

be
r 

of
 c

on
ne

ct
io

ns

4.0 4.5 5.0 5.5 6.0

24
26

28
30

(c)

forecasting step

M
S

P
E

0 1 2 3 4 5 6

10
0

20
0

30
0

40
0

50
0

M=4
M=5
M=6

(d)

Fig. 5. Assessment of the influence of λ and M on network size, and fitting and forecasting performance for BNN models, where MSPE(0) denotes
the mean squared fitting error, i.e., MSE in Table 2
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Fig. 6. Assessment of the influence of prior variances on network size, and fitting and forecasting performance for BNN models, where MSPE(0)
denotes the mean squared fitting error
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prior variance is too small, the data may not be able to be learned
from sufficiently, and the resulting forecasting performance will
also be poor. For this example, the small value σ 2

α = σ 2
β =

σ 2
γ = 1 is as bad as the large value σ 2

α = σ 2
β = σ 2

γ = 100. This
leads to our use of σ 2

α = σ 2
β = σ 2

γ = 5 for all examples of this
article.

4.2. Canadian lynx data

This data set is the annual record of the numbers of Canadian lynx
trapped in the Mackenzie river district of North West Canada
for the years 1821–1934. It has a total of 114 observations.
As the sunspot data, this data set has also been analyzed by
many authors, including Tong and Lim (1980), Gabr and Subba
Rao (1981), Nicholls and Quinn (1982), Lim (1987), and Tong
(1990).

In this article, we follow Tong and Lim (1980) and Gabr and
Subba Rao (1981) to consider the logarithmically transformed
data (to the base 10), and use the first 100 observations for
model building and the next 14 observations for forecasting.
The PACF of the training data (Fig. 7(a)) shows that (yt−2, yt−1)
or (yt−11, . . . , yt−1) may be an appropriate input pattern for this
example. Considering that the data set only consists of 100 ob-
servations, we suspect that the input pattern consisting of 11
variables may cause the network to be overfitted. Also, the PACF
at lag 11 is only weakly significant. A weak significant correla-
tion is often caused by random errors, especially when the data
set is small. So we chose (yt−2, yt−1) as the input pattern. We
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Fig. 7. (a) The PACF of the logarithm of the Canadian lynx data. (b) The logarithmically transformed Canadian lynx data (points), the fitted curve
(solid line), and the one-step ahead forecasting curve (dotted line). The latter two curves were obtained in one run of EMC with M = 8 and λ = 5

note that Nicholls and Quinn (1982) analyzed this data set with
an AR(2) model.

In the cross-validation experiment, we used the first 90 ob-
servations for model building and the following 10 observations
for model validation. We tried all cross settings with M = 7, 8,
9 and λ = 2.5, 5, 10. The setting M = 8 and λ = 5 was chosen
by minimizing

∑2
h=1 MSPE(h). With this setting, EMC was run

for 10 times independently. Each run consists of 22000 itera-
tions, where the first 400 iterations were used for initialization,
and the following 1600 iterations were discarded for the burn-in
process. From the last 20000 iterations, a total of 2000 samples
were collected at the lowest temperature level with an equal time
space. The CPU time used by the run was about 58 s. Figure 7(b)
shows the fitted and one-step ahead forecasting curves obtained
in one run. The other results are summarized in Table 3.

For comparison, we also applied the Bayesian AR model av-
eraging, TNN, and kernel smoothing approaches to this data
set. In Bayesian AR model averaging, we set the maximum lag
value p = 12 as for the full AR model. In the cross-validation
experiment for the TNN model, we used the same data parti-
tion as that used for the BNN model, and tried all cross set-
tings with M = 3, . . . , 10 and τ = 0, 0.0001, 0.001, 0.01,
0.1, . . . , 0.8. We found the forecasting performance of the TNN
model is rather robust to the variation of M given τ = 0.6.
The setting M = 3 and τ = 0.6 was chosen by minimizing∑6

h=1 MSPE(h). With the chosen setting, TNN was run for 100
times again. The averaged MSPE’s and the standard error of
the average are shown in Table 3. Other criteria were also tried
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Table 3. Comparison of BNN and other time series models for the Canadian lynx example. The notation is as defined in Table 2. The results of
full AR, subset AR, SETAR, and bilinear models were taken from Gabr and Subba Rao (1981)

Model Full AR(12) Subset AR BMA AR SETAR Bilinear BNNad BNNun TNN Kernel

MSE .0358 .0378 .0382 (.00005) .0415 .0223 .0455 (.00021) .0455 (.00021) .0567 (0.0) .0313
Size 12 6 5.13 (.00050) 12 13 9.80 (0.16) 9.80 (.16) 15 –
MSPE(1) .02549 .02233 .02295 (.00018) .01448 .01331 .00851 (.00021) .00858 (.00018) .01770 (.0) .02334
MSPE(2) .07377 .07240 .07690 (.00067) .0259 .04432 .01902 (.00063) .01913 (.00065) .06067 (.0) .03984
MSPE(3) .11612 .11992 .13395 (.00106) .0329 .06282 .02520 (.00097) .02738 (.00100) .08597(.0) .06292
MSPE(4) .16121 .16873 .18683 (.00129) .03744 .07657 .03077 (.00146) .04047 (.00140) .09645 (10−5) .08259
MSPE(5) .18488 .20211 .21903 (.00149) .0481 .08596 .03409 (.00196) .05770 (.00158) .10541 (10−5) .08082
MSPE(6) .18560 .20690 .22381 (.00169) .12268 .07562 .03068 (.00220) .06662 (.00128) .11041 (10−5) .07979

for this example, but the resulting forecasting results are all
inferior to that reported in Table 3. For the kernel smoothing ap-
proach, we tried p = 1, . . . , 12 with the same cross-validation
data partition as for the BNN and TNN models. By minimizing∑2

h=1 MSPE(h) or
∑2

h=1 MSPE(h), we obtained the same set-
ting p = 11. The corresponding forecasting results are given in
Table 3.

Table 3 shows that BNNad outperforms all other models in
forecasting future values for this example. We also tried the
models with λ = 10 and 15. As expected, the fitting is slightly
improved, but the forecasting is slightly deteriorated. For exam-
ple, the MSPE(5)’s (the largest one among the six MSPE values)
are 0.0421 and 0.0416 for the models with λ = 10 and λ = 15,
respectively. Note that even with λ = 10 or 15, BNNad still
offers a significant improvement over the other models shown in
Table 3.
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Fig. 8. (a) The de-trended and deseasonalized unemployment data (×105) of West Germany from January 1948 to May 1980 (inclusive). (b) The
PACF of the training part of the de-trended and deseasonalized unemployment data

4.3. Unemployment data of West Germany

As the third example, we consider the case where the train-
ing data contains outliers. The data is the monthly number of
people registered as unemployed in West Germany for the pe-
riod January 1948–May 1980 (inclusive). The total number of
observations is 389. This data was first analyzed by Gabr and
Subba Rao (1981). We follow Gabr and Subba Rao to remove
the trend and seasonality (12 month period) using the transfor-
mation Xt = (1− B)(1− B12)Yt , where Yt is the original series,
and then work on the series Xt , which is plotted in Fig. 8(a).
Here we regard the rapidly changed values as outliers and use
this example to demonstrate how the series with outliers in the
training region can be modeled by BNN models. For more dis-
cussions on outlier detection and treatments, see Barnett, Kohn,
and Sheather (1996) and Gerlach, Carter and Kohn (1999).
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Table 4. Comparison of BNN and other time series models for the unemployment example. The notation is as defined in Table 2. The results of
full AR, subset AR, and bilinear models were taken from Gabr and Subba Rao (1981)

Model Full AR(12) Subset AR BMA AR Bilinear BNNad BNNun TNN Kernel

MSE .81048 .81831 .85862 (.00035) .36665 .54574 (.01431) .54574 (.01431) .85927 (.00493) .92628
Size 12 5 3.25 (.04) 15 26.9 (0.47) 26.9 (.47) 41 –
MSPE(1) .05111 .05039 .04692 (.00003) .03690 .056145 (.00275) .05643 (.00286) .08073 (.00634) .07796
MSPE(2) .11254 .10981 .04886 (.00003) .07598 .057374 (.00274) .05982 (.00173) .09990 (.01030) .07783
MSPE(3) .16619 .16269 .04618 (.00002) .12446 .057520 (.00164) .05830 (.00165) .09937 (.01151) .07787
MSPE(4) .19934 .19677 .04777 (.00003) .15105 .060659 (.00170) .06152 (.00164) .10108 (.01144) .07739
MSPE(5) .24927 .24865 .04997 (.00003) .19703 .061332 (.00194) .06418 (.00188) .10124 (.01096) .07752
MSPE(6) – – .05239 (.00003) – .060309 (.00254) .06721 (.00275) .09967 (.01001) .07741

We also follow Gabr and Subba Rao (1981) to use the first 365
observations for model building and the next 24 observations for
forecasting. The PACF of the training data is shown in Fig. 8(b),
which suggests that the input pattern (Xt−12, . . . , Xt−1) may be
appropriate for the BNN model. A cross-validation experiment
was done with the first 341 observations for model building,
and the next 24 observations for model validation. All cross-
settings were tried with M = 4, 5, 6 and λ = 10, 15, 20. By
minimizing

∑2
h=1 MSPE(h), the setting M = 4 and λ = 20

was chosen. EMC was then run for 10 times independently with
the chosen setting. Each run consists of 30000 iterations, where
the first 500 iterations were used for weight initialization, the
following 9500 iterations were discarded for the burn-in process,
and 2000 samples were collected from the last 20000 iterations
at the lowest temperature level with an equal time space. The
CPU time used by a single run was about 188s. The results are
summarized in Table 4.

We also applied the Bayesian AR model averaging, TNN,
and kernel smoothing approaches to this data set. In Bayesian
AR model averaging, p was set to 12 as in BNN models. A
cross-validation experiment was also done for TNN models with
M = 2, . . . , 6, τ = 0, .0001, .001, .01, .1, 1, 2, 3, 4, and 5,
and the same training data partition as that used in the cross-
validation experiment for the BNN model. A large value of τ

tends to force all weights to 0, and thus a zero output for all
input patterns. This approximately happens when τ > 5 for this
example. So the maximum value of τ we tried was 5. The setting

Table 5. Comparison of various student-t distributions for modeling the innovations for the unemployment example. The notation is as defined in
Table 2

Degree of freedom t (5) t (10) t (20) t (50)

MSE .87695 (.00685) .79409 (.01651) .67668 (.01457) .64042 (.00911)
Size 22.5 (.5) 24.2 (.5) 24.8 (.4) 25.1 (.5)
MSPE(1) .04806 (.00111) .04690 (.00135) .04516 (.00142) .05560 (.00264)
MSPE(2) .04611 (.00098) .04733 (.00184) .04809 (.00181) .05626 (.00286)
MSPE(3) .04367 (.00045) .04478 (.00140) .05000 (.00220) .05660 (.00364)
MSPE(4) .04502 (.00074) .04640 (.00208) .05193 (.00269) .05875 (.00296)
MSPE(5) .04604 (.00046) .04759 (.00186) .05403 (.00339) .05805 (.00314)
MSPE(6) .04578 (.00038) .04743 (.00189) .05456 (.00388) .05880 (.00345)

M = 2 and τ = 5 was chosen by minimizing
∑6

h=1 MSPE(h).
With the chosen setting, the TNN model was then trained for
100 times independently. The results are shown in Table 4. In the
cross-validation experiment for the kernel smoothing approach,
the settings p = 1, . . . , 12 were tried. We have p = 12 by mini-
mizing either

∑2
h=1 MSPE(h) or

∑6
h=1 MSPE(h). The forecast-

ing results are shown in Table 4. BNNad outperforms all other
predictors in Table 4, except for BMA-AR. Comparing the MSEs
of BNNad and BMA-AR, we see that the BNN model may overfit
to the data due to the presence of outliers in the training region.

To reduce the influence of outliers on BNN training, we sug-
gest a heavy tail distribution, e.g., a student-t distribution, be
used for modeling the innovations to prevent the data from being
over fitted. For this example, we tried t-distributions with degrees
of freedom equal to 5, 10, 20, and 50. For each t-distribution, we
set M = 4 and λ = 20, and ran EMC for 10 times independently
as for the models with the normality assumption. The forecast-
ing results were given in Table 5. Comparing Tables 4 and 5, it
is easy to see that the forecasting performance of BNNad has
been significantly improved by modeling the innovations by the
heavy-tail distributions. Just as expected, Table 5 also shows that
MSE (fitting errors) increases and MSPE (forecasting error) de-
creases as the degree of freedom of the t-distribution increases.
This suggests that a trade-off can be made between fitting and
forecasting errors by choosing different degrees of freedom of
the t-distribution for a time series with outliers presented in the
training region.
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5. Discussion

In this article, we presented a systematic implementation for
Bayesian neural networks in modeling and forecasting non-
linear time series. The selection of hidden units and the selection
of input variables are unified by sampling from the joint poste-
rior distribution of the weights and network structure. Insights
into how to improve the generalization ability of BNN models
are revealed in many respects of the implementation. A heavy
tail distribution, such as a student t-distribution, is proposed to
model the innovations for a time series with outliers presented
in the training region. The numerical results show that BNN
models consistently offer a significant improvement over the
competitors in nonlinear time series forecasting.

Despite these successes, several issues still need to be cautious
in practical applications of BNN models. The first issue is on
the selection of input variables. We suggest the input variables
be determined by examining the PACF of the training data. Al-
though this method works well for all examples of this article, it
is potentially inadequate, as it is an inherently linear technique.
A general method can be designed based on the technique of
Bayesian model averaging as follows.

(a) Choose a large enough value of p, and train a BNN model
with all lag values yt−p, . . . , yt−1 as input variables.

(b) Evaluate the probabilities Pin(
∑M

j=1 Iγ j i ≥ 1 | D), for i =
1, 2, . . . , p, where Pin(·|·) is the posterior probability of the
lag variable yt−i being included in the model.

(c) Set a cut-off value for the posterior probabilities, and re-train
the BNN model with the selected input variables.

The effectiveness of the method depends on many elements,
for example, the number of hidden units and the hyperparame-
ter setting. In fact, the above method has been partially imple-
mented in this article. The p value we used is determined by the
PACF. Our numerical results suggests the p value chosen by this
method may be large enough for BNN models. As for the poste-
rior probability Pin(·|·) evaluation and the cut-off value setting,
they are less important here, as we focus on forecasting or model
averaging instead of model selection. We note that in general
the input variables can also be determined by a cross-validation
procedure.

The second issue is about network size. For BNN, a parsimo-
nious structure is usually not pursued. In a parsimonious model,
the weights are often trained to be extremely large (in abso-
lute value) in order for the model to learn sufficiently from the
training data. As explained before, this often results in a poor
generalization ability. This point is easy to see in Fig. 6, where
the models with prior variance 100 have a smaller network size
(on average) than those with prior variance 2 and 5, but the latter
models perform better in forecasting. A small weight variation
is more important than a parsimonious structure for the general-
ization ability of BNN models. Of course, with the same weight
variation, a parsimonious structure is still preferred for a good
generalization ability.

The third issue is about the treatment of outliers. The unem-
ployment example illustrates our treatment of outliers presented
in the training region of the time series. For outliers presented
in the forecasting region, a self-adjusted procedure for outliers
(Chen and Liu 1993) may be applied to reduce their influence
on forecasting.

A. Appendix

A.1. Mutation

In the mutation operator, a chromosome, say ξ k , is selected at
random from the current population z. Then ξ k is modified to a
new chromosome ξ k ′

by one of the three types of moves, “birth”,
“death” and “Metropolis” (described below). The new popu-
lation z′ = {ξ 1, . . . , ξ k−1, ξ k ′

, ξ k+1, . . . , ξ N } is accepted with
probability

min

{
1, exp{−(H (ξ k ′

) − H (ξ k))/tk}T (z | z′)
T (z′ | z)

}
, (8)

where T (z | z′)/T (z′ | z) is the ratio of the transition probabili-
ties.

Let S denote the set of effective connections of the cur-
rent neural network ξ k , and Sc be the complementary set of
S. Let m = ‖S‖ be the number of elements in S (recall the
definition of m in Section 2). Let P(m, birth), P(m, death)
and P(m, Metropolis) denote the proposal probabilities of the
three types of moves for a network with m connections. For
our examples, we set P(m, birth) = P(m, death) = 1/3 for
3 < q < U , P(U, death) = P(3, birth) = 2/3, P(U, birth) =
P(3, death) = 0, and P(m, Metropolis) = 1/3 for 3 ≤ q ≤ U .
In the “birth” move, a connection, say ζ , is first randomly chosen
from Sc. If ζ ∈ {αi : Iαi = 0} ∪ {γ j i : Iγ j i = 0,

∑p
k=0 Iγ jk ≥

1, 1 ≤ j ≤ M, 0 ≤ i ≤ p}, the move is called the type I “birth”
move (illustrated by Fig. 9(a)). In this type of move, only the

(a) (b)

Fig. 9. Illustration of the “birth” and “death” moves. The dotted lines
denote the connections to add to or delete from the current network. (a)
Type I “birth” (“death”) move; (b) Type II “birth” (“death”) move
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connection ζ is proposed to add to ξ k with weight ωζ being ran-
domly drawn from N (0, σ 2

ξ k ), where σ 2
ξ k is the sample variance of

the effective weights of ξ k . The resulting transition probability
ratio is

T (z | z′)
T (z′ | z)

= P(m + 1, death)

P(m, birth)

U − m

m ′
1

φ(ωζ/σξ k )
,

where φ(·) denotes the standard normal density, and m ′ denotes
the number of deletable connections of the network ξ k ′

. A con-
nection , say υ, is deletable from a network if υ ∈ {αi : Iαi =
1, 0 ≤ i ≤ p} ∪ {γ j i : Iγ j i = 1, 1 ≤ j ≤ M, 0 ≤ i ≤ p} ∪ {β j :
Iβ j = 1,

∑p
i=0 Iγ j i = 1, 1 ≤ j ≤ M}.

If ζ ∈ {β j : Iβ j = 0,
∑p

i=0 Iγ j i = 0, 1 ≤ j ≤ M} ∪ {γ j i :∑p
k=0 Iγ jk = 0, Iβ j = 0, 1 ≤ j ≤ M, 0, ≤ i ≤ p}, the move

is called the type II “birth” move (illustrated by Fig. 9(b)),
which is to add a new hidden unit. In this type of move, if
ζ ∈ {β j : Iβ j = 0,

∑p
i=0 Iγ j i = 0, 1 ≤ j ≤ M}, a connection,

say ζ ′, is randomly chosen from the set of connections from
input units to the corresponding hidden unit, and then ζ and ζ ′

are proposed to add to ξ k together; if ζ ∈ {γ j i :
∑p

k=0 Iγ jk =
0, Iβ j = 0, 1 ≤ j ≤ M, 0, ≤ i ≤ p}, the connection denoted by
ζ ′ from the corresponding hidden unit to the output unit is also
proposed to add to ξ k together with ζ . The weights ωζ and ωζ ′

are drawn independently from N (0, σ 2
ξ k ). The resulting transition

probability ratio is

T (z | z′)
T (z′ | z)

= P(m + 2, death)

P(m, birth)

2(U − m)

(1 + 1/(p + 1))m ′

× 1

φ(ωζ/σξ k )φ(ωζ ′/σξ k )
.

Once the “birth” proposal is accepted, the corresponding indi-
cators are switched to 1.

In the “death” move, a connection, say ζ , is first randomly
chosen from the set of deletable connections of ξ k . If ζ ∈ {αi :
Iαi = 1, 0 ≤ i ≤ p} ∪ {γ j i : Iγ j i = 1,

∑p
k=0 Iγ jk > 1, 1 ≤

j ≤ M, 0 ≤ i ≤ p}, the move is called the type I “death” move
(illustrated by Fig. 9(a)). In this type of move, only ζ is proposed
to for deletion, and the resulting transition probability ratio is

T (z | z′)
T (z′ | z)

= P(m − 1, birth)

P(m, death)

m ′

U − m + 1

φ(ωζ/σ
′
ξ k )

1
,

where m ′ denotes the number of deletable connections of ξ k ,
and σ ′

ξ k denotes the sample standard deviation of the effective

weights of ξ k except for ζ . If ζ ∈ {γ j i : Iγ j i = 1,
∑p

k=0 Iγ jk =
1, ≤ j ≤ M, 0 ≤ i ≤ p} ∪ {β j : Iβ j = 1,

∑p
i=0 Iγ j i = 1, 1 ≤

j ≤ M}, the move is called the type II “death” move (illustrated
by Fig. 9(b)), which is to eliminate one hidden unit from the
network. In this type of move, if ζ ∈ {β j : Iβ j = 1,

∑p
i=0 Iγ j i =

1, 1 ≤ j ≤ M}, the only connection denoted by ζ ′ from some
input unit to the corresponding hidden unit is also proposed for
deletion together with ζ ; if ζ ∈ {γ j i : Iγ j i = 1,

∑p
k=0 Iγ jk =

1, ≤ j ≤ M, 0 ≤ i ≤ p}, the connection denoted by ζ ′ from
the corresponding hidden unit to the output unit is also proposed
for deletion together with ζ . The resulting transition probability

ratio is

T (z | z′)
T (z′ | z)

= P(m − 2, birth)

P(m, death)

(1 + 1/(p + 1))m ′

2(U − m + 2)

×
φ(ωζ/σ

′
ξ k )φ(ωζ ′/σ ′

ξ k )

1
.

Once the “death” proposal is accepted, the corresponding indi-
cators are switched to 0.

In the “Metropolis” move, the weights are updated while keep-
ing the indicator vector unchanged. In this type of move, a ran-
dom direction dm+1 is first randomly drawn in the (m + 1)-
dimensional space, where m + 1 is the total number of parame-
ters of the current BNN model including the number of effective
weights and the parameter σ 2, and then set

ξ k ′ = ξ k + ρkdm+1,

where ρk ∼ N (0, τ 2
k ), τk = κ

√
tk , and κ is a user specified scale

parameter so-called the Metropolis step size. For this type of
move, we have T (z | z′)/T (z′ | z) = 1, since the transition is
symmetric in the sense that T (z | z′) = T (z′ | z) = φ(ρk/τk).
Although the above proposal works well in general, a more so-
phisticated one should take into account the difference of the
scales of different connection groups, and propose separately
for different groups, for example, the scales of {α,β} and γ
may be different. Usually this will improve the mixing of the
Markov chain.

A.2. Crossover

In the crossover operator, different offspring are produced by
a recombination of parental chromosomes randomly selected
from the current population. Suppose that ξ i and ξ j are chosen
as parental chromosomes, new offspring ξ i ′

and ξ j ′
are gener-

ated as follows. First, an integer c is drawn randomly on the
set {1, 2, . . . , M}, then ξ i ′

and ξ j ′
are constructed by swapping

the weights connected with hidden unit c between ξ i and ξ j .
The hidden unit c is called the crossover unit. This operator is
illustrated by Fig. 10. If there are ι crossover units, the opera-
tor is called the ι-unit crossover. In this article, only the 1-unit
crossover operator is used. Comparing to the mutation opera-
tor, it is clear that the crossover operator provides a more global
move in the space of network structures.

A new population is constructed by replacing the parental
chromosomes with the new offspring, and it is accepted with
probability

min

{
1, exp{−(H (ξ i ′

) − H (ξ i ))/ti − (H (ξ j ′
)

−H (ξ j ))/t j }T (z | z′)
T (z′ | z)

}
,

where T (z′ | z) = P(ξ i , ξ j |z) P(ξ i ′
, ξ j ′ | ξ i , ξ j ), P(ξ i , ξ j |z) =

2/N (N − 1) denotes the selection probability of (ξ i , ξ j ) from
population z, and P(ξ i ′

, ξ j ′ | ξ i , ξ j ) denotes the generating prob-
ability of (ξ i ′

, ξ j ′
) from the parental chromosomes (ξ i , ξ j ). The
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(a) (b)

Fig. 10. Illustration of the crossover operator. The dotted lines denote
the connections to exchange between the two networks

ι-unit crossover operator is symmetric, i.e., P(ξ i ′
, ξ j ′ |ξ i , ξ j ) =

P(ξ i , ξ j |ξ i ′
, ξ j ′

). Thus, we have T (z | z′)/T (z′ | z) = 1 for the
crossover operator.

A.3. Exchange

Given the current population z and the attached temperature
ladder t , we try to make an exchange between ξ i and ξ j

without changing the t’s; that is, initially we have (z, t) =
(ξ 1, t1, . . . ,ξ i , ti , . . . , ξ j , t j , . . . , ξ

N , tN ) and we propose to
change it to (z′, t) = (ξ 1, t1, . . . , ξ j , ti , . . . , ξ i , t j , . . . , ξ N , tN ).
The new population is accepted with probability

min

{
1, exp

{
(H (ξ i ) − H (ξ j ))

(
1

ti
− 1

t j

)}
T (z | z′)
T (z′ | z)

}
.

Typically, the exchange is only performed on two chromosomes
with neighboring temperatures, i.e., |i − j | = 1. Let p(ξ i ) be the
probability that ξ i is chosen to exchange with the other chro-
mosome and wi, j be the probability that ξ j is chosen to ex-
change with ξ i , then T (z′ | z) = p(ξ i )wi, j + p(ξ j )w j,i . Thus,
T (z′ | z)/T (z | z′) = 1 for the exchange operator.

Comment

The program is available by an request to the author.
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