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Introduction

Mathematics is distinguished from most other sciences
by a lack of consensus on the content of an introduc-
tory overview for potential majors and other serious stu-
dents. Chemists offer Chemistry 101–102, typically an
introduction to the major branches of chemistry. We
traditionally offer a year of calculus, followed in the sec-
ond year by more calculus and perhaps some differential
equations and linear algebra. This is hardly a balanced
introduction to the nature and variety of mathematics.
Attempts at reform have been common, and so has their
failure. Table 1 shows one current reform proposal, the
contents of a version of “Mathematics 101–102” devel-
oped with NSF funding (COMAP, 1997). There is no
calculus, which is left for the second year. There is also
no statistics, though probability does appear.

The absence of statistics in “Mathematics 101–102”
should attract comment. After all, CUPM recommended
in 1981 that “other mathematical sciences courses, such
as computer science and applied probability and statis-
tics, should be an integral part of the first two years of
study.” (See Steen 1989, page 5.) This suggestion has
generally brought agreement in principle (though little
action). I want to offer a partial disagreement in prin-
ciple. I will argue that, whatever the merits of “Math-
ematics 101–102,” its authors have done the right thing
about probability and statistics. They have included the
first and omitted the second. To my taste, they would
have done well to exercise the same rigor with respect
to computer science, in exchange for some continuous
mathematics in the first college year. The point is this: a
mathematics core ought to display to students the nature
and variety of mathematics, including its applicability,
but is not the place to develop the principles of related
fields. Probability has an important place within math-
ematics. Statistics does not, and an attempt to include
it will be disruptive.
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MATH 101–102?

• CHANGE (sequences, difference equations, series)

• POSITION (vectors, analytic geometry)

• LINEAR ALGEBRA (matrices, eigenstuff, projec-
tions)

• COMBINATORICS

• GRAPHS AND ALGORITHMS

• ANALYSIS OF ALGORITHMS (time-complexity)

• LOGIC AND THE DESIGN OF “INTELLIGENT”
DEVICES

• CHANCE

• MODERN ALGEBRA (groups, coding theory)

Table 1

Probability in a mathematics core

Probability has immediate attractions for a mathematics
core. Chance phenomena are part of everyday experi-
ence and are important in the pure and applied sciences.
Probability, the mathematical description of chance, is
therefore especially attractive if mathematical modeling
is one of the principles guiding the core curriculum. This
is not true merely because probability models are inter-
esting and have a wide field of application. Most areas
of mathematics, when applied to modeling, describe de-
terministic behavior. It is intellectually stimulating to
see how mathematics can also describe chance behav-
ior. The chapter on “Some miscellaneous applications
of simple probability” in Noble (1967) remains a good
source of simple physical models. Areas such as learning
(of rats, alas, not people), genetics, and transmission of
rumors or disease are among the biological applications
of probability modeling.

Moreover, probability tools that are both discrete and
elementary are powerful enough to be interesting. Con-
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ditional probability and tree diagrams for multistage
processes, though in simple settings they amount to lit-
tle more than codified thinking about percentages, allow
striking examples. Topics like finite Markov chains are
only slightly further afield.

Example 1. ELISA tests are used to screen donated
blood for the presence of HIV antibodies. When anti-
bodies are present, ELISA is positive with probability
about 0.997 and negative with probability 0.003. When
the blood tested lacks HIV antibodies, ELISA gives a
positive result with probability about 0.015 and a neg-
ative result with probability 0.985. (Because ELISA is
designed to keep the AIDS virus out of blood supplies,
the higher probability 0.015 of a false positive is accept-
able in exchange for the low probability 0.003 of failing
to detect contaminated blood. These probabilities de-
pend on the expertise of the particular laboratory doing
the test. The values given are based on a large national
survey reported in Sloand et al. (1991).)

Now suppose that HIV screening is imposed on a large
population, only 1% of which carry the antibody. Figure
1 displays the tree diagram of outcomes. We calculate
easily that the probability that a person chosen at ran-
dom from this population tests positive is 0.0249, and
that the conditional probability that a person who tests
positive has the antibody is 0.4016. That is, 60% of
positive test results are false positives.

Even though ELISA is quite accurate, most positives
are false positives when the test is applied to a popula-
tion in which true positives are rare. Similar results hold
for drug screening and lie detectors. Gastwirth (1987)
offers a sophisticated treatment.
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Probability also illustrates the interconnections among

subfields that characterize contemporary mathematics.
That is true at the advanced level, where probabilis-
tic tools are important in areas such as number the-
ory, PDEs, and harmonic analysis. But interconnec-
tions also appear in the first two years of college study,
and are important to solving the “so much mathemat-
ics, so little time” problem. The use of combinatorics
in calculating probabilities in symmetric settings is well
known. Overemphasis on combinatorics has tradition-
ally left students mystified by supposedly elementary
probability, so I prefer to play down counting unless it
will be studied and used elsewhere in the core. Cal-
culations of continuous probabilities and expected val-
ues apply integration in ways that emphasize concep-
tual interpretations: probability is area under a curve,
expected value is a weighted average of possible out-
comes. A student who sees why expected value as an
integral, E[X] =

∫
xp(x)dx, is the continuous analog of

the discrete expected value as a sum, E[X] =
∑

xip(xi)
gains real insight into integration. Even discrete prob-
ability leads to the binomial theorem, geometric series,
and other mathematical commonplaces. Finite Markov
chains use the language and tools of matrix theory. And
so on.

Probability also illustrates the power of abstraction in
mathematics. The same rules describe all legitimate
probability models, though the assignment of specific
probabilities may vary greatly in nature and complex-
ity. We can establish many facts once in general, than
appeal to them in varied settings. If the use of an ax-
iomatic approach is one of the themes of the core cur-
riculum, the fact that all of general probability emanates
from just three axioms is appealing. (I want to demon-
strate the power of abstraction much more than I want
to work from axioms. And in practice, we can deal ax-
iomatically only with finite probability spaces, lest we
meet the ugly fact that we can’t assign probabilities to
all sets of outcomes.)

Finally, probability lends itself to computer simula-
tion as a tool for learning and for modeling. I be-
lieve that students ought to meet technology whenever
“real” uses of the mathematics would employ technol-
ogy. Simulation is one such setting. Simulations can
demonstrate both the short-run unpredictability of ran-
dom phenomena and the long-run regularity that prob-
ability describes. They allow study of problems that are
simply stated but too hard for undergraduate analytical
skills. (Probability abounds in such problems. Toss a
balanced coin 10 times. What is the probability of get-
ting a run of 3 or more consecutive heads?) Simulation
can even help link probability to other topics in mathe-
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matics, through for example use of Monte Carlo methods
to evaluate definite integrals.

There is room for differences of taste in selecting from
this rich array of accessible material. My pedagogical
taste runs to the concrete, and to developing mathemat-
ics in the context of applications. Simulation appeals to
my taste for hands-on work and for technology. I would
play down combinatorics and abstract general probabil-
ity. Whatever our taste, interconnections among core
topics are important both for efficiency and to illustrate
the unity of mathematics. We should choose topics from
probability (and from other subfields as well) with a view
to the curriculum as a whole. That is, the first question
to ask of any aspect of probability (or linear algebra,
or calculus) is not how well it introduces the profes-
sional’s view of that subfield, but how it contributes to
an overview of mathematics in the context of selected
aspects from other subfields.

Curriculum planners considering material from proba-
bility might seek inspiration from Snell (1988). Though
aimed at upperclass students, the book is rich, concrete,
makes heavy use of computing, and offers nice historical
remarks. It is, however, a mathematician’s book with
little attention to modeling.

The trouble with probability

The trouble with probability is that it is conceptually
the hardest subject in elementary mathematics. Psy-
chologists, beginning with Tversky and Kahneman, have
suggested that our intuition of chance profoundly con-
tradicts the laws of probability that describe actual ran-
dom behavior. They have also demonstrated that incor-
rect concepts remain firmly embedded in students who
can correctly solve formal probability problems. See e.g.
Tversky and Kahneman (1983) and the collection by
Kapadia and Borovcnik (1991). Garfield and Ahlgren
(1988) conclude a review by stating that “teaching a
conceptual grasp of probability still appears to be a very
difficult task, fraught with ambiguity and illusion.”

We run the risk—no, we face the near certainty—that
students will learn a formalism not accompanied by a
substantial understanding of the behavior that the math-
ematics describes. Probability is the count of favorable
outcomes divided by the count of all outcomes. Proba-
bility is area under a curve and can be found by integra-
tion. The record suggests that we are unlikely to move
most students beyond that level of understanding.

One root of the trouble with probability is lack of ex-
perience with the long-term regularity that the math-
ematics purports to describe. Chance variation is fa-

miliar, but chance appears haphazard because we very
rarely see the large number of similar trials needed for
the emergence of regular patterns. It is not accidental
that games of chance, which impose a structure of re-
peated independent trials, were the historical setting for
Pascal and Fermat and have been a staple of teaching
ever since. Simulation allows learners to gain some ex-
perience with long-run chance behavior. We ought to
mix simulation and model building with the mathemat-
ics that so strongly appeals to us. We ought to note spe-
cific instances (such as the prevalence of runs and other
“nonrandom” behavior in short sequences of random tri-
als) in which our intuition fails. But we should also be
aware in advance that, given the limited time available
in a core curriculum for extended experience with chance
behavior, a conceptual understanding of probability will
elude many of our students.

The trouble with statistics

The trouble with statistics is that it is not mathematics.
It is a discipline that (like economics or physics) makes
heavy and essential use of mathematics but has its own
subject matter. Many engineers and scientists will find
a knowledge of statistics useful and will wish to study
the subject. Most mathematics students should study
some statistics as a quantitative tool that complements
their mathematical training. Selected applications from
statistics (or economics, or physics) can add richness to
the mathematics core curriculum. But it is unfair to
both mathematics and statistics to attempt a substantial
treatment of a separate discipline in the mathematics
core.

That bald statement reflects the self-understanding
of most statisticians. It may surprise some mathemati-
cians, who regard statistics as a (somewhat trivial) field
of mathematics. Probabilists, specialists in the field
of mathematics most applied in statistics, often know
better—note David Aldous’s (1994) saying that he “is
interested in the applications of probability to all sci-
entific fields except statistics.” Let me outline the facts
behind the position. Moore (1988) is a more polemical
statement of the case.

Statistics is a methodological discipline, the science
of inference from empirical data. Under the influence of
computing, statistics research and (more slowly) instruc-
tion have in recent years returned to their roots in data
and scientific inference. Here is the statistician’s view of
statistics. For more detail, see the essays in Hoaglin and
Moore (1992).

Data analysis, the examination of data for interesting
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patterns and striking deviations from those patterns, is
one of the main foci of contemporary statistics. Data
analysis uses both an ample kit of clever tools and a
clear strategy for exploring data, but it has no math-
ematical theory. Graphical display, usually automated
and made interactive via software, is always the starting
point. Numerical summaries and (sometimes) compact
mathematical models follow. Data analysis is specific
and concrete. As George Cobb likes to say, “In math-
ematics, context obscures structure. In data analysis,
context provides meaning.” In mathematics, abstraction
often gets to the heart of the matter. In data analysis,
abstraction strips away the details of a particular data
set, and so hides the matters of greatest interest.

Designs for data production through sample surveys
and experiments have long been a staple of statistics in
practice. Their elementary principles are core content
in statistics instruction, and their detailed elaborations
provide employment for professional statisticians. Al-
though one central idea—the deliberate use of chance
selection in producing data—provides a basis for proba-
bility analysis, data production like data analysis is not
an inherently mathematical subject.

Formal inference is the area of statistics that does have
a mathematical theory, based on probability. In fact, in-
ference has several competing theories. The domain of
applicability of formal inference is more restricted than
that of data analysis. How restricted is disputed. Be-
cause statistical inference is a formalization of inductive
inference from data to an underlying population or pro-
cess, it is full of conceptual difficulties and heated de-
bates. The debates concern not the correctness of the
mathematics, but the nature and scope of inferential
reasoning. Statistical inference is based on mathemati-
cal models, but now places heavy emphasis on diagnos-
tics, methods that allow data to criticize and even falsify
models. The result in practice is a dialog between data
and model that reflects the empirical spirit of data anal-
ysis. Here is a very brief example of the inadequacy of
a mathematics-based approach to formal inference even
when diagnostics and philosophy are left aside.
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Example 2. A standard setting for elementary infer-
ence is the two-sample problem: two independent sets
of observations are drawn from populations assumed to
be normally distributed. We wish to compare (say) the
mean responses µ1 and µ2 in the populations. The math-
ematical model is

X1, X2, . . . , Xn iid N(µ1, σ1)

Y1, Y2, . . . , Ym iid N(µ2, σ2)

Formal inference is based on this model. But the model
is radically incomplete. The model, and the formal in-
ference, is the same for two independent samples from
two populations and for data from a randomized com-
parative experiment. Yet the experiment (Figure 2) is
intended to allow cause-and-effect conclusions, while an
observational study cannot give convincing evidence of
causation. The distinction between observation and ex-
periment, and the reasoning of randomized comparative
experiments, are among the most important topics in ba-
sic statistics. They are inherently statistical, with little
mathematical content, and are out of place in a mathe-
matics curriculum.

The American Statistical Association and the MAA
have formed a joint committee to discuss the curriculum
in elementary statistics. The recommendations of that
group reflect the view of statistics just presented. Here
are some excerpts (Cobb (1991).

Almost any course in statistics can be improved
by more emphasis on data and concepts, at the
expense of less theory and fewer recipes. To
the maximum extent feasible, calculations and
graphics should be automated.

Any introductory course should take as its main
goal helping students to learn the basics of sta-
tistical thinking. [These include] the need for
data, the importance of data production, the
omnipresence of variability, the quantification
and explanation of variability.

Data analysis, statistical graphics, data production,
and even the somewhat arcane reasoning behind “sta-
tistical significance” are mismatched with the mathe-
matical content needed by potential math majors. Yet
“statistics” that ignores these topics isn’t a responsible
introduction to statistics. Statistics in a mathematics
core curriculum is an oxymoron.

I should add at once that although mathematics can
prosper without statistics, the converse fails. Bullock’s
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(1994) claim that “Many statisticians now insist that
their subject is something quite apart from mathematics,
so that statistics courses do not require any preparation
in mathematics.” draws a clearly false implication. Al-
though the place of statistics in mathematics instruction
may be marginal, the place of mathematics in statistics
instruction remains central.

Applications of Mathematics in
Statistics

The decision not to teach statistics for its own sake does
not rule out applying mathematics to statistical prob-
lems. Consider, for example, the topic of prediction.

Example 3. Knowing which of several groups some-
thing belongs to can help predict its properties if the
groups differ in the property we want to predict. For ex-
ample, knowing that a hot dog is a “meat hot dog” or a
“poultry hot dog” in the government classification helps
predict how many calories the hot dog has. Given data
on many brands of meat and poultry hot dogs, we find
that the mean calorie count is about 160 for meat and
125 for poultry. With no other information, we might
use the group mean as a prediction for an individual hot
dog.

Interesting use of elementary mathematics arises from
looking for optimal predictions. The mean is optimal if
our criterion is to minimize the sum of the squares of
the errors made. The median is optimal if we seek to
minimize the sum of the absolute errors. The midrange
is optimal if we wish to minimize the maximum error.
There is no simple rule for the point that minimizes the
median of the absolute or squared errors. This simple
setting leads to: the idea of optimization by stated cri-
teria; the fact that the optimal result can vary with the
criterion; the fact that the solution may not be unique
(the median often isn’t) and may not have a simple ex-
pression; and of course the technique needed to minimize
the criterion functions. Can students show by counterex-
ample that the median, which minimizes the mean abso-
lute error, does not minimize the median absolute error?
Can they show by example for n = 3 that the least me-
dian of squares solution is radically unstable?

Example 4. Now suppose that we have more informa-
tion on which to base a prediction. We have data on an
explanatory variable x as well as on the response y we
wish to predict. For example, we may want to use the
height x from which a rubber ball is dropped to predict
its rebound height y.

Plot the data. The graph shows an approximate
straight line relationship—not perfect due to measure-
ment error and other factors. If we draw a line through
the data, we can use the fitted line to predict y from x.
What line shall we draw? Ask the students to discuss
criteria. Distances from points to a line are usually mea-
sured perpendicular to the line. But in this setting it is
usual to use vertical deviations because we are predicting
y. The least squares criterion (minimize the sum of the
squared vertical deviations) leads by elementary calcu-
lus to recipes for the slope and intercept of the optimal
line. Formulating the problem requires more thought
than solving it. If we prefer to minimize the sum of the
absolute vertical deviations, on the other hand, there
is no closed-form solution. If we attempt to minimize
the median of the absolute deviations, there is no sim-
ple recipe for the solution and the computations rapidly
become infeasible.

These examples require little background in statistics;
even the goal of prediction can be removed if the instruc-
tor wishes. They are also chosen to avoid probability, the
branch of mathematics most often applied to statistics.
For the purposes of a core mathematics curriculum, good
applications in another discipline must be comprehensi-
ble without much grounding in that discipline. This is
as true of applications to statistics as to physics or eco-
nomics.
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