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Summary
Statistical education now takes place in a new social context. It is influenced

by a movement to reform the teaching of the mathematical sciences in general.
At the same time, the changing nature of our discipline demands revised content
for introductory instruction, and technology strongly influences both what we
teach and how we teach. The case for substantial change in statistics instruc-
tion is built on strong synergies between content, pedagogy, and technology.
Statisticians who teach beginners should become more familiar with research on
teaching and learning and with changes in educational technology. The spirit
of contemporary introductions to statistics should be very different from the
traditional emphasis on lectures and on probability and inference.
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1 Introduction

No one concerned about the teaching of the mathematical sciences can have missed the
movement to reform teaching at all levels. In the United States, new standards for school
mathematics (NCTM, 1989), calculus reform (e.g., Steen, 1988), and broader manifestos
by the National Research Council (1990, 1991) have all called for change in traditional
approaches. The teaching of any active branch of knowledge, like the church, is of course
“reforming and ever to be reformed.” Calls to modernize what we offer students are always
with us. What is striking about the current reform movement is not only its momentum but
the fact that it centers on pedagogy as much as content. We ought, say the reformers, to
radically alter our style of teaching. In this paper I examine critically the reform thesis as it
affects statistics. I am particularly concerned with the interaction between new content and
new pedagogy in the teaching of statistics to beginners at the university level.

Sections 2, 3, and 4 provide some background. They briefly summarize the context
of reform, the elements of reformed pedagogy, and trends in the content of introductory
statistics teaching. I offer some opinions about both pedagogy and content, too briefly to
do more than (I hope) provoke thoughtful reaction but fortified with references for those
who want to read further. Section 5 announces my main thesis: that changes in content,
pedagogy, and technology reinforce each other in a way that strengthens the case for change
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in our teaching. The remaining sections of the paper apply the method of considering all three
domains to comment on several specific developments in statistics teaching, in particular on
several new and old technologies.

2 The context of reform

The call for change takes place in a context, the first element of which is what David Vere-
Jones (1995) calls the democratization of mathematics. Mathematics is no longer embedded
in a deliberately elite curriculum, but is seen as a necessary part of the general education of
all citizens. The gap between the level and quantity of school mathematics studied by men
and women, by students from various social strata, and by cultural minorities and dominant
cultural groups, is steadily shrinking in most nations. The proportion of secondary school
graduates who go on to post-secondary education has increased sharply. Even in the United
States, where this proportion had already reached 50% in the early 1960s and remained there
through the early 1980s, it surpassed 60% in the 1990s. We therefore teach a more diverse
and less specialized student population than in the past. In some countries, such as South
Africa, the change is revolutionary in scope and rapidity.

Democratization tends to move mathematical studies away from the esoteric toward the
immediately useful. University faculty rightly want to educate, but most of our students—
also rightly—seek career preparation as well. We argue that we are preparing students for
a career, not simply for their first year on the job. We argue that larger principles and
deeper understanding will carry students further than a few specific skills. All true. Yet
it is difficult for us who have been socialized into the peculiar culture of university faculty
to recognize how esoteric we have allowed university mathematics in particular to become.
We imagine (incorrectly) that dominance of the abstract over the concrete, absence of ties
to applications, and an emphasis on rigor over fluency of use are inherent in the discipline.
We value, in Richard Feynman’s words, precise language over clear language. Reformers
urge a change of culture toward the concrete, toward applications, toward ability to use
mathematical concepts and tools over rigor of detail. They offer pedagogical reasons, but
they are also responding to the pressures of democratization. This is an opportunity for
statistics: as mathematical studies shift toward a more utilitarian approach, a larger place
for statistics (understood broadly as dealing with data and chance) opens up.

Democratization is driven in part by the quantization of society. Employment increasingly
requires analytical, quantitative, and computing skills, and these requirements put pressure
on educational systems. Note carefully that it is not at all clear that statistical skills in the
traditional sense are required. Few people will need to interpret ANOVAs, fewer will need
to carry them out, and still fewer will need to understand the details behind the ANOVA
software. This is the counterpoint to the larger place for statistics that is a consequence of
democratization. Our teaching must therefore avoid the “professional’s fallacy” of imagining
that our first courses are a step in the training of statisticians. We should ask whether
traditional introductions to statistics for general students are too narrow.

The quantization of society is in its turn driven by the implacable advance of technology.
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Changes in computing, communications, and multimedia come so rapidly that comments in
a printed journal are out of date before publication. Technology changes how we teach as
well as creating demands for teaching new content.

My thesis is that the most effective learning takes place when content (what we want
students to learn), pedagogy (what we do to help them learn), and technology reinforce each
other in a balanced manner. Specialists in each of these three areas tend to underestimate
the importance of the others—witness the hostility of many content experts to advice from
those who do research on teaching and learning. I am of course a content expert writing for
other content experts. Caveat lector.

3 The new pedagogy

How can we best help students learn? Figure 1 summarizes the reform diagnosis and pre-
scription. Both the diagnosis and the prescription are based on research on teaching and
learning. Research that bears directly on the teaching and learning of statistics and proba-
bility is summarized in Garfield (1995), Garfield and Ahlgren (1988), Kapadia and Borovcnik
(1991) and Shaughnessy (1992). The central idea of the new pedagogy is the abandonment
of an “information transfer” model in favor of a “constructivist” view of learning: Students
are not empty vessels to be filled with knowledge poured in by teachers; they inevitably
construct their own knowledge by combining their present experiences with their existing
conceptions.

Figure 1 near here

In practice, the new pedagogy asks us to change what students do from listening and
reading to active participation. We may replace or supplement traditional expository texts
by new texts that structure student activities, e.g., Pearl and Stasny (1992), Rossman (1996),
Scheaffer et al. (1996), Spurrier et al. (1995), Tanner (1990). The abundance of these recent
books suggests the changing nature of introductory instruction in statistics. We may retain
an expository text and continue to do some presentation in the classroom, while moving in
the direction of more interaction and more student activity. As one of the best expositions
of a moderate reforming position (National Research Council, 1991) puts it:

What is needed is a variety of activities, including discussion among pupils, prac-
tical work, practice of important techniques, problem solving, application to ev-
eryday situations, investigational work, and exposition by the teacher.

“Variety” is the key word in this summary. My own classroom style is now more varied.
I ask more questions—if students should see the next step, I ask them rather than telling
them. Students bring something to class every day—an attempt at a problem, output from a
template computer program, an item of data about themselves. Students break occasionally
into small groups to discuss an example or attempt a problem. I give shorter but more
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frequent examinations. I insist that problem solutions state a conclusion in the context from
which the data come—a number, a graph, or “Reject H0” are not adequate solutions. And
so on.

Opinions. In the large, the reformers are right. My anecdotal experience conforms to
the systematic studies: although we may “cover” somewhat less material when we increase
interaction in our classrooms, students appear to emerge with a greater store of usable
knowledge. This overall conclusion should not be forgotten amidst the qualifications to
which I now turn.

Reformers often slight the genuine usefulness of “telling,” both by lectures and by texts.
Students profit from a systematic overview of an academic subject, and they are unlikely to
“construct” or “discover” the big picture for themselves. Moreover, learning how to learn is
one goal of education. We want our students to learn to take a lecture home and interact
with it in an exploratory and constructive fashion without explicit guidance—in effect, to
learn to build their own program of active learning on an efficient but passive transfer of
information. The reformers’ antipathy to lectures reflects in part the origins of the reform
movement in studies of school mathematics, and requires some moderation at the university
level.

It is nonetheless more important for teachers to remember that we overvalue lectures. We
overvalue them in part because they worked for us when we were students. What worked
for us, however, is not necessarily effective for our students. We are unusual. We are the
survivors, the fittest by quite esoteric standards of fitness. The reformers are right: most of
us should lecture less most of the time. This is a fundamental change in the nature of much
university teaching. It moves our teaching of beginners in the direction of the collaborative
mentor-apprentice model that we have long preferred for post-graduate instruction.

A second qualification concerns the harm that can come from taking the constructivist
position to extremes. In the world of mathematics education research, the realization that
active learning is essential is sometimes called “naive constructivism.” It is academically
more respectable to espouse “radical constructivism” or “social constructivism.” The careful
language of several leaders in the field suggests the direction. Here is Ernst von Glasersfeld
(1990) on the central tenet of radical constructivism:

The function of cognition is adaptive, in the biological sense of the term, tending
towards fit or viability, and cognition serves the subject’s organization of the
experiential world, not the discovery of an objective ontological reality.

Paul Cobb et al. (1992) express the social constructivist view:

Mathematical truth is accounted for in terms of taken-as-shared mathematical
interpretations, meanings, and practices institutionalized by wider society. . . .We
do not dwell on the traditional question of whether or not something is true in
an ahistorical, culture-free sense but instead treat mathematical interpretations
or solutions that are considered to be true by members of a community as being
practically true in particular situations.
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Both viewpoints attack the relevance (and sometimes the existence) of an objective “re-
ality” that constrains the experiences that learners organize. Mathematicians usually ask
rhetorically in which cultures 2 + 2 (in whatever notation) does not equal 4, and the debate
over the nature of mathematics is relaunched. The claim that knowledge is socially (or even
individually) constructed seems more applicable to statistics than to mathematics. My real
concern is that extreme versions—some might call them parodies, but I have met educators
who expouse them—of these positions have paralyzing effects on attempts to help students
learn. Taken to its limits, radical constructivism suggests that because we all construct our
own knowledge, teaching is essentially impossible. No one’s preconceptions can be said to
be “wrong,” even if the preconception in question is that the logarithm acts like a linear
function. Social constructivism suggests that because knowledge is socially constructed, with
no necessary correspondence to any truth “out there,” teaching in any active sense is akin
to indoctrination.

That way lies madness. Teachers of the mathematical sciences would, I think, be wise
not to start in the direction of radical or social constructivism. These academic positions
give us no practical aid. We do better to remain naive. Even in a thoroughly reformed
classroom, the teacher has a special place earned by training, maturity, and, yes, knowledge.
Guide, facilitator, moderator, provoker rather than lecturer she may now be, but she still
wants her students to move in specific directions, toward specific mathematical and statistical
competence.

4 Changing content in statistics

What we want beginners to learn about statistics has changed dramatically in the past gener-
ation. Older introductions to the discipline were dominated by probability-based inference.
Students learned to carry out specific procedures to gain answers to well-posed questions
under somewhat restrictive assumptions. A modern first course will (in my opinion) offer
a more balanced introduction to data analysis, data production, and inference. Exploring
data, designing data production, using diagnostic tools to ask whether a proposed method
of inference is appropriate have a “back and forth” flavor quite unlike the “straight ahead”
nature of traditional statistical calculations. Why have we changed?

The chain of influence begins once again with technology. The continuing revolution in
computing first changed the practice of statistics, then changed our tastes for what con-
stitutes interesting research in statistics. More slowly, the combined weight of technology,
professional practice, and research tastes have influenced introductory instruction (at least
when the instructor is a statistician).

An account of the changes now underway, in an informal style with amusing comments
from many individuals, appears in Cobb (1992). This is the report of the joint curriculum
committee of the American Statistical Association (ASA) and the Mathematical Association
of America (MAA). The Board of Directors of ASA has approved the brief form of the
committee’s recommendations that appears in Figure 2. The third heading in that display
endorses active learning. I will use the first two headings to structure my brief comments on

5



content.

Figure 2 near here

More data and concepts: First courses should offer experience working with data from
real problem settings. They should concentrate on the things that can’t (at least yet) be
automated, such as interpretation of graphics, strategies for effective exploration of data,
basic diagnostics as preliminaries to inference, and the conceptual meaning of “P -value,”
“confidence,” and “statistical significance.” The other side of this coin is fewer recipes and
derivations: Grasp of the reasoning of inference is more important than how many individual
procedures we touch on, and derivations should only be done if they convince our students.
Formal proofs and algebraic derivations convince us, but recall once more that what worked
for us is not necessarily effective for our students.

Emphasize statistical concepts: “Statistics has its own substance, its own distinctive
concepts and modes of reasoning. These should be the heart of the teaching of statistics to
beginners at any level of mathematical sophistication.” Those words appear in the opening
paragraph of Moore (1992), where I elaborate on that theme. There are few principles
I hold more strongly. A student who emerges from a first statistics course without an
appreciation of the distinction between observation and experiment and of the importance
of randomized comparative experiments, for example, has been cheated. Those specific
examples are instructive, for they point to core statistical ideas that are not mathematical
in nature.

Automate computations and graphics: After perhaps a short example done by hand
for pedagogical purposes, means and standard deviations are buttons on a calculator and
scatterplots with regression lines are menu items in software. Automating computations is
controversial among mathematicians. It is much less controversial among statisticians, as
it reflects the practice of our discipline. Some consequences will appear in the following
sections.

Opinions. It is already clear that I think the trend toward emphasizing data and
concepts is healthy. Increased emphasis on data analysis and data production yields a broader
and more broadly relevant introduction to statistics. Here are some further suggestions.

We would do well, in response to the opportunities created by democratization, to further
broaden the scope of our introductory instruction. It is, recall, users of statistics and citizens
who sit before us, not future professional statisticians. Issues of data ethics, for example,
are important and are of interest to a broad range of students. Perhaps “informed consent”
and “confidentiality” belong alongside “scatterplots” and “simple random samples” in our
syllabus. Perhaps even a brief discussion of the nature of official statistics and the organi-
zation of national statistical offices is in order. Here is a major aspect of our profession that
is invisible in our teaching. Ethics and official statistics (for the United States) both receive
substantial exposition in Moore (1997). This text is unusual in having students in the liberal
arts as its target audience; instruction for other groups of students might also consider these
and other innovative topics.
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If we devote more attention to hands-on data analysis and the design of data production,
and perhaps mention data ethics and official statistics, we shall have to reduce the attention
paid to some traditional topics. My candidate for the guillotine is formal probability.

Experienced teachers recognize that students find probability difficult. Research on learn-
ing confirms our experience. Garfield and Ahlgren (1988) document the fragility of prob-
ability concepts even among students who can work formal probability problems. They
conclude that “teaching a conceptual grasp of probability still appears to be a very difficult
task, fraught with ambiguity and illusion.” They recommend exploring “how useful ideas of
statistical inference can be taught independently of technically correct probability.”

In my opinion, only an informal grasp of probability is needed to follow the reasoning of
standard statistical inference. That reasoning is based on consistently asking the question,
“What would happen if we did this many times?” The sampling distribution of a statistic
answers that question in full, and leads to the more specific answers summarized by confi-
dence levels and P -values. Sampling distributions can be demonstrated by simulation and
studied by the tools of data analysis. The distribution of a variable, not probability in any
formal sense, is the conceptual basis of inference. We use the language of probability to
describe “What would happen if we did this many times?” but the formal machinery is a
barrier rather than a help at this level. After all, the main use of P (Ac) = 1 − P (A) in a
first statistics course is to note that if area 0.95 lies to the left of a point on a t curve, then
area 0.05 lies to the right of that point.

An informal introduction to probability should include experience with chance behavior,
usually starting with physical chance devices and moving to computer simulations. Impor-
tant facts such as the law of large numbers and the central limit theorem can be demonstrated
and made convincing in this manner. Many instructors will want to clarify the distinction
between the long-run regularity that probability describes and the short-run irregularity of
random phenomena. Psychologists (e.g., Tversky and Kahneman 1971) have noted that
most people accept an incorrect “law of small numbers” that asserts that even short runs
of random phenomena should be regular; if they are not, we look for an explanation other
than chance behavior. Our intuitive judgments of probability are in general (Tversky and
Kahneman, 1983) “not likely to be coherent, that is to satisfy the constraints of probability
theory.” Informal probability can clarify issues such as popular assessment of risks—see e.g.,
Slovic, Fischhoff, and Lichtenstein (1982) and Zeckhauser and Viscusi (1990) for comments
on this fascinating mixture of probability and psychology. Informal probability lays a foun-
dation of experience and concepts for more formal study, as well as providing the basis for
understanding the reasoning of statistical inference.

Mathematical probability is of course a noble and useful subject. It is essential for math-
ematical modeling and for the mathematical theory that underlies some parts of statistics.
Attempting to present a substantial introduction to probability in a data-oriented statistics
course, however, is in my opinion unwise. Formal probability does not help these students
master the ideas of inference (at least not as much as we teachers imagine), and it depletes
reserves of mental energy that might better be applied to essentially statistical ideas.
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5 Content, pedagogy, and technology in synergy

Discussions of one of the triad content–pedagogy–technology are often partial. The argument
for changing introductory instruction in statistics is strengthened by reinforcing relationships
among the three domains. Figure 3 summarizes some of these synergies.

Figure 3 near here

The double arrows suggest that reinforcement flows in both directions. Exploratory
analysis of data, for example, is an important topic that we want to present in a first course.
That requires that students actually explore data. Education researchers tell us that active
hands-on work helps learning, so that active data analysis is an effective entry into statistics
independent of its importance as separate content. Hence the entry

Data analysis ⇐⇒ Hands-on work

in Figure 3. Here are brief remarks on the other synergies in Figure 3.
Content ⇐⇒ Pedagogy: Asking students to work cooperatively and to communicate

their findings orally and in writing aids learning. It is an aspect of good pedagogy. More
emphasis on communication and cooperation helps prepare our students for employment,
and so should be part of our broadened content. To cite just one example, I recently spent
a week at Motorola learning how this successful company does TQM. Motorola wanted
the assembled academics to hear this message: “All of our work is done cooperatively in
teams. Why do you persist in sending us students whose only experience is individual and
competitive?”

The final entry under this head reminds us that on the content side we have always
wanted to emphasize conceptual understanding; good pedagogy urges us to choose conceptual
explanations over proofs that are not convincing to most of our students.

Pedagogy⇐⇒ Technology: Carefully structured visualization (“multiple representations”
in the language of education research) aids learning. So does work on open-ended problems
that require multiple attempts and combination of several tools rather than a single path to
the unique right answer (Garfield, 1995, p. 30). Choosing a model for somewhat complex
data—a dialog among the data, candidate models, and various diagnostic tools—is a typical
example of an open-ended statistical problem. Consistent emphasis on visualization and
problem-solving are hardly possible if graphics and calculations must be done by hand. In
the other direction, what is technically easy is almost always done, so that lots of graphs
and multiple analyses are a consequence of the technology. Good teachers now pay more
attention to effective strategies for e.g. regression diagnostics, and less attention to the details
of how to calculate regression fits. Good strategies will (we hope) head off the obvious pitfalls
of essentially free and immediate multiple analyses.

Multimedia educational systems, the new version of computer-assisted learning, may
at last enable genuinely active learning (the core of the new pedagogy) on a technological
platform. Multimedia systems deserve separate comment, and receive it in Section 8.
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Technology ⇐⇒ Content: New content in statistics reflects the computing-intensive na-
ture of statistical practice. Exploratory data analysis is characterized (Velleman and Hoaglin,
1992) by an “iterative process of describing patterns, subtracting them, and searching anew
for pattern in the residuals [that] continues until the data analyst decides to stop.” This iter-
ative process is tedious indeed if the details are not automated. We may wish to expose even
beginners to newer topics such as regression diagnostics and the bootstrap. The bootstrap
is a nice example of synergy between technology and content: it is a conceptually simple
extension of the core idea of a sampling distribution that is widely useful—and impossible
without fast and cheap computing.

Automation of routine operations both allows and demands that teaching lay more stress
on larger concepts and strategies. Automation forces teachers and learners to pay more
attention to what isn’t automated, if only at the level of deciding which item in the “plot”
menu is appropriate for the present problem. This allows the conceptual emphasis that
teachers have always preferred, but that was impeded by students’ struggles to implement
routine recipes.

Simulation offers an alternative to proofs and algebraic derivations as a way of convincing
students of the truth of important facts. The central limit theorem, always a fact we could
not prove to beginners, is both more comprehensible and more convincing when we actually
see it at work via simulation and graphics.

6 Old technologies: video and computing

Television has changed the world, yet has had only peripheral impact on education. The
reason is not (or not only) that educators are immovably attached to neolithic traditions.
Video is in fact not effective as the primary medium of instruction. To see why, let us look
at this old technology from the point of view of pedagogy and content. More details, and
references, appear in Moore (1993).

Video’s most obvious strength as a teaching medium is that it compresses time and
space to focus on essentials. We can view a lengthy process briefly, aided by microscopy
and telescopy as needed. Careful editing and polished technique often make video more
convincing than being there yourself. There is another, more subtle but equally important,
aspect to video: it operates subliminally as well as rationally, changing the attitudes of
viewers at a subconscious level.

The weaknesses of video parallel its strengths. Video shows rather than tells. It is a very
poor medium for exposition. This is particularly true in subjects where much important
content is not highly visual. Video exposition must choose between bad television (a talking
head) and skewing the content in a search for visually appealing topics. It is no accident that
“science television” concentrates on furry animals. More seriously, video leaves its viewers
passive. The talking head cannot interact with learners. Even excellent video presentations
have limited cognitive impact—students have acquired a certain visual sophistication from
thousands of hours of television; they have learned to remain disengaged from a world they
assume to be the surreal creation of a clever producer.
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The conclusion seems clear. Video has value as a means of changing attitudes by taking
students out of the classroom to see real people using statistics in real settings. Video can
help motivate students, and can on occasion show a phenomenon otherwise hidden from our
view. These are supplementary roles. Video is not suited as even a primary medium for
exposition, let alone for the more active components of the varied style recommended by
current pedagogical thinking.

It may seem odd to class computing with video as an old technology. We have, however,
asked our students to do computing as part of their statistics training for at least a generation.
Our viewpoint as statisticians has been shaped by the content we want to present: computing
allows realistic problems, serious statistical methods, and emulation of actual statistical
practice.

Adding pedagogy to the mix of content and technology broadens our thinking about
computing. Teachers should consider computing as a tool for learning statistics, not simply
for doing statistics. Because graphics and manipulations aid learning, we should encourage
students to use software to explore, visualize, and interact with data and simulations, not
simply to automate calculations.

There is another aspect to computing as a teaching tool: it improves students’ ability to
complete problems. A student who understands conceptually what must be done to solve a
problem is much more likely to be able to implement that understanding when software is
at hand. Although computing can be frustrating, that frustration is in my experience less
annoying than the frustration of being unable to complete a problem due to some minor
error in a long but routine calculation. Good software reduces the students’ cognitive load,
replacing complex algorithmic procedures by simpler commands, thus allowing learners to
focus on higher-level understanding. These pedagogical advantages strengthen the case for
using computers (or in some settings, advanced calculators) in beginning instruction.

Software designed for doing statistics is not necessarily well structured for learning statis-
tics. Rolf Biehler (1993, 1995) has interesting things to say about the technical features—
both existing and envisioned—that make software good for learning as well as for doing
statistics. Statisticians interested in software design for teaching will profit from the second
paper in particular.

7 New technology: graphing calculators

One of the most striking developments in statistical education in the past generation has been
the arrival, in at least most English-speaking countries, of working with data as a standard
strand in school mathematics curricula. The Standards of the U.S. National Council of
Teachers of Mathematics (NCTM, 1989) specify “increased attention” to probability and
statistics at all grade levels. In the United Kingdom, “data handling” is to make up 20% of
the mathematics curriculum for ages 11–16.

This development is due in part to the movement toward the democratization of mathe-
matics. In the United States, at least, school mathematics has been influenced by a concern
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arising from the quality management movement that students who do not enter university
should have stronger quantitative preparation for the work force. The presence of an early
and excellent model in the ASA/NCTM Quantitative Literacy series no doubt contributed.
(The books in the QL series are Gnanadesikan, Schaeffer, and Swift (1986); Landwehr and
Watkins (1986); Landwehr, Watkins, and Swift (1987), and Newman, Obremski, and Scha-
effer (1986).)

Figure 4 near here

In my opinion, however, the strongest influence in the movement of data analysis into
school mathematics is synergy with the new active learning pedagogy and, perhaps less
obviously, synergy with the core content of primary school mathematics. Figure 4 shows
how closely a natural sequence of basic data graphics parallels a natural sequence of number
concepts and skills. The examples cited are from a recent collection of classroom activities
(University of North Carolina, 1997ab), but similar examples appear in many other recent
texts and supplements. Once established in primary school mathematics, data analysis
remains present in the later school years for both pedagogical and utilitarian reasons.

Graphing calculators have become the standard technology for advanced secondary school
mathematics in the United States. They are allowed (and so in effect required) for the pop-
ular Advanced Placement examinations that offer university credit in calculus and (starting
in 1997) in statistics. The current generation of graphing calculators, such as the Texas
Instruments TI-83, offer most of the inference procedures taught in a first statistics course,
in addition to the statistical graphics and simulation functions of previous models. Asked to
carry out a t test from keyed-in data, the TI-83 can draw a t density curve on its screen and
shade the area corresponding to the P -value, while printing the t statistic and its P -value.
An alternative screen provides more numerical output, including x and s.

From the viewpoint of pedagogy, graphing calculators have striking advantages. Porta-
bility combined with moderate cost allows students to carry their technology with them.
Calculators can be used in places where computers are unavailable, for example in a project
in rural schools in South Africa (Laridon, 1996). Even when computers are available, calcula-
tors in the hands of all the students in a classroom encourage active participation. Secondary
teachers report that the “sense of ownership” felt by students extends from the calculator
to the mathematics and statistics being learned.

From the content side, however, calculators remain more suitable for mathematics than
for statistics. The difficulty of entering more than small amounts of data and the limits
imposed on statistical graphics by small screens are the most important weaknesses. Against
these must be set, in addition to the pedagogical advantages just mentioned, good simulation
capabilities and continued rapid technical improvement that may yet partially overcome the
data entry and graphics limits. The likely path is a closer link to computers, so that a single
classroom computer can function as “server” for many calculators. The calculators would
download data (e.g., via infra-red signals) from the computer. The reverse link would process
calculator output for display at higher resolution on the computer’s monitor.
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Graphing calculators are an example of tension between pedagogy and content. They
are now adequate computing-and-graphing tools for a first statistics course, but not the
preferred tool. The suitability of advanced calculators for implementing the reform emphasis
on constant student involvement give them an advantage over computers in most classroom
settings. If substantial numbers of students arrive in our courses already familiar with
graphing calculators from secondary school, the argument may tip towards adopting this
technology.

8 New technology: multimedia

“Multimedia” (Figure 5) is one of the most prominent technological buzzwords, made still
more prominent by a vision of the ability to transmit full multimedia across long distances
electronically in real time. Like all buzzwords, “multimedia” is used loosely. Alleged mul-
timedia educational products differ greatly in the depth and accuracy of their content and
in the effectiveness of their pedagogy. We should surely examine these critically, and not
be overly impressed by mere technology. Velleman and Moore (1996) discuss some of the
pedagogical challenges in the design of multimedia systems that present a structured, hier-
archical subject such as introductory statistics. There are also pedagogical challenges for
the instructor who uses multimedia: given that multimedia can to some extent stand on its
own, how shall we integrate the role of this much more powerful software with those of a
text and a human teacher?

Figure 5 near here

Our concern for content and pedagogy should, however, not lead us to tolerate weak
technology. There are as yet few good multimedia instructional systems to set standards
in subjects similar to statistics. (There are attractive supplements that do not pretend to
offer consecutive instruction, and also attractive systems to aid learning of less hierarchical
subjects such as art and history. The latter often use a loose “explore this world” structure
that is less appropriate for statistics.) Early “multimedia” products in the mathematical
sciences have tended to be text-based, enhancing the text with illustrations and student
activities. In my opinion, alleged multimedia systems that are driven by text are weak uses
of a promising technology, and we should reject them. Large blocks of text belong in print,
where text is easier to read, easier to navigate in, and more portable.

That said, multimedia has clear advantages from the viewpoint of pedagogy. It can
utilize the strengths and avoid the weaknesses of each medium. My comments on video, for
example, point to a restricted but useful role for video in a multimedia environment. Most
important, effective multimedia instruction can (and should) be highly interactive. The
learner controls the pace and launches each succeeding activity. She can manipulate video
and animated computer graphics, so that teaching demonstrations are turned over to her for
more exploration. Statistical software is always available for use, in an environment that can
offer instruction on the software as each new capability is required. Embedded exercises with
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immediate feedback and unlimited ability to review the material just presented facilitate a
“mastery learning” style in which the learner is satisfied that she has mastered each concept
before going on.

As far as content is concerned, multimedia should do well for the types of content that
I believe our introductory courses should stress. Hands-on work with data; conceptual
understanding gained through demonstrations and simulations that the student can control,
modify, and repeat; routine use of software to automate graphics and calculations—all this
is natural in a multimedia setting.

The weaknesses of multimedia technology center on the social aspects of learning. “Com-
munication and cooperation” is also on the list of reform recommendations for student ac-
tivities. Moreover, students learn from each other and from a teacher who is sensitive to
non-verbal signs and non-cognitive barriers to learning. Well-designed multimedia software
will offer home pages, discussion groups, email to the teacher, and so on. I do not believe
these are sufficient replacements for a personal presence. The analogy with distance learning
is revealing: distance learning has proved effective for mature and motivated students; it
works much less well for the relatively immature and less motivated students we often see in
first courses.

There will remain an essential role for human teachers even when technology carries the
primary teaching burden. I see no substitute for the motivation and encouragement that a
teacher can provide. Nor do I believe that assessment can be taken out of human hands,
at least if we genuinely want our students to learn those “higher order” skills applicable
to unfamiliar problems. Assessment is a large and controversial topic that I have avoided
here. Do note, however, that the first principle of assessment is what one overview (National
Research Council, 1993) calls the content principle: assess what you value most. After
all, students will concentrate on the content they expect us to assess. If we want “flexible
problem-solving skills,” we must assess those skills. This will be difficult indeed to automate.
Garfield (1994) is a good place for statisticians to start thinking about assessment of student
learning.

We will still, in the multimedia future, interact regularly with our students. In fact, spared
the burden of tasks that are now automated, we may meet students in discussion groups
that are smaller than our present classes. Our assessment of student learning may well be
more elaborate, and may hold students to the higher standard of completed work that good
technology permits. We ought, in short, to welcome and explore the use of new technologies
for which “multimedia” is a shorthand. We ought also to keep our understanding of valuable
content and effective pedagogy clearly in mind as we view these and other developments
with a critical eye.

9 Conclusions, and a few qualifications

Content and pedagogy—our understanding of what students should learn and of effective
ways to help them learn—should drive our instruction. Technology should serve content and
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pedagogy. Yet technology has changed content and allows new forms of effective pedagogy.
“Synergy” is thus my one-word summation.

The most effective teachers will have a substantial knowledge of pedagogy and technology,
as well as comprehensive knowledge about and experience applying the content they present.
Universities have always emphasized subject-matter knowledge, and have often assessed their
staff’s contributions to knowledge by high standards. They have, however, generally assumed
that a subject-matter Ph.D. equips faculty to teach well. That assumption, and the systems
by which universities evaluate their staff, are slowly yielding to the same pressures that form
the context of the movement to reform teaching. We would do well to broaden our own
scholarly knowledge as well as the content of our introductory courses. The references offer
some starting points.

Now for the qualifications. My opinions are shaped by some strong convictions. It would
be easy to carry these convictions to unfortunate extremes, and I hope that readers will not
extrapolate too far.

I feel strongly, for example, that statistics is not a subfield of mathematics, and that in
consequence, beginning instruction that is primarily mathematical, or even structured ac-
cording to an underlying mathematical theory, is misguided. Such instruction will inevitably
understate the role of exploratory analysis and the design of data production, and may ignore
essential distinctions, such as that between observational and experimental data, that are
not captured by the theory of inference. It is nonetheless true that statistics makes heavy
and essential use of mathematics, that advanced training in statistics requires considerable
exposure to mathematics, and that elaborate mathematical theories underlie some parts of
statistics. Bullock (1994) is wrong in claiming that “Many statisticians now insist that their
subject is something quite apart from mathematics, so that statistics courses do not require
any preparation in mathematics.”

Statisticians should eschew the contempt for mathematics that finds classic expression
in the Royal Statistical Society’s discussion of Kiefer’s (1959) exposition of the principles of
optimal experimental design. The discussants argue in effect that because not all aspects
of statistical practice can be made precise, there is no virtue in any attempt to achieve
precision. They express their views, moreover, with that articulate rudeness in which the
British upper classes once specialized. This makes amusing reading decades later, but it
reflects badly on both the intellectual breadth and the common courtesy of the discussants.

I also feel strongly that heavy use of computing technology is essential for realistic learning
of practical statistics, and that automating anything that is “just a rule” is good pedagogy
as well. I contend, for example, that
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∑
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is just a rule, that it communicates no conceptual understanding to our students. It ought
to be a button or a menu item. On the other hand,

b = r
sy

sx
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tells the algebraically literate a great deal about the regression slope b. This is a formula
our students should know.

Yet I recognize that computing can frustrate students. “Real statisticians use SAS” (to
quote a colleague) is not a reason to use SAS in a first course. The choice of software—
and even the decision to use graphing calculators or spreadsheets rather than statistical
software—depends heavily on our judgment of accessibility to students. We are teaching our
subject, not the tool. I also recognize that not all teachers agree on what is “just a rule,”
and therefore should be automated. Some may even feel that sums of squares speak to the
souls of students. Steven Krantz, for example, in a generally sensible book on How to Teach
Mathematics (Krantz, 1993) takes a more negative view of automating student work than I
do. These are matters for informed judgment in the light of local circumstances.

Informed judgment in the light of local circumstances is, in fact, needed in every aspect
of the teaching of statistics to beginners. I have tried to be clear about the directions in
which I believe we should move. An attempt to be precise about the distance we should
move in these directions would founder on the fact that my circumstances and my students
differ from yours. It would also litter this paper with “on the other hand,” thus obscuring
the strength of my convictions. I hope that most readers will agree on our direction, and
that they will use both their judgment and their ingenuity in arranging the journey. Let a
thousand flowers bloom.
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Figure 1: The Reform of Pedagogy

• Goals: Higher-order thinking, problem solving, flexible skills applicable to
unfamiliar settings.

• The old model: Students learn by absorbing information; a good teacher
transfers information clearly and at the right rate.

• The new model: Students learn through their own activities; a good
teacher encourages and guides their learning.

• What helps learning: Group work in and out of class; explaining and
communicating; frequent rapid feedback; work on problem formulation and
open-ended problems.

Figure 2: Recommendations of the ASA/MAA Joint Curriculum Committee

1. Emphasize the elements of statistical thinking:

(a) the need for data,

(b) the importance of data production,

(c) the omnipresence of variability,

(d) the measuring and modeling of variability.

2. Incorporate more data and concepts, fewer recipes and deriva-
tions. Wherever possible, automate computations and graphics.
An introductory course should:

(a) rely heavily on real (not merely realistic) data,

(b) emphasize statistical concepts, e.g., causation vs. association, experi-
mental vs. observational and longitudinal vs. cross-sectional studies,

(c) rely on computers rather than computational recipes,

(d) treat formal derivations as secondary in importance.

3. Foster active learning, through the following alternatives to lecturing:

(a) group problem solving and discussion,

(b) laboratory exercises,

(c) demonstrations based on class-generated data

(d) written and oral presentations,

(e) projects, either group or individual.
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Figure 3: Synergy in Statistical Education

• Content ⇐⇒ Pedagogy

Data analysis ⇐⇒ Hands-on work

Statistics in practice ⇐⇒ Communicate, cooperate

More concepts ⇐⇒ Less proof

• Pedagogy ⇐⇒ Technology

Visualization ⇐⇒ Automate graphics

Problem-solving ⇐⇒ Automate calculations

Active learning ⇐⇒ Multimedia

• Technology ⇐⇒ Content

Computing ⇐⇒ Data analysis, diagnostics, bootstrap, . . .

Automation ⇐⇒ More concepts

Simulation ⇐⇒ Less proof

Figure 4: Primary School Synergy

• Whole-number counting ⇐⇒ Bar graph

“How often do you wear a hat?”

Bars of stick figures count responses: Often, Sometimes, Seldom, Never.

• Number line ⇐⇒ Dot plot

“What is the date on your coin?”

Interesting left-skewed distribution.

• Place notation ⇐⇒ Stem-and-leaf plot

“How many pages does your favorite book have?”

• Betweenness and grouping ⇐⇒ Histogram

“How long does it take you to get to school?”
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Figure 5: Multimedia is . . .

Text
Sound

Still images
Full-motion video

Cartoon-style animation
Dynamic computer graphics

Computing for calculation and graphics

IN ONE SYSTEM

Learner interacts with keyboard and mouse
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