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Abstract.
Ought we to base beginning instruction in statistics for general students on

the Bayesian approach to inference? In the long run, this question will be set-
tled by progress (or lack of progress) in persuading users of statistical methods
to choose Bayesian methods. This paper is primarily concerned with the peda-
gogical challenges posed by Bayesian reasoning. It argues, based on research in
psychology and education and a comparison of Bayesian and standard reason-
ing, that Bayesian inference is harder to convey to beginners than the already
hard reasoning of standard inference.
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1.1 Introduction

From Advances in Statistical Decision Theory, Birkhuser, Boston, 1997, 3-17.
It is a pleasure to dedicate this paper to Shanti Gupta, who offered me my first
position and contributed in many ways to my statistical education.

Bayesian methods are among the more active areas of statistical research.
Moreover, a glance at recent journals shows that researchers have made con-
siderable progress in applying Bayesian ideas and methods to specific problems
arising in statistical practice. It is therefore not surprising that some Bayesians
have turned their attention to the nature of introductory courses in statistics
for general students. These students come to us from many fields, with the
goal of learning to read and perhaps carry out statistical studies in their own
disciplines. Several recent Bayesian textbooks [e.g., Albert (1996a), Antleman
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(1996), Berry (1996a)] are aimed at such students, and their authors have ar-
gued in favor of a Bayesian approach in teaching beginners [Albert (1995),
(1996b), Berry (1996b)]. The arguments, put crudely to make the issues clear,
are: (1) Bayesian methods are the only right methods, so we should teach them;
(2) Bayesian inference is easier to understand than standard inference.

Although I do not accept argument (1), I have no wish to participate in the
continuing debate about the “right” philosophy of inference. Inference from
uncertain empirical data is a notoriously subtle issue; it is not surprising that
thoughtful scholars disagree. I doubt that any of us will live to see a consensus
about the reasoning of inference. Indeed, the eclectic approach favored by many
practicing statisticians, who use Bayesian methods where appropriate but are
unconvinced by universal claims, may well be a permanently justifiable response
to the variety and complexity of statistical problems.

I do wish to dispute the second argument. I will give reasons why Bayesian
reasoning is considerably more difficult to assimilate than the reasoning of stan-
dard inference (though, of course, neither is straightforward). I even doubt
the common Bayesian claim that at least the results of Bayesian inference
(expressed in terms of probabilities that refer to our conclusions in this one
problem) are more comprehensible than standard results (expressed in terms
of probabilities that refer to the methods we used). My viewpoint is that of a
teacher concerned about issues of content and pedagogy in statistical education.
I will point to research in education and psychology rather than in statistics.

I preface the paper’s main argument by briefly stating in Section 2 what I
consider to be decisive empirical and pragmatic reasons for not basing introduc-
tory courses for general students on Bayesian ideas at the present time. Those
who think that the conditions I describe in Section 2 will change in the future
can consider the rest of the paper as posing questions of pedagogy that we will
have to face in the coming Bayesian era.

1.2 Unfinished business: The position of Bayesian
methods

Let us attempt to be empirical. Here are two questions that bear on our decision
about teaching Bayes to beginners:

• Are Bayesian methods widely used in statistical practice?

• Are there standard Bayesian methods for standard problem settings?

Several recent surveys suggest that Bayesian methods are little used in cur-
rent statistical practice. Rustagi and Wright (1995) report the responses of
all 103 statisticians employed in Department of Energy National Laboratories.
Asked to choose from a long list “the three statistical techniques that have
been most important to your work/research,” only four mentioned “Bayesian
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methods.” The top responses are not surprising: “Regression analysis” (63),
“Basic statistical methods” (37), “Analysis of variance” (26), and “Design of
experiments” (26). Bayesian methods tied for 17th/18th among 20 methods
mentioned by more than one respondent. Turning to medical research, Emer-
son and Colditz (1992) catalog the statistical methods used in articles in the
1989 volume of the New England Journal of Medicine. Of 115 “Original Arti-
cles,” 45 use t tests, 41 present contingency tables, 37 employ survival methods,
and so on. Emerson and Colditz do not mention any use of Bayesian techniques.

The DOE respondents are professional statisticians working in a variety
of applied areas. Medical research projects often engage trained statistical
collaborators. These practitioners might be expected to employ more up-to-date
methodology than those in fields that less often engage professional statisticians.
Yet even here, Bayesian approaches have made very few inroads. The absence
of Bayesian procedures in commercial statistical software systems is further
evidence of lack of use. Although the statistical literature abounds in research
papers developing and applying Bayesian ideas, these appear to be in the nature
of demonstration pieces. I can find no empirical evidence of widespread use in
actual practice.

Because Bayesian methods are relatively rarely used in practice, teaching
them has an opportunity cost, depriving students of instruction about the stan-
dard methods that are in common use. It might be argued that we should teach
the “right” methods, regardless of current practice. That is simply to invite
students to go elsewhere, to turn to another of the many places on campus
where basic statistics is taught. Aside from that pragmatic consideration, I
believe that we have an obligation to meet the needs of our customers. Their
need is to read and understand applications of statistics in their own disciplines.
Those applications are not yet Bayesian.

Here is a second argument, also at least somewhat empirical. Reading of
current Bayesian literature strongly suggests that there are not yet standard
Bayesian methods for standard problem settings. There remains considerable
disagreement among Bayesians on how to approach the inference settings usu-
ally considered in first courses.

Purists might insist on informative, subjective prior distributions—a posi-
tion that says in effect that there can be no standard methods because there
are no standard problems. Lindley (e.g., 1971) is a classical proponent of the
subjective Bayesian position, but it is worth noting that arguments for the supe-
riority of Bayesian reasoning usually start from this position. It is nonetheless
now more common to concede that there is a need for standard methods to
apply in standard settings. The usual approach is to use noninformative refer-
ence priors that are generated from the sampling distribution rather than from
actual prior information. Not all Bayesians are comfortable with this triumph
of pragmatic over normative thinking.
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Let us accept the need for standard techniques, at least for beginners. Very
well: which noninformative prior should we use? Berger, who favors this ap-
proach, admits (1985, p. 89) that “Perhaps the most embarrassing feature of
noninformative priors, however, is simply that there are often so many of them.”
He offers four choices when θ is the probability of success in the binomial setting,
and says, “All four possibilities are reasonable.” Robert (1994, p. 119) presents
an example due to Berger and Bernardo showing that simply reordering the pa-
rameters in the oneway ANOVA setting leads to four different reference priors.

Bayesian hypothesis testing in particular appears to be work in progress.
One can find current research [e.g., Kass and Wasserman (1995)] starting from
the premise that practically useful Bayesian tests remain an important open
problem. The excellent survey of Kass and Raftery (1995) convinces me that
Bayesian testing is not yet ready for prime time.

I believe that these negative answers to the two questions posed at the
beginning of this section are relatively empirical and “objective.” They are
spelled out in much greater detail in Moore (1996). It seems to me that the
weakest conclusion possible is that it is premature to make Bayesian methods
the focus of basic methodological courses. I am not unalterably philosophically
opposed to Bayesian statistics. I would support teaching Bayesian methods
in introductory courses if they became standard methods widely accepted and
widely used in practice. As Keynes once said, “When the facts change, I change
my mind. What do you do, sir?” The rest of this paper therefore concerns issues
that provide both secondary reasons to avoid Bayes-for-beginners at present and
pedagogical challenges in a Bayesian future.

1.3 The standard choice

If we are to compare the accessibility of Bayesian reasoning with that of stan-
dard inference, it is wise to first state what the standard is. Our topic is first
courses on statistical methodology for beginners who come from other disci-
plines and are not on the road to becoming professional statisticians. I will
therefore give a partial outline of a “standard” elementary statistics course for
this audience.

A. Data analysis. We begin with tools and tactics for exploring
data. For a single measured variable, the central idea is a distribu-
tion of values. We meet several tools for graphic display of distri-
butions, and we learn to look for the shape, center, and spread of
a distribution. We learn to describe center and spread numerically
and to choose among competing descriptions.

B. Data production. We now distinguish a sample from the un-
derlying population, and statistics from parameters. We meet sta-
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tistical designs for producing sample data for inference about the
underlying population or process. Randomized comparative exper-
iments and random sampling have in common the deliberate use
of chance mechanisms in data production. We motivate this as
avoiding bias, then study the consequences by asking “What would
happen if we did this many times?” The answer is that the statistic
would vary. The pattern of variation is given by a distribution, the
sampling distribution. We can produce sampling distributions by
simulation and examine their shape, center, and spread using the
tools and ideas of data analysis.

C. Formal inference. We want to draw a conclusion about a
parameter, a fixed number that describes the population. To do this,
we use a statistic, calculated from a sample and subject to variation
in repeated sampling from the same population. Standard inference
acts as if the sample comes from a randomized data production
design. We consistently ask the question “What would happen if
we did this many times?” and look at sampling distributions for
answers. One common type of conclusion is, “If we drew many
samples, the interval calculated by this method would catch the
true population mean µ in 95% of all samples.” Another is, “If we
drew many samples from a population for which µ = 60 is true, only
1.2% of all such samples would produce an x as far from 60 as this
one did. That unlikely occurrence suggests that µ is not 60.”

Inductive inference is a formidable task. There is no simple path. But there
may be relatively simpler and more complex paths. Consider these character-
istics of the “standard” outline above:

• A parameter is a fixed unknown number that describes the population. It
is different in nature from a statistic, which describes a sample and varies
when we take repeated samples.

• Inference is integrated with data analysis through the idea of a distribu-
tion. The central idea of a sampling distribution can be presented via
simulation and studied using the tools of data analysis.

• Probability ideas are motivated by the design of data production, which
uses balanced chance mechanisms to avoid bias. The issue of sampling
variability arises naturally, and leads naturally to the key question, “What
would happen if we took many samples?”

• Probability has a single meaning that is concrete and empirical: “What
would happen if we did this many times?” We can demonstrate how
probability behaves by actually doing many trials of chance phenomena,
starting with physical trials and moving to computer simulation.
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• Inference consistently asks “What would happen if we did this many
times?” Although we use probability language to answer this question, we
require almost no formal probability theory. Answers are based on sam-
pling distributions, a concrete representation of the results of repeated
sampling.

• For more able students, study of simulation and bootstrapping is a natural
extension of the “do it many times” reasoning of standard inference.

This simple outline of standard statistics can legitimately be criticized as
lacking generality—standard inference is limited by acting as if we did proper
randomized data production, for example. For beginners, however, it is clarity
rather than generality that we seek.

1.4 Is Bayesian reasoning accessible?

I find that the reasoning of Bayesian inference, though purportedly more gen-
eral, is considerably more opaque than the reasoning of standard inference.

• A parameter does describe the population, but it is a random quantity
that has a distribution. In fact, it has two distributions, prior and poste-
rior. So, for example, µ and x are both random. Yet µ is not “random” in
the same sense that x is random, because a distribution for µ reflects our
uncertainty, while the sampling distribution of x reflects the possibility of
actually taking several samples.

• Probability no longer has the single empirical meaning, “What would
happen if we did this many times?” Subjective probabilities are concep-
tually simple, but they are not empirical and don’t lend themselves to
simulation. Because we hesitate to describe the sampling model for the
data given the parameter entirely in terms of subjective probability, we
must explain several interpretations of “probability,” and we commonly
mix them in the same problem.

• The core reasoning of Bayesian inference depends not merely on proba-
bility but on conditional probability, a notoriously difficult idea. Be-
ginners must move from the prior distribution of the parameter and the
conditional distribution of the data given the parameter to the conditional
distribution of the parameter given the data. Keeping track of what we
are conditioning on at each step is the key to unlocking Bayesian rea-
soning. Thus when we consider the sampling distribution of x, we think
of µ as fixed because we are conditioning on µ. This allows us to deal
with the practical observation that if we took another sample from the
same population, we would no doubt obtain a different x. Once we have
sample data, we regard x as fixed and condition on its observed value in



Bayes for Beginners? 7

order to update the distribution of µ. This makes sense, of course, but in
my experience even mathematics majors have difficulty keeping the logic
straight.

Let me be clear that I am not questioning the coherence or persuasiveness
of Bayesian reasoning, only its ease of access. In a future Bayesian era, we shall
all have to face the task of helping students clear these hurdles. At present,
they hinder an attempt to include a small dose of Bayes in a course that (for
the reasons noted in Section 2) must concentrate on standard approaches when
dealing with inference. In either case, we ought to recognize that they pose
genuine barriers to students.

I find, to be blunt, that many Bayesian plans for teaching beginners deal
with these basic conceptual difficulties by either over-sophistication or denial.
Let me give an example of each.

Many Bayesians insist that they have only one kind of probability, namely,
subjective probability. That strikes me as over-sophisticated. Physical and
personal probabilities are conceptually quite different. There is a clear practical
distinction between a prior distribution that expresses our uncertainty about
the value of µ and the sampling distribution that expresses the fact that if
we took another sample we would observe a different value of x. Saying that
“do it many times” is just one route to subjective probability is intellectually
convincing to sophisticates but doesn’t deal with the beginner’s difficulty. What
is more, the priors used in our examples are often “noninformative” priors that
attempt to represent a state of ignorance. So some prior distributions represent
prior knowledge, while others, mathematically similar in kind and appearing
to give equally detailed descriptions of the possible values of the parameter,
represent ignorance. There are sophisticated ways to explain that “ignorance”
means ignorance relative to the information supplied by the data—but we are
discussing the accessibility of core ideas to unsophisticated students.

Here is a passage in which Albert (1996b) seems to me to deal with the
conceptual difficulties of conditional probabilities by denial:

Although one can be sympathetic with the difficulty of learning prob-
ability, it is unclear what is communicated about classical statistical
inference if the student has only a modest knowledge of probability.
If the student does not understand conditional probability, then how
can she understand the computation of a p-value, which is a tail
probability conditional on a particular hypothesis being true? What
is the meaning of a sampling distribution if the student does not
understand what model is being conditioned on?

The concluding rhetorical question in this passage seems based on the view
that all probabilities are conditional probabilities. That is over-sophisticated,
but it also denies that there is a difference in difficulty between these questions:
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A. Toss a balanced coin 10 times. What is the probability that exactly 4
heads come up?

B. Toss a balanced coin 10 times. Someone tells you that there were 2 or
more heads. Given this information, what is the probability that exactly
4 heads come up?

That there is a “model being conditioned on” in Question A is language
that a teacher not bound by precise Bayes-speak would avoid when addressing
beginners. Question B, which involves conditioning on an observed event, is
conceptually more complex than Question A, which does not. Speaking only
of the formalities of probability, as opposed to its interpretation, students can
grasp standard inference via probability at the level of Question A. Bayesian
inference requires conditional probability of the kind needed for Question B.
Why attempt to deny that the second path is harder?

Albert’s point that P -values require conditioning displays a similar denial
of the distinction between Questions A and B. To explain a P -value, we begin
by saying, “Suppose for the sake of argument that the null hypothesis is true.”
To the Bayesian sophisticate, this is conditioning. To a teacher of beginners,
however, it is like saying “Suppose that a coin is balanced.” The supposition is
the start of the reasoning we want our students to grasp: a result this extreme
would be very unlikely to occur if H0 were true; such a result is therefore
evidence that H0 is not true. This reasoning isn’t easy (there is no easy road
to inference), but it does not involve conditioning on an observed event. A
grasp of P -values does not require, and is not much aided by, a systematic
presentation of conditional probability. On the other hand, conditioning is
so central to Bayesian reasoning that we must discuss it explicitly and very
carefully. The distinction between Question A and Question B captures the
distinction between what we must teach as background to standard (A) and
Bayesian (B) inference.

There are numerous other complexities that the teacher of Bayesian meth-
ods must face (or choose to ignore). The use of default or reference priors opens
a gap between Bayesian principle and Bayesian practice that is not easy to ex-
plain to beginners. The use of improper priors may sow puzzlement. The need
to abandon what seemed satisfactory priors when we move from estimation
to testing is annoying. And so on. I want, however, to concentrate on what
appears to be the primary barrier to beginners’ understanding of the core rea-
soning of Bayesian inference: the greater dependence on probability, especially
conditional probability.

1.5 Probability and its discontents

Albert, in the passage I just cited, speaks for many teachers, Bayesian and
non-Bayesian alike, when he says, “it is unclear what is communicated about
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classical statistical inference if the student has only a modest knowledge of
probability.” It is, unfortunately, a well-documented fact that the great major-
ity of our beginning students will, despite our best efforts, have only a modest
knowledge of probability.

Psychologists have been interested in our perception of randomness ever
since the famous studies of Tversky and Kahneman [e.g., Tversky and Kahne-
man, 1983]. Bar-Hillel and Wagenaar (1993) offer a recent survey. Much recent
work has criticized Tversky and Kahneman’s attempt to discover “heuristics”
that help explain why our intuition of randomness is so poor and our reasoning
about chance events is so faulty. That our intuition about random behavior
is gravely defective, however, is a demonstrated fact. To give only a single
example, most people accept an incorrect “law of small numbers” [so named
by Tversky and Kahneman (1971)] that asserts that even short runs of random
outcomes should show the kind of regularity that the laws of probability de-
scribe. When short runs are markedly irregular, we tend to seek some causal
explanation rather than accepting the results of chance variation. As Tversky
and Kahneman (1983, p. 313) say in summary, “intuitive judgments of all rel-
evant marginal, conjunctive, and conditional probabilities are not likely to be
coherent, that is, to satisfy the constraints of probability theory.”

That people’s intuitions about chance behavior are systematically faulty has
implications for statistical education. Our students do not come to us as empty
vessels into which we pour knowledge. They combine what we tell them with
their existing knowledge and conceptions to construct a new state of knowledge,
a process that Bayesians should find natural. The psychologists inform us
that our students’ existing conceptions of chance behavior are systematically
defective: they do not conform to the laws of probability or to the actually
observed behavior of chance phenomena. At this point, researchers on teaching
and learning become interested; the teaching and learning of statistics and
probability has been a hot field in mathematics education research for more
than a decade. Psychologists attempt to describe how people think. Education
research looks at the effects of our intervention (teaching) on students’ thinking.
Results of this research are summarized in Garfield (1995), Garfield and Ahlgren
(1988), Kapadia and Borovcnik (1991) and Shaughnessy (1992).

The consensus of education research is, if anything, more discouraging than
the findings of the psychologists. Even detailed study of formal probability, so
that students can solve many formally posed problems, does little to correct
students’ misconceptions and so does little to equip them to use probabilistic
reasoning flexibly in settings that are new to them. Garfield and Ahlgren (1988)
conclude that “teaching a conceptual grasp of probability still appears to be
a very difficult task, fraught with ambiguity and illusion.” Some researchers
[see Shaughnessy, pp. 481–483] have been able to change the misconceptions
of some (by no means all) students by activities in which students must write
down their predictions about outcomes of a random apparatus, then actually
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carry out many repetitions and explicitly compare the experimental results with
their predictions. Some of these same researchers go so far as to claim that “not
only is traditional instruction insufficient, it may even have negative effects on
students’ understanding of stochastics.” Shaughnessy (p. 484) also cites “strong
evidence for the superiority of simulation methods over analytic methods in a
course on probability.” He stresses that changing ingrained misconceptions
cannot be done quickly, but requires sustained efforts.

Research in education and psychology appears to confirm that conditional
probabilities are particularly susceptible to misunderstanding. Garfield and
Ahlgren (1988, p. 55) note that students find conditional probability confusing
because “an important factor in misjudgment is misperception of the question
being asked.” Students find it very difficult to distinguish among P (A|B),
P (A and B), and P (B|A) in plain-language settings. Shaughnessy (1992, pp.
473–476) discusses the difficulties associated with conditional probabilities at
greater length. He agrees that “difficulties in selecting the event to be the
conditioning event can lead to misconceptions of conditional probabilities.” He
also points to empirical studies suggesting that students may confuse condition-
ing with causality, are very reluctant to accept a “later” event as conditioning
an “earlier” event, and are easily confused by apparently minor variations in
the wording of conditional probability problems. The “Monty Hall problem”
(that goat behind a door—a job for Bayes’ theorem) and its kin remind us that
it is conditional probability problems that so often give probability its air of
infuriating unintuitive cleverness.

1.6 Barriers to Bayesian understanding

It appears that we must accept these facts as describing the environment in
which we must teach: beginning students find probability difficult; they find
conditional probability particularly difficult; there is as yet no known way to
relieve their difficulties that does not involve extensive hands-on activity and/or
simulation over an extended time period. I believe that our experience as
teachers generally conforms to these findings of systematic study.

The unusual difficulty of probability ideas, and the inability of study of
formal probability theory to clarify these ideas for students, argue against a
mathematically-based approach in teaching beginners. Mathematical under-
standing is not the only kind of understanding. Mathematical language helps
us to formulate, relate, and apply statistical ideas, but it does not help our
students nearly as much as we imagine. Recognition of the futility of a for-
mal approach has been one factor in moving beginning statistics courses away
from the traditional probability-and-inference style toward a data analysis-data
production-concepts of inference-methods of inference style that pays more at-
tention to data. I believe that the findings I have cited also point to very
substantial difficulties that stand in the way of effective Bayes-for-beginners
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instruction:

• If our intuition of chance is systematically incoherent, is it wise to rely on
subjective probability as a central idea in a first statistics course?

• If the only known ways of changing misconceptions about chance behav-
ior involve confronting misconceptions via physical chance devices and
simulation—that is, by asking “What would happen if we did this many
times?”—ought we not to make the answer to that question our primary
interpretation of probability?

• If we want to help students see that the laws of probability describe chance
outcomes only in the long run—the law of large numbers is true, but the
law of small numbers is false—how can we avoid confusion if our central
notion of probability applies to even one-time events?

• If teaching correct probability is so difficult and requires such intensive
work, ought we not to follow Garfield and Ahlgren (1988) in asking “how
useful ideas of statistical inference can be taught independently of tech-
nically correct probability?” Ought we not at least seek to minimize the
number of probability ideas required, in order to leave time for data-
oriented statistics?

• If conditional probability is known to be particularly difficult, should we
not hesitate to make it a central facet of introductory statistics?

Statistical inference is not conceptually simple. Standard and Bayesian in-
ference each require a hard idea—sampling distributions for standard inference,
and conditional probability and updating via Bayes’ rule for Bayesian inference.
I claim—not only as a personal opinion, but as a reasonable conclusion from the
research cited above—that the Bayesian idea is markedly more difficult for be-
ginners to comprehend. Sampling distributions fit the “activity and simulation”
mode recommended by most experts on learning, and the absence of condition-
ing makes them relatively accessible both conceptually and to simulation. Once
students have grasped the “What would happen if we did this many times?”
method, we can hope that they will also grasp the main ideas of standard in-
ference. Bayes-for-beginners, on the other hand, must either shortchange the
reasoning of inference or use two-way tables to very carefully introduce condi-
tional probability and Bayes’ theorem. Albert (1995) and Rossman and Short
(1995) illustrate the care that is required.

Although I advocate a quite informal style in presenting statistical ideas to
beginners, I recognize that different teachers prefer different levels of formality.
I claim that at any level of formality,

“State a prior distribution for the parameter and the conditional
distribution of the data given the parameter. Update to obtain the
conditional distribution of the parameter given the data.”
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is less accessible core reasoning than

“What would happen if we did this many times?”

1.7 Are Bayesian conclusions clear?

We have seen that the need to understand probability, especially conditional
probability, at a relatively profound level, is a barrier to understanding the
reasoning of Bayesian inference. I believe that the same barrier stands in the
way of understanding the results of inference. That is, Bayesian conclusions are
perhaps not as clear to beginners as Bayesians claim.

It is certainly true, as Bayesians always point out, that users do not speak
precisely in stating their understanding of the conclusions of standard inference.
They often confuse probability statements about the method (standard infer-
ence) and probability statements about the conclusion (Bayesian inference). “I
got this answer by a method that gives a correct answer 95% of the time” easily
slides into “The probability that this answer is correct is 95%.” If we regard
this semantic confusion as important, we ought to ask whether the user of Bayes
methods can explain without similar confusion what she means by “probabil-
ity.” The Bayesian conclusion is easy to state, but hard to explain. What is
this “probability 95%”? Physical and personal probabilities are conceptually
quite different, and the user of Bayes methods must be aware that probabilities
are conditioned on different events at each stage. That a user gives a seman-
tically correct Bayesian conclusion is not evidence that she understands that
conclusion.

1.8 What spirit for elementary statistics instruction?

The continuing revolution in computing has changed the professional practice of
statistics and our judgment of what constitutes interesting research in statistics.
These changes are in turn changing the teaching of elementary statistics. We
are moving from an over-emphasis on probability and formal inference toward
a balanced presentation of data analysis, data production, and inference. See
the report of the ASA/MAA joint curriculum committee [Cobb (1992)] for
a clear statement of these trends. In particular, there is a consensus that
introductions to statistics ought to involve constant interaction with real data
in real problem settings. Real problem settings often have vaguely defined goals
and require the exercise of judgment. The spirit of contemporary introductions
to statistical practice is very different from the spirit of traditional “probability
and statistics” courses.

Bayesian thinking fits uneasily with these trends. Exploratory data analysis
allows the data to speak, and diagnostic procedures allow the data to criticize
proposed models; Bayesians tend to say “no adhockery” and to start from
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models and structured outcomes rather than from data. Good designs for data
production avoid disasters (voluntary response, confounding) and validate text-
book models; many Bayesians question at least the role of randomization and
sometimes the role of proper sample/experimental design in general. And the
high opportunity cost of teaching conditional probability and Bayes’ theorem
in more-than-rote fashion forces cuts elsewhere.

Concentrating on Bayesian thinking is not in principle incompatible with
data-oriented instruction. In practice, however, it is likely to turn elementary
statistics courses back toward the older mode of concentrating on the parts of
our discipline that can be reduced to mathematics. Avoiding this unfortunate
retrogression is perhaps the most serious pedagogical challenge facing Bayes-
for-beginners.
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