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Is it reasonable to teach the ideas and methods of Bayesian inference in a first statistics
course for general students? This paper argues that it is at best premature to do so. Surveys
of the statistical methods actually in use suggest that Bayesian techniques are little used.
Moreover, Bayesians have not yet agreed on standard approaches to standard problem set-
tings. Bayesian reasoning requires a grasp of conditional probability, a concept confusing to
beginners. Finally, an emphasis on Bayesian inference might well impede the trend toward
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1. INTRODUCTION

The issue I wish to consider is whether ideas and methods of Bayesian inference should
be presented in a first statistics course for general students who must later read and perhaps
employ statistics in their own disciplines.

This is a quite specific question. I agree that Bayesian methods are increasingly impor-
tant and should form part of the training of professional statisticians. I also agree that a
course for liberal arts students on, e.g., “risks and decisions” structured around subjective
Bayesian ideas can be stimulating, particularly if it incorporates discussion of the conflict
between probabilistic assessment of risks and societal response (e.g., Slovic, Fischhoff, and
Lichtenstein (1982), Zeckhauser and Viscusi (1990)). These are quite different settings from
that I have in mind, one more specialized and the other less constrained by student needs.

I do not wish to join the foundational debate over whether Bayesian inference is in some
sense uniformly preferable to standard inference. That prejudges our question, forcing us to
teach what is “right” regardless of customer needs or pedagogical barriers. Most statisticians
remain eclectic, willing to employ Bayesian methods where appropriate but unconvinced by
universalist claims. That being the case, I am unwilling to settle the content-of-instruction
issue by appeals to one or another side in a debate among professionals.

There are, I think, some compelling reasons to hesitate to present Bayesian ideas in a
first course in working statistics:

1. Bayesian methods are relatively rarely used in practice. Teaching them has an op-
portunity cost, depriving students of instruction about methods that are in common
use.

2. It is unclear what Bayesian methods we should teach. Those who advocate them have
not yet agreed on standard approaches to standard problems. And of course, lacking
standard methods, we also lack standard software for implementing them.

3. A conceptual grasp of Bayesian methods rests on an understanding of conditional
probability, a notoriously difficult idea. Although Bayesian conclusions are simple in
form, the simplicity disappears when we ask “What do you mean by probability?”
There is of course no easy path to understanding inference. Nonetheless, the fact that
standard inference consistently asks “What would happen if we did this many times?”
and answers by displaying a sampling distribution makes standard reasoning more
accessible.

4. Inference is only part of statistics in practice. Data analysis and the design of data
production were always important and have become more so in the past generation.
They have recently begun to receive more adequate attention in instruction for begin-
ners. For various reasons (emphasis on inference, ambiguity about the role of designed
data production, dependence on conditional probability), Bayes-for-beginners tends to
impede the trend toward greater emphasis on developing students’ data sense. I like
the trend and don’t want to impede it.
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The first two of these arguments are relatively “objective,” resting on recent surveys of
actual use of statistical methods in several fields (Section 2) and on browsing in Bayesian
texts and research literature (Section 3). They are the primary focus of this paper. I also
consider these arguments conclusive. It seems to me that the weakest conclusion possible is
that it is premature to make Bayesian methods the focus of basic methodological courses.
They haven’t been sufficiently widely accepted by users, or even been sufficiently routinized
by experts. That situation may change in the future. In the present, academic researchers
ought not to impose a still-primitive version of how we think things should in principle be
done.

Advocates of Bayes-for-beginners should ponder the similar intellectual case for basing
our first courses on modern computer-intensive methods (bootstrapping, “nonparametric”
fitting, robust inference). This is also an active area of research, and is also finding increasing
application. Some statisticians find the empirical and exploratory spirit of these approaches
more congenial than the decision orientation of Bayesian thinking. Yet it would also be
premature to abandon the teaching of t procedures in favor of neural nets. We have an
obligation to consider and to meet the needs of our customers. If we do not, they will simply
go elsewhere.

The third argument enumerated above can be grounded in research in psychology and
education about the difficulties attending probability concepts, but it is nonetheless more
disputable. I briefly sketch the grounds for my opinion in Section 4; much greater detail
appears in Moore (1997). My fourth point concerns the overall spirit and emphasis of our
introductory courses rather than the species of formal inference that we teach. It is the
point about which I feel most strongly. If, in a future Bayesian era, Bayes methods become
standardized and widely used in routine statistical practice, I will happily teach them despite
the pedagogical barriers noted in Section 4. I trust that even in such an era, statisticians will
continue to insist that beginning students gain hands-on experience with data and understand
core statistical ideas (such as the distinction between observation and experiment) that lie
outside the domain of formal inference.

2. ARE BAYESIAN METHODS USED IN PRACTICE?

Our beginning students come to us from other fields of study. They come because their
own fields employ statistical ideas and methods. Their first need is to be able to read liter-
ature in their own field. We ought to be attentive to our customers’ expressed needs, rather
than offer them what we imagine they ought to need. What statistics do knowledgeable
practitioners in various fields apply? Let us search for data. There follows, in roughly de-
scending order of statistical sophistication, a survey of recent empirical studies on the use of
statistics in practice.

Professional statisticians employed in national laboratories may be thought to employ
up-to-date and effective methodology. Rustagi and Wright (1995) carried out a census of
statisticians employed in Department of Energy National Laboratories. Remarkably, they
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obtained responses from all 103 members of this population, 100 of whom hold a master’s or
doctorate degree. These statisticians work in a variety of applied fields, with some emphasis
on physical sciences and environmental problems. Table 1 records their responses to a request
to choose from a long list “the three statistical techniques that have been most important
to your work/research.” Only four of this sophisticated group mentioned Bayesian methods,
although 37 reported training in these methods during their university careers. Techniques
typical of those taught in a two-course sequence on statistical methods are most common.
Other frequently mentioned topics (probability modeling, simulation, quality control, reli-
ability) reflect the nature of the National Laboratories’ work. When asked to choose the
three most important techniques that were not part of their academic training, 19 named
Bayesian methods—sixth place behind quality control, reliability, simulation, exploratory
data analysis, and graphical display.

Medical research is a major and quite sophisticated consumer of statistical analyses. The
surveys by Altman (1991) and Emerson and Colditz (1992) document the nature and growth
of the use of statistics in medical journals in roughly the decade of the 1980s. In particular,
Emerson and Colditz inventory the methods employed in the 115 “Original Articles” appear-
ing in the New England Journal of Medicine in 1989, and Altman does the same for the 100
articles appearing in 1990. Table 2 presents some of the findings of Emerson and Colditz.
Techniques and ideas from a standard first course predominate—Emerson and Colditz say
(referring to a longer time period) that acquaintance with descriptive statistics, t proce-
dures, and contingency tables would give “full access” to 73% of the articles. They identify
increasing use of ANOVA, multiple regression, and survival analysis as notable recent trends.
Altman points to meta-analysis, new techniques for design of clinical trials, and editorials
in several medical journals encouraging more frequent use of confidence intervals. Neither
paper contains any mention of Bayesian approaches. Some use could lie hidden in the “other
methods” category of their tables, though Emerson and Colditz enumerate several of the
“other methods” without using the word Bayes. Similar results appear in older surveys such
as Hokanson, Luttman, and Weiss (1986).

In psychiatry, Everitt (1987) reprints a table from DeGroot and Mezzich (1985) that
surveys 597 papers in the 1980 volumes of three major journals. Of these, 156 were sur-
veys or contained no data. The remaining 441 use statistical methods to some degree. One
paper among these 441 employed Bayesian methods. Everitt mentions more recent trends
toward use of clustering, logistic regression, structural equation models, and Cox regression.
Dunn et al. (1993), focusing on depression, point to some of the same innovations along
with meta-analysis and an emphasis on controlled clinical trials. Neither they nor any of the
discussants to Everitt’s survey mention Bayesian approaches as either in use or promising.
Generally similar conclusions appear in Hokanson et al. (1986). Nieminen (1995) compares
the statistical methods employed in two types of papers in psychiatry (research on therapeu-
tic communities and on psychiatric wards) across a large universe of international journals in
the years 1987–1992. Comparison of means (t tests and ANOVA), cross-tabulations (often
with the Pearson chi-square test), correlation, and “reliability analysis” (agreement of raters,
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intraclass correlation, etc.) are the most common techniques. Bayesian methods again go
unmentioned.

Emulating Emerson and Colditz, Hammer and Buffington (1994) survey all articles pub-
lished in 1992 in six veterinary medicine journals. About half contained statistics beyond
simple numerical descriptions. The authors summarize: “Knowledge of 5 categories of statis-
tical methods (ANOVA, t-tests, contingency tables, nonparametric tests, and simple linear
regression) permitted access to 90% of the veterinary literature surveyed. These data may be
useful when modifying the veterinary curriculum to reflect current statistical usage.” Mul-
tiple regression, epidemiological methods, confidence intervals, and survival analysis fill out
the authors’ list. Bayesian methods are not mentioned.

In all the fields of work covered by these surveys, statistical methods taught in a standard
first course go far toward giving access to the research literature. More important, the rea-
soning of tests and confidence intervals is essential to understanding research reports in all
of these fields. The more specialized methods that are most often employed, and the newer
techniques that are considered promising, vary with the area of application. As we move
away from the areas that most often involve professional statisticians in their work, the sta-
tistical methods employed become more traditional. It would certainly be desirable to have
comparable data for other fields, especially the social and behavioral sciences. Nonetheless,
the available data suggest that Bayesian methods are rarely used, relative to the methods of
standard inference, in any field to which statistics is applied.

Paul Velleman points out that the absence of Bayesian procedures in commercial sta-
tistical software is more global evidence of lack of use, as these packages respond quickly
to customer demand. Velleman says, “Both the features and the advertising of software
packages offer a good measure of what people who actually analyze data really want.” The
most recent new version announcement I have seen (as of July, 1996) is Minitab Release
11. Minitab claims to have added logistic regression, reliability/survival analysis, polyno-
mial regression, gage R&R, and correspondence analysis. Several of these techniques appear
in the lists I have cited. Minitab appears to find more demand for even gage R&R and
correspondence analysis than for Bayesian procedures.

The fact that even sophisticated users rarely turn to Bayesian methods deserves atten-
tion. Statistical research journals are full of papers advancing and applying Bayesian ideas.
Statisticians—especially Bayesians—therefore imagine that use of these ideas in practice is
advancing rapidly. I can find no empirical evidence that this is true. The research papers
are in the nature of demonstration pieces that suggest the possibilities of Bayesian analyses.
These analyses have not yet passed the “Box test” that assesses the usefulness of a method
by whether it is actually used.

This survey of empirical evidence concerning use in practice raises another issue beyond
the question of why we should teach beginners an approach that appeals to us in principle
but lies unused in practice. Teaching Bayes to beginners has an opportunity cost. If Bayesian
ideas displace t procedures, contingency tables, regression, or ANOVA, they bar students
from access to much literature in any field that applies statistics. If we manage to add Bayes
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to the list, perhaps by persuading students to elect further courses, we must ask whether
the time might better be spent on logistic regression, simulation, survival analysis, or meta-
analysis. Bayesian methods are not the only hot field in statistics research, and several others
have already passed the Box test.

3. ARE THERE STANDARD BAYESIAN METHODS?

The content of a first course that aims to provide understanding and useful tools to stu-
dents from other disciplines should, I think, consist mainly of standard material well-accepted
by the profession and widely used in practice. The first section argued that Bayesian meth-
ods are not widely used. This section will suggest that even if we listen only to Bayesians,
standard methods for standard problems are not yet agreed upon.

Much of the disagreement concerns the essential element distinguishing Bayesian from
standard models, namely prior distributions for unknown parameters. There is a continu-
ing tension in Bayesian circles between use of priors that try to reflect the actual partial
knowledge of a decision-maker and “reference priors” that are automatically generated from
the sampling distribution, taking no account of what partial knowledge may exist. (I adopt
the terminology of Kass and Wasserman (1996) in calling priors generated by formal rules
“reference priors.”) The former class of priors are “informative;” reference priors are gener-
ally chosen to be “noninformative.” The use of conjugate priors, which specify a parametric
family of prior distributions on the basis of analytic convenience, but allow prior knowledge
to choose the parameters of this family, lies between these extremes. Because knowledge of
the mechanism that generates the unknown parameter is rarely complete enough to deter-
mine a prior distribution, informative priors are usually subjective. Simplifying a bit, we
can imagine several Bayes-for-beginners approaches.

A. Purist Bayes Relevant prior information is always available and should be
expressed in an informative (usually subjective) prior distribution tailored to the
problem at hand. This view is consistent, easy to explain, and in many settings
intellectually attractive. Expositions of the advantages of Bayesian analysis em-
phasize the use of genuine prior information and the subjective interpretation of
probability. Alas, there can then be no standard Bayesian analysis for standard
problems, because every problem is potentially unique. We are left with a tool
of great power in non-standard problems, but which is unlikely to ever be widely
used in standard settings. Beginners come away with ideas but few usable tools.

B. Accessible Bayes Emphasize the Bayesian Big Idea: express prior infor-
mation in an informative prior distribution, use data to update this information
to form a posterior distribution, base all inference on the posterior distribution.
Restrict the settings considered to those in which beginners can implement the
Big Idea, mainly discrete or conjugate priors. In a binomial problem, for exam-
ple, the prior information just happens to be expressed by a beta distribution.
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Emphasize estimation rather than testing, and rejoice that the one-way ANOVA
setting is beyond the scope of the course. We can teach a beginner-friendly course
that does provide usable tools for simple settings. However, the tools taught may
not reflect actual Bayesian practice (let alone prevailing statistical practice). As
Robert (1994, p. 98) notes, “the use of conjugate priors is strongly suspicious for
most Bayesians since it is mainly justified on technical grounds rather than for
fitting properly the available prior information.”

C. Auto-Bayes In practice we do need standard methods for standard prob-
lems. We can get them by employing reference priors that are determined by the
sampling distribution. Reference priors are generally noninformative. In effect,
we first present beginners with an explanation of the role of prior information
and perhaps even of the machinery for making use of it in the simplest cases.
When we come to practical settings, however, we tell our students to ignore prior
information. If our students are a bit sophisticated, we may explicitly argue (Box
and Tiao, 1973, p. 2) that “In problems of scientific inference we would usually,
were it possible, like the data ‘to speak for themselves.’ Consequently, it is usu-
ally appropriate to conduct the analysis as if a state of relative ignorance existed
a priori.”

There is no Bayesian consensus on the relative place of purist, accessible, and automated
methods for dealing with specific standard settings. It was once common (e.g., Lindley
1971) to begin with axioms for coherent inference, show that these imply the existence of a
subjective prior distribution, and insist that use of these subjective priors is essential to the
Bayesian approach. Many Bayesians now criticize this purist stance (e.g., Berger 1985, pp.
198–199). Current opinion among Bayesians seems rather to favor some version of reference
priors for common statistical settings. But Lindley (1971, pp. 71) is not alone in his criticism
of “ready-made Bayesian analyses in which θ is just a parameter.” Eaton and Dickey (1996,
p. 906) exemplify the continuing debate over the role of “normative” arguments in Bayesian
inference in commenting on “. . . the outstanding gaping hole in Bayesian theory as it exists
today—the absence of a normative motivation for responding to new information by the
use of probability conditioning, and hence the lack of any formal justification for statistical
inference by means of Bayes’ theorem.”

For practical and pedagogical reasons, Bayes for beginners will almost surely employ
some mix of conjugate and reference priors, focusing on procedures that are computationally
feasible. This also reflects a feeling that teaching the Bayesian Big Idea is more important
than teaching methods we would actually recommend in practice. Even assuming this, there
remain many issues on which a Bayesian consensus has yet to emerge.

• There is no agreement as to which noninformative priors we should use and teach.
“Perhaps the most embarrassing feature of noninformative priors, however, is simply
that there are often so many of them.” (Berger 1985, p. 89) Berger offers four choices
when θ is the probability of success in the binomial setting, and says, “All four pos-
sibilities are reasonable.” See Robert (1994, p. 119) for an example due to Berger
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and Bernardo showing that simply reordering the parameters in the oneway ANOVA
setting leads to four different reference priors (all of them too messy for beginners to
grasp, I might add).

• Noninformative prior distributions are generally improper when the parameter space
is not compact. Shall we expose beginners to improper priors? Robert (1994, p.
112) notes that “. . . some statisticians object to the use of improper priors . . . Such
misgivings are not really justified since it is actually possible to work with improper
priors, as long as we do not regard them as probability distributions.” This may not
seem promising material for a first course for general students. Berry (1996, p. 339)
wisely lets pedagogical good sense prevail, saying only that the prior for a normal mean
m is “flat over a substantial region of m-values.” He also discusses normal (conjugate)
priors for the mean m. He does not mention Jeffrey’s advocacy of Cauchy priors.

• Yet other issues lurk beneath the surface, though we may choose to ignore them in a first
course. Some types of noninformative priors depend on the choice of parametrization.
We will hide this rather than admit that choosing between probability of success and
odds ratio to parametrize a binomial setting changes our automated inference. Once we
have made our choice of prior and obtained the posterior distribution, a loss function or
utility function usually enables us to complete our inference. We may assume (silently)
squared error and 0/1 loss functions for estimation and testing. Or we may simply give
posterior distributions and comment informally on what actions they suggest.

Kass and Wasserman (1996) provide a thorough survey of proposals for the use of refer-
ence priors chosen by formal rules. To quote their preface, “We conclude that the problems
raised by research on priors chosen by formal rules are serious and may not be dismissed
lightly.” Their exposition makes it clear that choice of reference priors is still work in progress.

The complexities of Bayesian hypothesis testing deserve separate mention. The gap be-
tween estimation and testing is wider for Bayesian than for standard inference. “In frequen-
tist theory, estimation and testing are complementary, but in the Bayesian approach, the
problems are completely different.” (Kass and Raftery, 1995, p. 781) Bayesians must gen-
erally switch priors when moving from estimation to testing, because the continuous priors
used for estimation problems put probability zero on a point null hypothesis.

The results of Bayes tests seem to be more sensitive to the choice of prior distribution than
is the case for Bayes estimates. Again unlike the situation for estimation, the results of Bayes
tests often diverge dramatically from the results of standard tests of the same hypotheses.
A major strand of Bayesian literature demonstrates the divergence between P -values and
posterior probabilities when the prior distribution places any point mass on H0 and is diffuse
on the space of alternatives. Berger and Delampady (1987) give many references and a good
discussion. Interpretation of this conflict varies: Berger and Delampady (p. 319) feel that
P -values as usually interpreted have a “hidden and extreme bias,” but even some Bayesians
(e.g., Robert, 1994, p. 189) can be found suggesting that many Bayes tests “are usually quite
biased in favor of the alternative hypothesis.” I rather like Dempster’s (1971) suggestion that
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Bayesian “predictive” concepts of probability are suitable for estimation, whereas frequentist
“postdictive” probability better fits testing. Like many other variations of Bayesian thinking,
Dempster’s suggestion has not gained the general acceptance of Bayesians.

Even putting aside these issues, the choice of Bayesian testing methods is both quite
complex and not at all settled. See Kass and Wasserman (1995) as a demonstration that
Bayesian approaches to standard testing problems remain a research issue. These authors
say in their preface, “For estimation problems, reference priors are often ‘flat’ . . . but in
testing such a prescription leads to serious difficulties. Thus an important problem is to
define a reference Bayesian testing procedure that uses a proper prior . . . ” Robert (1994, p.
187) agrees with Kass and Wasserman that the current emphasis on reference priors leaves
testing in an unsatisfactory state: “The recourse to noninformative prior distributions for
testing hypotheses is rather limited, if not simply discouraged . . . ” Kass and Raftery (1995)
provide a review of Bayesian hypothesis testing. They convince me that this topic is not yet
ready for the general public.

It is, of course, possible to take definite positions on these issues. The difficulty is that
no one set of positions is widely accepted by Bayesians. The most recent surveys of research
on these issues remind us of their unsettled state. Even if we abandon the hope of contact
with standard statistical usage, there is as yet no “Bayesian standard” to replace it.

4. IS BAYESIAN REASONING ACCESSIBLE?

The findings of the two previous sections give, I think, ample reason to avoid basing our
first courses on Bayesian ideas. Let me now briefly raise an additional issue, based on peda-
gogical concerns. Bayesians generally argue that the conclusions of Bayesian inferences are
clearer than those of standard inference. I suggest that the reasoning of Bayesian inference
is considerably more difficult for naive beginners to grasp.

The chief barrier is, as usual in first statistics courses, probability. Both standard and
Bayesian inference are based on probability, and both can be presented with greater or lesser
degrees of formal probability. I believe that at any level of informality, Bayesian reasoning
requires both a more complex notion of probability and more probabilistic machinery than
standard inference.

The unusual difficulty of probabilistic ideas has been documented both by psychologists,
who investigate how people think about chance, and by education researchers, who study
the effects of our intervention (teaching) on students’ thinking. The best known work by
psychologists is that of Tversky and Kahneman (e.g., 1983); see Bar-Hillel and Wagenaar
(1993) for a recent survey. Tversky and Kahneman (1983, p. 313) show that, “intuitive judg-
ments of all relevant marginal, conjunctive, and conditional probabilities are not likely to be
coherent, that is, to satisfy the constraints of probability theory.” They also dispute Lind-
ley’s claim that coherent personal probabilities can be elicited: “we suspect that incoherence
is more than skin deep.”
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Research bearing on the teaching and learning of statistics and probability is summarized
in Garfield (1995), Garfield and Ahlgren (1988), Kapadia and Borovcnik (1991) and Shaugh-
nessy (1992). This literature establishes: (1) Our intuition about chance is defective, and
this is a major barrier to effective teaching of probability and statistics. (2) It has proved
hard to correct students’ misconceptions about probability; limited success has been reported
only from quite extensive programs based on hands-on experience with chance experiments
and simulation. (3) Conditional probability is a particularly confusing idea. Shaughnessy
(1992, pp. 473–476) reviews at some length the difficulties that conditional probability poses
for learners.

Against this background, consider these contrasts between standard and Bayesian infer-
ence, both restricted to the level of instruction for beginners.

In standard inference, a parameter (say, µ) is a fixed number that describes the popula-
tion. It is different in kind from a statistic (say, x) that describes a sample and is random
because it varies in repeated sampling. In Bayesian inference, µ and x are both random; in
fact, µ has two distributions, prior and posterior. Yet, to a beginner, µ and x are random in
different senses, because the randomness of µ expresses our uncertainty, but the randomness
of x reflects the possibility of repeated sampling.

Probability has a single meaning in standard inference. It answers the question “What
would happen if we did this many times?” Probability is physical and empirical; we can
explore it by hands-on repetition of chance phenomena and by simulation—the only means
known to improve students’ grasp of chance behavior. Bayesians must deal with subjective
probability (hard to simulate), account for the fact that subjective probabilities often diverge
from actual long-term patterns of chance phenomena, and explain the senses in which µ and
x are both random.

Each style of inference involves a hard idea—there is no easy road to inference. Students
of standard inference must grasp sampling distributions. We help them by simulations, by
using the familiar tools of data analysis (histograms; look for shape, center, and spread), and
by reminding them that inference is based on asking, “What would happen if we did this
many times?” Bayesian inference requires conditional probability and updating via Bayes’
rule. It is a reasonable conclusion from the psychological and educational research cited
above that this is markedly harder than an approach that does not require conditioning on
observed events and so can avoid conditional probability.

Bayesian conclusions are perhaps not as clear to beginners as is often claimed. It is true
that users of standard inference often utter a probability statement about their conclusion
(“The probability that this answer is correct is 95%”) when standard inference requires a
statement about the method (“I got this answer by a method that gives a correct answer
95% of the time”). If we regard this semantic confusion as important, we ought to ask
whether the user of Bayes methods can explain without similar confusion what she means
by “probability.” It is easy to say “probability 95%,” but much harder to be clear about what
this probability is conditioned on, or about whether it is a physical or subjective probability.
A semantically correct interpretation of a Bayesian credible region may reflect no better
understanding than a semantically incorrect interpretation of a standard confidence region.
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A glance back at the comments on Bayesian hypothesis testing in Section 4 will suggest
several other barriers to beginners’ grasp of Bayesian reasoning. I understand and have
some sympathy for Bayesian claims to employ a single coherent approach that works in
very general settings. It is a priori unlikely that such a general and powerful method will
also be simple. Adding data (years of teaching experience, considerable reading of Bayesian
expositions, and the findings of research on such topics as our understanding of probability),
I am a posteriori convinced that Bayesian reasoning is even harder than the already hard
reasoning of standard inference. Those who wish to dispute this conclusion can find my
reasons stated in much greater detail in Moore (1997).

5. WHAT DO WE WANT OUR STUDENTS TO LEARN?

Let me conclude with a less specific—but perhaps more important—reason to hesitate
to base a first course on Bayesian ideas. The teaching of elementary statistics has only
recently moved from an over-emphasis on the parts of our subject that can be reduced
to mathematics (probability and formal inference) toward a balanced presentation of data
analysis, data production, and inference. See the report of the ASA/MAA joint curriculum
committee (Cobb 1992) for a clear statement of trends that I and many others think are
healthy. Figure 1 is a summary of the committee’s recommendations that has been approved
by the ASA Board of Directors. It deserves serious consideration as a thoughtful statement
by the statistical community of principles that should govern our first courses.

The last main point in Figure 1 concerns pedagogy (what we do to help students learn)
rather than content (what we want our students to learn). “Active learning” is the byword
of the effort to reform the teaching of the mathematical sciences in general. Although my
topic here is content, it is fair to note that there is a synergy between active learning and
content that focuses on data and scientific problems, thus requiring students to explore and
interact with data in the setting of substantive problems.

What do we want our students to learn? In our more realistic moments, we recognize
that many students will not take away from our first courses any clear conceptual grasp
of formal probability or of the more subtle varieties of inference. I would place all flavors
of hypothesis testing and all Bayesian reasoning in the “more subtle” category. Students
will, if we provide the opportunity, take away a number of messages more valuable than a
grasp of formal inference. Several such messages are alluded to in the first two points of the
ASA/MAA committee report.

Here are some things I want my beginning students to learn. First, look at your data,
starting with graphs and simple calculations. Look for overall patterns and for deviations
such as outliers. Always ask what your data say in the context of the setting they describe.
Recognize the importance of data production. Faulty data production, (e.g., voluntary re-
sponse or confounding) can render data worthless in ways that no fancy analysis can rescue.
Understand that an observed association does not imply causation, and that randomized
comparative experiments are the gold standard for evidence of causation. Randomness, as
exemplified by deliberate use of chance in designs for data production, produces regular

11



patterns of long-run behavior described qualitatively by the law of large numbers and the
central limit theorem. This regularity applies only in the long run. The data take priority
over any model (such as a normal distribution or a linear relationship) used to analyze them.
Analysis starts by looking at the data, and models and assumptions are judged by the data.
“Data sense” might summarize my primary objectives for a first statistics course.

Real problem settings often have vaguely defined goals and require the exercise of judg-
ment. They require us to ask about the data production design, to search for problem data
points, to try several presentations of the data in an iterative search for the main features.
We may, happily, find that all is in order and that a standard inference procedure does in
fact help answer the substantive question. We may find that formal inference is unjustified
or doesn’t answer a question of real interest. Intelligent supporters of standard inference
recognize that formal inference is not always appropriate. They also recognize that, even
when appropriate, inference often plays a “confirmatory” role, confirming by calculation
what examination of the data suggests. This understanding contributes to a willingness to
reduce the traditional first-course emphasis on inference in favor of hands-on work to develop
data sense.

There is, on the other hand, some tendency in Bayesian instruction to neglect data
analysis and design of data production in favor of more attention to inference. No doubt this
tendency reflects in part the opportunity cost of the need to explain the Bayes machinery.
Successful presentation of conditional probability and Bayes’ theorem will require careful
work with two-way tables, as in Albert (1995) and Rossman and Short (1995). The decision-
theoretic bent of many Bayesians, which is clearly reflected in the leading advanced texts,
Berger (1985) and Robert (1994), also contributes to an over-emphasis on formal inference.
Bayesian inference is not as well integrated with the design of data production and with data
analysis as is standard inference. Some Bayesians deny the importance of randomization
in data production, whereas standard inference sees randomization as validating standard
sampling models. The spirit of data analysis (derived from John Tukey) is to minimize
prior assumptions and allow the data to suggest models. This spirit fits uneasily with
Bayesian emphasis on the importance of prior (prior to the data) distributions and clearly
structured outcomes. Bayesian thinking seems to start with models rather than with data—
“no adhockery” is a Bayesian dictum.

Instruction in Bayesian inference is not in principle incompatible with developing data
sense. In practice, however, it is likely to turn elementary statistics courses back toward
probabilistic formalism and to leave our beginning instruction less accessible, less in contact
with practice, and less in contact with data. As George Cobb so nicely puts it, “Bayesian
inference offers a way to make a probability course deal with statistics.”
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Boston: Birkhäuser, Boston, to appear.

23. Nieminen, P. (1995), “Statistical content of published therapeutic community research,”
Therapeutic Communities, 16, 239–251.

24. Robert, C. (1994), The Bayesian Choice: A Decision-Theoretic Motivation, New York:
Springer.

25. Rossman, A. J., and Short, T. H. (1995), “Conditional probability and education reform:
Are they compatible?” Journal of Statistics Education (electronic journal), 3, number 2.

26. Rustagi, J. S., and Wright, T. (1995), “Employers’ contributions to the training of pro-
fessional statisticians,” Bulletin of the International Statistical Institute, Proceedings of the
50th Session, LVI, Book 1, 141–160.

27. Slovic, P., Fischhoff, B., and Lichtenstein, S. (1982), “Facts vs. fears: Understanding per-
ceived risk,” In Judgment under Uncertainty: Heuristics and Biases, D. Kahneman, P. Slovic,
and A. Tversky (eds.), New York: Cambridge University Press, 463–489.

28. Tversky, A., and Kahneman, D. (1983), “Extensional versus intuitive reasoning: the con-
junction fallacy in probability judgment,” Psychological Review, 90, 293–315.

29. Zeckhauser, R. J., and Viscusi, W. K. (1990), “Risk within reason,” Science, 248, 559–564.

14



Table 1. Responses of 103 DOE Statisticians Asked to
Name the Three Techniques Most Important in Their Work.

Statistical Technique Top 3 Responses
Regression analysis 63
Basic statistical methods 37
Analysis of variance 26
Design of experiments 26
Probability modeling 22
Sampling, survey sampling 17
Simulation 16
Graphical display and data summary 12
Multivariate analysis 12
Quality control, acceptance sampling 12
Exploratory data analysis 11
Reliability, life data analysis 11
Nonlinear estimation 7
Biostatistics, bioassay 6
Nonparametric methods 5
Numerical analysis 5
Bayesian methods 4
Time series analysis 4
Categorical data analysis 3
Variance components 3
Ranking, paired comparisons 1
Other 5

Source: Rustagi and Wright (1995).
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Table 2. Statistical Techniques Most Commonly Used
in 115 New England Journal of Medicine Articles, 1989.

Statistical technique Number of articles
t-tests 45
Contingency tables 41
Survival methods 37
Epidemiologic statistics 25
Nonparametric tests 24
Analysis of variance 23
Pearson correlation 22
Multiple regression 16
Multiway tables 11
Simple linear regression 10
Multiple comparisons 10
Adjustment and standardization 10

Source: Excerpted from Table 4 of Emerson and Colditz (1992).
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Figure 1: Recommendations of the ASA/MAA Joint Curriculum Committee

The following three recommendations are intended to apply to any course whose
goal is to introduce the nature of statistics to beginning students. For more ad-
vanced courses in the statistics curriculum, some of the recommendations would
still apply; others would need to be modified.

1. Emphasize the elements of statistical thinking:

(a) the need for data,

(b) the importance of data production,

(c) the omnipresence of variability,

(d) the measuring and modeling of variability.

2. Incorporate more data and concepts, fewer recipes and deriva-
tions. Wherever possible, automate computations and graphics.
An introductory course should:

(a) rely heavily on real (not merely realistic) data,

(b) emphasize statistical concepts, e.g., causation vs. association, experi-
mental vs. observational and longitudinal vs. cross-sectional studies,

(c) rely on computers rather than computational recipes,

(d) treat formal derivations as secondary in importance.

3. Foster active learning, through the following alternatives to lecturing:

(a) group problem solving and discussion,

(b) laboratory exercises,

(c) demonstrations based on class-generated data

(d) written and oral presentations,

(e) projects, either group or individual.
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