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ABSTRACT
Motivation: Next-generation sequencing (NGS) technologies have
become the preferred way of exploring a genome. These data
are high-dimensional discrete counts with correlated variables (e.g.,
genes). We present a novel latent factor model for high-dimensional
count data, Latent Process Decomposition (LPD-C), that accounts for
the correlations among genes and models the biological hypothesis
that genes work in groups (e.g., pathways), which are referred to as
processes. LPD-C is a two stage unsupervised approach for grouping
genes into a pre-specified number of clusters, and for selecting genes
that belong to these clusters with high probability. The first stage of
LPD-C uses a variational Bayes approach for efficient estimation of
its parameters. The second stage of LPD-C selects genes grouped
as gene-subsets using empirical Bayes hypothesis testing.
Results: The performance of LPD-C is explored using simulated
and publicly available NGS data, compared with existing approaches,
and shown to be a useful and extensible framework for identifying
genes suitable for further exploration. Although we apply LPD-C in a
genomic context, it can be used for any high-dimensional count data.
Availability: R code for fitting LPD-C is available from the authors on
request.
Contact: doerge@purdue.edu

1 INTRODUCTION
Next-generation sequencing (NGS) technologies have enabled
measurements of complex biological and genomic activities at an
extremely high resolution (Marioni et al., 2008). These technologies
are widely used for measuring expression of genes under different
treatments. Gene expression data from NGS technologies are in
form of discrete counts, and the number of genes is typically
larger than the number of samples; therefore, these data are high-
dimensional count data. Extensive literature exists for identifying
differentially expressed genes and for clustering genes in NGS
gene expression data. Most of these approaches assume that gene
expressions are mutually independent. This assumption is relaxed
by Latent Process Decomposition of high-dimensional count data
(LPD-C) presented in this work. LPD-C is an unsupervised
approach for NGS data analysis that models the dependence among
genes through latent variables called processes that are assumed to
correspond to pathways (Rogers et al., 2005). It also selects genes
that belong to these latent processes with high probabilities. We
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explore LPD-C’s application in the context of NGS gene expression
data and select genes that have a high probability of belonging to
their respective processes.

NGS technologies are preferred for exploring a genome over
conventional technologies, such as microarrays, because NGS data
are highly replicable with little technical variation (Marioni et al.,
2008). Data analysis methods that incorporate features specific to
NGS data, without any restrictive distributional assumptions, are
essential for deriving reliable conclusions from these data. For
example, statistical models for NGS data must account for the
biological hypothesis that genes in the same pathway are more likely
to be dependent on each other than those in different pathways, and
that a significant amount of biological or phenotypic variation can
be explained by a small fraction of genes. Restrictions such as these,
reduce computational complexity of statistical algorithms, facilitate
interpretation, and exploit known structures in the data.

Limited finite-sample results exist for the analysis of high-
dimensional non-Gaussian data. The issues in NGS data analysis
are magnified simply due to the non-Gaussian, discrete, and
over-dispersed nature of the data (Marioni et al., 2008). Further,
interacting genes only complicate the analysis (Efron, 2010).
In NGS data analysis, two major themes arise for selecting
candidate genes from samples with different treatments. The first
theme frames the problem as a gene-wise multiple hypotheses
testing problem, with the rejected hypotheses corresponding to
the candidate genes; most of these approaches assume a negative
binomial model for NGS data. Because there are no finite sample
equivalents of the t- or F -test statistics, these hypotheses tests
rely either on asymptotic test statistics based on Gaussian or Chi-
square distribution or on modified versions of Fisher’s exact test
based on the sampling model (Robinson and Smyth, 2007, 2008;
Anders and Huber, 2010; Hardcastle and Kelly, 2010; Robinson
et al., 2010). Asymptotic tests are unreliable in the current small-
sample setting of NGS data, and none of these tests model
the dependence among genes. Young et al. (2012) provide an
excellent overview of existing hypothesis testing based methods
for NGS data analysis. The second theme proposes modeling
the exchangeability of genes either using two level generative
Bayesian models or using penalized likelihood approaches (Hastie
et al., 2009; Friedman et al., 2010). The Bayesian approach
uses posterior distributions and the penalized likelihood approach
chooses appropriate tuning parameters to select candidate genes.
Because most posterior distributions are analytically intractable,
Bayesian inference uses Markov chain Monte Carlo (MCMC) for
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sampling from the posterior. MCMC is of limited use in high-
dimensions due to its computational intractability. Addressing
statistical significance in penalized likelihood approaches is still
an active area of research. Witten (2011) proposes sparse Poisson
Linear Discriminant Analysis (SPLDA), a penalized likelihood
approach using Lasso penalty, that performs much better than many
existing methods for classifying and clustering NGS data. Currently,
no Bayesian approach exists for NGS gene expression data analysis
that selects genes while modeling the dependence among genes.

LPD-C is a latent factor model (FM), which is widely used
for modeling multivariate Gaussian data, including microarrays.
Rogers et al. (2005) proposed Latent Process Decomposition (LPD)
framework for high-dimensional Gaussian data (LPD-G) in the
context of microarray data. LPD-G is a more flexible approach
than classical unsupervised approaches (hierarchical or K-means
clustering) to model the biological hypothesis that genes work
in groups or networks. Because their main objective was to find
clusters of genes in microarray data, Rogers et al. (2005) do
not select candidate genes suitable for further exploration. The
extended LPD framework, of which LPD-G and LPD-C are special
cases, amends the original generative Bayesian model via a second
stage that selects candidate gene-subsets. Selected genes have
two properties: they are a small fraction of the total number of
genes, and they are associated to their respective subsets with
high probabilities. The generative model of LPD is an example of
Bayesian FM, the processes in LPD correspond to factors in FM.
West (2003) and Carvalho et al. (2008) present applications of FMs
to microarray data. Their model is similar to LPD-G’s modeling
approach. Dunson and Herring (2005) model discrete outcomes,
including count data, using a FM. An extension of their model to
high-dimensional count data, which accounts for the fact that genes
act in networks, is similar to LPD-C’s generative Bayesian model.
That said, there is a key difference between FMs and LPD. In FMs,
latent factors (processes) are of main interest, whereas in LPD the
focus is on estimating mean genomic effects.

Motivated by the need for a computationally efficient and
unsupervised Bayesian approach for NGS data analysis that groups
and selects genes into clusters, we develop the methodology and
associated computations for LPD-C. When applied to NGS data,
LPD-C’s first stage is an unsupervised approach to model the
biological hypothesis that genes work in groups, or processes, and
is a special case of the mixed membership modeling framework
(Airoldi et al., 2005). This stage adapts and extends the variational
Bayes algorithm of Latent Dirichlet Allocation algorithm (LDA)
(Blei et al., 2003) for computationally efficient estimation of
the parameters and hyperparameters. The second stage uses the
parameter estimates from the first stage to select candidate genes,
organized as gene-subsets, using empirical Bayes hypothesis testing
framework (Efron, 2010). The second stage has few assumptions
and controls the number of false discoveries. In real data analysis,
LPD-C’s results agree closely with those of hypothesis testing
and penalized likelihood based approaches. LPD-C’s distinguishing
feature is that it selects a small fraction of genes, grouped as gene-
subsets, in NGS data. Being an unsupervised approach, LPD-C
cannot model the effects of covariates. Specifically, it cannot be
used for differential gene expression analysis; however, it can be
easily modified to yield its supervised extensions.

2 METHODS
NGS gene expression data can be represented as a matrix N of gene counts
with S rows and G columns that represent samples and genes, respectively.
The gene counts for s-th sample are denoted as ns (i.e., the s-th row of N ),
and nsg is the count for gene g in sample s. There are K latent processes
(hereafter processes) associated with each sample. Any gene in a sample can
belong to one of the K processes. Due to the unsupervised nature of the
analysis, we ignore any covariate information associated with the samples.

2.1 First stage of LPD-C: Hierarchical Bayesian model
Consider a three level generative Bayesian model for ns. The first
(population) level of the sampling model generates the probability vector
πs = (πs1, . . . , πsK) of process memberships for genes in sample s from
a Dirichlet distribution with parameters, α = (α1, . . . , αK), such that

πs | α ∼ Dirichlet(α), (Level 1) (1)

and πs is a latent variable specific to sample s. Model (1) implies that the
genes in sample s belong to K sub-populations called processes, and the
probability of a gene belonging to a process depends on the sample. The
processes represent the dimensions of latent dependence among genes in
sample s. For LPD-C to be practically useful, K is assumed to be of the
order logG (Bhattacharya and Dunson, 2011).

In the second level, the model generates the process membership k of
gene g in sample s as the latent Multinomial random vector zsg of length
K, with all zeros except 1 at the k-th position

zsg | πs ∼ Multinomial(1;πs), for g = 1, . . . , G, (Level 2) (2)

zsg = (zsg1, . . . , zsgk), k is such that zsgk = 1 and zsgj = 0 for j 6= k.

Zs is a latent indicator matrix specific to sample s with zsg as its rows. It
has G rows and K columns representing genes and processes, respectively.
The column with the non-zero entry in the g-th row of Zs indicates the
latent process membership of gene g; therefore, Zs represents the latent
dependence structure in sample s, and genes in the same process (or
“pathway”) behave similarly.

Finally, the third level generates the count nsg for gene g in sample s
based on its process membership k as

nsg |λgk ∼ Poisson(λgk), (Level 3) (3)

where λgk is an element of the gene- and process-specific mean (“loadings”)
matrix Λ with G rows and K columns that represent genes and processes,
respectively. For ease of presentation, we assume that the loadings matrix
also includes the effect of library size. The gene counts for all the samples
are generated following (1) – (3). Marginalizing k’s in (3) imposes a K-
dimensional covariance structure among genes that depends on Λ and α.
These parameters are estimated based on the NGS data, which makes our
approach empirical Bayesian. The generative model of LPD-C adapts the
sampling models of LDA (Blei et al., 2003) and LPD-G (Rogers et al.,
2005) for NGS data. All of these models are examples of FMs that have
been successfully used for analyzing high-dimensional multivariate data,
including microarray data (West, 2003; Bishop, 2006; Carvalho et al., 2008).

The generative model (1) – (3) makes LPD-C more flexible than classical
unsupervised approaches, such as hierarchical and K-means clustering
(Blei et al., 2003; Rogers et al., 2005). Specifically, (2) associates genes
in sample s to different processes chosen from the K processes using
Multinomial(1;πs). This level gives rise to two major advantages of LPD-
C. First, (2) enables LPD-C to both model the biological hypothesis that
genes work in groups (processes). Second, due to its greater flexibility than
classical clustering models, LPD-C can better adapt to the latent structure of
NGS data.

2.1.1 Estimation of posterior distributions of LPD-C’s parameters
LPD-C selects K gene-subsets using test statistics obtained from the
posterior density of Zs’s because each gene-subset corresponds to a process
and Zs’s relate samples, genes, and processes. The joint density of the
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latent variables π1, . . . ,πS (hereafter π1:S ) and Z1, . . . , ZS (hereafter
Z1:S ) and NGS data n1, . . . ,nS (hereafter n1:S ) given α and Λ,
p(π1:S , Z1:S ,n1:S |α,Λ) is analytically intractable (Blei et al., 2003);
therefore, the posterior density p(Z1:S |n1:S ,α,Λ) is also analytically
intractable. There are a host of techniques that can be used to approximate
p(Z1:S |n1:S ,α,Λ), including MCMC.

We employ Poisson variational Bayes methods from machine learning and
obtain analytically tractable variational density q(π1:S , Z1:S |n1:S ,α,Λ)

that approximates analytically intractable p(π1:S , Z1:S |n1:S ,α,Λ)

(Bishop, 2006). This choice is important for the computational efficiency
and practical applicability of LPD-C. Assuming that latent variables π1:S

and Z1:S are independent under the variational posterior density, so that

q(π1:S , Z1:S |n1:S ,α,Λ) =

S∏
s=1

q(πs)

( G∏
g=1

q(zsg)

)
, (4)

the variational approach minimizes the Kullback-Liebler (KL) divergence
between q(π1:S , Z1:S |n1:S ,α,Λ) and p(π1:S , Z1:S |n1:S ,α,Λ). The
variational posterior densities of πs and Zs are q(πs) = q(πs |ns,α,Λ)

and q(Zs) = q(Zs|ns,α,Λ). The factorization (4) alone guarantees
the analytic tractability of q(π1:S , Z1:S |n1:S ,α,Λ), and there are no
further distributional assumptions for q’s. Using Section 1 of Supplementary
Material, the variational approximation introduces variational parameters,
γs = (γs1, . . . , γsK) and {Φsg = (φsg1, . . . , φsgK)}Gg=1, which are
estimated using ns,α, and Λ, so that

q(πs |γs) = Dirichlet(γs1, . . . , γsK),

q(zsg |Φsg) = Multinomial(1;φsg1, . . . , φsgK), (5)

γsk = αk+
∑G
g=1 φsgk , φsgk =

P(nsg|λgk) exp[Ψ(γsk)]∑K

k
′
=1
P(nsg|λ

gk
′ ) exp[Ψ(γ

sk
′ )]

, and

P(nsg |λgk) denotes the Poisson density with mean λgk evaluated at nsg .
Because in real data analysis α and Λ are rarely known, we choose

an empirical Bayesian approach and estimate α and Λ based on n1:S .
Following Blei et al. (2003), instead of maximizing analytically intractable
log p(n1:S |α,Λ), its evidence lower bound (ELBO) from variational
inference log q(n1:S |α,Λ), which is analytically tractable, is maximized
for estimating α and Λ. ELBO is obtained by replacing the functions
of latent variables π1:S and Z1:S in log p(π1:S , Z1:S ,n1:S |α,Λ) by
their conditional expectations with respect to q(πs |γs) and q(Zs|Φs) for
s = 1, . . . , S. This observation motivates simultaneous iterative estimation
of α, Λ, γ1:S , and Φ1:S based on n1:S similar to EM algorithm (Dempster
et al., 1977). Specifically, if φ(t)

sgk, γ
(t)
sk , λ

(t)
gk , α

(t)
k represent the parameter

estimates at the t-th iteration, then variational E step at the (t+1)-th iteration
updates φsgk’s and γsk’s as

φ
(t+1)
sgk =

P(nsg|λ(t)
gk ) exp[Ψ(γ

(t)
sk )]∑K

k=1 P(nsg|λ(t)
gk ) exp[Ψ(γ

(t)
sk )]

, γ
(t+1)
sk = α

(t)
k +

G∑
g=1

φ
(t+1)
sgk ,

and variational M step at the (t+ 1)-th iteration updates λgk’s and αk’s as

λ
(t+1)
gk =

∑S
s=1 φ

(t+1)
sgk nsg∑S

s=1 φ
(t+1)
sgk

,α
(t+1)

= α
(t)−H(α

(t)
)
−1

g(α
(t)

), (6)

where Ψ(.) is the digamma function and H and g are the Hessian and
gradient for α update. We start the iterations using φsgk = 1

K
for all

samples, genes, and processes, and αk = 1 for all processes. Later, we
recommend two practical approaches for choosing K (see Sections 1 and 2
of Supplementary Material for details).

2.1.2 Interpretation Of Parameter Estimates The interpretation of
parameters in Section 2.1.1, and the relation between them are described
using (6). The probability that gene g in sample s belongs to the process k is
φsgk; therefore,

∑K
k=1 φsgk = 1 and

∑G
g=1 φsgk is the expected number

of genes in sample s that belong to process k. The probability that sample
s belongs to the process k is proportional to γsk . The prior probability that
a gene in any NGS experiment belongs to process k is proportional to αk .
The expected number of genes in process k in sample s is γsk − αk , which

equals
∑G
g=1 φgsk . This relation can be used for checking the convergence

of iterative updates in (6). The expected value of the count for gene g when
it belongs to the process k is λgk .

2.2 Second stage of LPD-C: Selection of gene-subsets
LPD-C’s second stage selects genes in subset k based on the posterior
means of q(Z1:S), Φ1:S , which are estimated in the variational E step
(6). The selected genes are a small fraction of the total number of genes
and are associated to their respective subsets with high probabilities. Most
importantly, this stage extends the original LPD framework of Rogers et al.
(2005) and makes it more useful for genomic data analysis by selecting
genes, grouped in subsets, while controlling the number of false discoveries
using a local false discovery rate (locfdr) cutoff (Efron, 2007, 2010). Based
on the locfdr procedure, the second stage of LPD-C has these advantages: it
does not require modeling of full error structure of the original data set, has
few assumptions, and is easy to implement (Efron, 2007). The trade-off for
these advantages is the loss of statistical efficiency (Efron, 2007).

Because gene-subsets correspond to processes, genes in subset k are
selected using test statistics based on the approximate posterior means of
zsgk’s, φsgk’s, for G genes across S samples. If zsgk’s are known for all

the samples and genes, then pgk =
∑S
s=1 zsgk
S

represents the probability
that gene g belongs to process k. Motivated from EM algorithm (Dempster
et al., 1977), modified test statistics p̂gk are defined by replacing the latent
variables zsgk’s in pgk by their conditional expectations with respect to
q(Zs|Φs) for s = 1, . . . , S and

p̂gk =

∑S
s=1 E[zsgk|ns]

S
≈

∑S
s=1 Eφsgk [zsgk]

S
=

∑S
s=1 φsgk

S
. (7)

The test statistic (7) represents the approximate posterior probability of
gene g belonging to process k. Instead of directly using q(zsgk)’s for
quantifying uncertainty in p̂gk , we used their posterior means φsgk’s due to
two main reasons. First, it is well-known that variational posterior density
under-represents the true variability (Bishop, 2006; Ormerod and Wand,
2010); therefore, using q(zsgk)’s for uncertainty quantification of genes
selection in subset k could possibly lead to greater number of false positives.
Second, the variational updates are guaranteed to converge to a local mode
of the true posterior density; therefore, Φ1:S are good approximations of
a posterior mode of Z1:S . Because Efron (2007) recommends using the
test statistics for genes that have the same range as the normal distribution,
p̂gk is transformed to the corresponding quantile of the central t-distribution
with ν degrees of freedom, tgk , using its cumulative distribution function
Ftν , and tgk = F−1

tν
(p̂gk). The t-distribution is chosen due to its heavy

tails; in real data analysis, we choose ν = 3. Assuming that T represents
the matrix of test statistics with G rows and K columns, genes with high
posterior probabilities of belonging to process k are in the right tail of tk ,
k-th column of T ; therefore, tk is used as the vector of test statistics in an
empirical Bayes testing framework to select genes in subset k that are non-
null, that lie in the right tail of tk , and when locfdr is controlled at a small
pre-specified value. This procedure selects a small fraction of genes that are
associated with subset or process k with high probabilities. We select K
gene-subsets based on the columns of T and separately control locfdr for
each column. For the NGS data applications presented later, the R package
locfdr (Efron et al., 2008) is employed.

3 APPLICATIONS OF LPD-C
We apply LPD-C to simulated and real NGS data, and compare its
performance to both SPLDA (Witten, 2011) and a negative binomial
model (EdgeR; Robinson et al. (2010)). These methods are chosen
because Witten (2011) shows that SPLDA performs significantly
better than current approaches (except EdgeR) for classifying and
clustering NGS data. The simulated data are generated using the
hierarchical model (1) – (3). Two publicly available NGS datasets
are used: human cervical cancer data (hereafter cervical cancer data;
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Witten et al. (2010)) and human gene expression data from liver and
kidney (hereafter human data; Marioni et al. (2008)). These real
data are chosen because Witten (2011) shows that both EdgeR and
SPLDA perform well for the human data, but that the cervical cancer
data are challenging for both of these methods. It is important to
remember that LPD-C is a Bayesian latent factor model, and that it is
fundamentally different from the hypothesis testing based approach
of EdgeR, and from the penalized likelihood based approach of
SPLDA. However, the comparisons illustrate the similarities and
differences in these methods. The novel feature that distinguishes
LPD-C from existing approaches for NGS data analysis is that it
groups selected genes into a pre-specified number of gene-subsets.
Further, Rogers et al. (2005) show that LPD is more flexible than
hierarchical and k-means clustering, so we do not compare LPD-C
with these classical unsupervised methods.

3.1 Simulation
We simulated 10 NGS datasets such that each dataset contains
12 samples (S) with 2 processes (K) for different settings of G
and λgk’s. For each setting, the simulated data have the following
process membership for the genes. In samples 1 to 10, the first
100 genes (hereafter group 1 genes) belong to the first process and
the last 100 genes (hereafter group 2 genes) belong to the second
process. For a particular G, the first 10 samples have the following
five settings of gene- and process-specific means λgk’s depending
on ∆,

λg1 =

{
exp(zg1), zg1 ∼ Normal(∆, 1) for g = 1, . . . , 100,

exp(zg1), zg1 ∼ Normal(0, 0.25) for g = 101, . . . , G,

λg2 =

{
exp(zg2), zg2 ∼ Normal(0, 0.25) for g = 1, . . . , G− 100,

exp(zg2), zg2 ∼ Normal(∆, 1) for g = G− 99, . . . , G,
(8)

where ∆ is varied as 1, 2, 3, 4, and 5. These values of ∆ represent
the difference between the log-means of the “null” (i.e., genes that
are not in group 1 and 2) and “non-null” genes (i.e., group 1 and
2 genes) in the two processes. The number of genes (G) is varied
as 2000 and 20,000 genes, respectively, while the number of non-
null genes is 200 in both cases. For samples 11 and 12, the process
memberships of group 1 and 2 genes are reversed. The remaining
genes belong to the two processes with 0.5 probability across all
samples; therefore, group 1 and 2 genes belong to processes 1 and 2,
respectively, with high probability (10/12∼ 80%). These parameter
values are motivated from Efron et al. (2008) and Witten (2011).
NGS data are simulated using these parameter values and LPD-C’s
generative model (1) – (3). The simulated data are similar to those
observed in practice, with a large fraction of small counts and a
small fraction of large counts.

3.1.1 Application of EdgeR, LPD-C, and SPLDA We applied
the first stage of LPD-C to 50 replications of the simulated data.
For each application of LPD-C, we chose K = 2 to facilitate
comparison with the truth and estimated α, Λ, Φ’s, and γ’s (see
(6) for their definition). The results of variational approximation are
known to be sensitive to the starting points, which in LPD-C’s case
depend on α and Φ’s (Bishop, 2006). We used multiple starting
points until convergence to the posterior mode was stable. We
observed that the final parameter estimates were most sensitive to
the starting values of Φ’s and were fairly robust to the starting values
of α. The process numbers are identified based on the ascending
order of αk’s such that α(1) and α(2) correspond to processes 1 and
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Fig. 1: Comparison of true positives and false discoveries in the genes
selected by EdgeR, LPD-C, and SPLDA in 50 replications of simulated
data analysis. The x-axis represents the difference between the log-means
of the null and non-null genes in the two processes (∆; see (8)) and y-axis
represents the true positive (TPP) and false discovery (FDP) proportions.
Panels one through three represent TPPs, while panels four through six
represent FDPs, for EdgeR, LPD-C, and SPLDA, respectively, when the
number of genes (G) is 2000 (red) and 20,000 (blue). For both LPD-C and
SPLDA, TPP increases and FDP decreases as ∆ increases when G = 2000

and 20, 000; EdgeR also has a similar pattern except when G = 2000,
where the TPP and FDP oscillates around 0.5 for all the ∆’s. Although TPPs
appear to increase with ∆ for EdgeR, LPD-C, and SPLDA, the FDPs are
much higher than their expected values. This pattern is expected because the
number of non-null genes is same for G = 2000 and 20,000, and the power
increase is accompanied by an increase in FDPs.

2, respectively. Although LPD-C uses an approximate estimation
method, its estimates of λgk’s agree closely with their true values,
even at low values of ∆. After estimating p̂gk’s from φsgk’s, we
obtain tgk = F−1

t3
(p̂gk), where F t3 is the cumulative distribution

function of the standard t-distribution with 3 degrees of freedom
(see Section 2.2). We apply empirical Bayes hypothesis testing to
the columns of T , which correspond to processes, and select genes
that are non-null, that are in the right tail, and that have a locfdr of
0. The selected genes belong to their processes, and hence to the
corresponding gene-subsets, with high probability.

3.1.2 Results of EdgeR, LPD-C, and SPLDA LPD-C selects
genes grouped in subsets, but EdgeR and SPLDA do not; therefore,
we compare overall gene selection of LPD-C with that of EdgeR
and SPLDA. Unlike LPD-C, both EdgeR and SPLDA select genes
based on a response variable. We define a response variable (Y )
that is 1 for the first ten samples and is 2 for samples 11 and 12,
and EdgeR selects genes that are differentially expressed between
samples with Y = 1 and Y = 2. Similarly, SPLDA finds a sparse
list of genes that can classify samples as Y = 1 or Y = 2 based on
their expression while minimizing the cross-validation (CV) error
for classification. We use edgeR package (Robinson et al., 2010)
for EdgeR and PoiClaClu package (Witten, 2011) for SPLDA.
We obtain the gene-wise p-values for differential expression using
edgeR, correct for multiple comparisons using the Benjamini-
Hochberg (BH) procedure (Benjamini and Hochberg, 1995), and
choose the genes that corresponded to 200 smallest BH corrected
p-values. For SPLDA, we choose the tuning parameters depending
on G and ∆ so that it select 200 genes.

Figure 1 shows the true positive and false discovery proportions
for EdgeR, LPD-C, and SPLDA at different values of G and ∆.
The proportion of true positives selected by LPD-C increases with
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∆ when G = 2000 and 20,000; however, the proportion of false
discoveries are much higher than their expected value when G =
20, 000. This observation is expected because the number of non-
null genes are 200 for both G = 2000 and 20,000, and the apparent
increase in true positives when G = 20, 000 comes at the cost of
increased false discoveries. The true positive proportions for both
EdgeR and SPLDA behave similar to that in LPD-C, but their values
are lower than that of LPD-C. The false discovery proportions of
SPLDA and LPD-C are much higher than that of EdgeR when
G = 20, 000. This observation for EdgeR is an artifact our gene
selection procedure that only selects the first 200 genes based on
the ascending order of p-values; however, the proportion of false
discoveries of EdgeR when G = 20, 000 is also much higher than
those shown in Figure 1 when genes are selected based on the
standard FDR cutoff 0.05.

3.2 Real data examples
We apply LPD-C to two publicly available NGS datasets. The
cervical cancer data provide measurements of the digital expression
for 714 small RNAs (miRNAs) in 29 tumor and 29 normal cervical
tissue samples from humans (Witten et al., 2010). The human data
provide measurements of the digital expression for 22,925 genes
in 14 samples from a single human male, which consists of seven
technical replicates from liver and kidney, respectively (Marioni
et al., 2008). The cervical cancer data were collected for discovering
miRNAs associated with human cervical cancer. The human data
were collected for comparing microarrays and NGS technologies.

3.2.1 Selection of the number of processes K We suggest two
practical approaches based on n-fold CV for selecting the number
of processes K in real data. The problem of selecting K is similar
to that of selecting the number of clusters, which is known to be a
notoriously difficult problem; therefore, we suggest fitting LPD-C
for a range of K’s and selecting those K’s which lead to results that
agree closely with the biological knowledge. The first approach uses
n-fold CV, variesK from 2 to a large integer, and calculates n held-
out log likelihoods for each K. It chooses the K that maximizes
the median of n held-out log likelihoods (Rogers et al., 2005). This
approach is well-suited for data with small sample sizes (e.g., the
human data). The second approach chooses K using n-fold CV
based on the true positive proportion (TPP) and false discovery
proportion (FDP) determined from training and test data (Hastie
et al., 2009). Assuming that the genes selected by LPD-C in the
training data represent the truth, this approach calculates TPP and
FDP in the genes selected by LPD-C in the test data. This process is
repeated n times to yield n TPPs and FDPs for each K. The values
of K that have large TPPs and small FDPs represent good choices
of K. This approach is more suitable for data with relatively large
sample size (e.g., the cervical cancer data).

Figures 2a and 2b illustrate the determination of K for both the
cervical cancer and the human data using 5-fold CV. We choose
K = 5 for the human data because it has the maximum held-
out log likelihood with a small median absolute deviation estimate
compared to other values of K. For the cervical cancer data, both
K = 5 and K = 3 are reasonable choices. As such, we selected
genes in the cervical cancer data using LPD-C for both K = 5 and
3 and found that the results obtained using K = 5 agree closely
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Fig. 2: Selecting the number of processes K in LPD-C for cervical cancer
data (a) and human data (b) using 5-fold CV. (a) Median false discovery
proportion (FDP; on x-axis) versus median true positive proportion (TPP; on
y-axis) in cervical cancer data based on 5-fold CV when K = 2, . . . , 10

(red points), respectively. The vertical lines (grey) show 1 median absolute
deviation (MAD) intervals for the TPPs. Based on this plot, 3 and 5 are good
candidates forK in cervical cancer data due to their relatively low FDPs and
high TPPs. Further data analysis shows that K = 5 is a better candidate
than K = 3. (b) The y-axis shows the number of processes and the x-axis
showing the medians and 1 MAD intervals of the held-out log likelihoods in
human data based on 5-fold CV when K = 2, . . . , 10. Based on this plot,
we choose K = 5 for human data.

with those from EdgeR and SPLDA; therefore, all our subsequent
analyses for the cervical cancer data are based on K = 5.

3.2.2 Application of EdgeR, LPD-C, and SPLDA The first stage
of LPD-C estimates α, Λ, Φ’s, and γ’s for both the cervical
cancer and human data using K = 5 (see (6)). Similar to the
simulation study, we tried various starting points for α and Φ’s until
convergence to the posterior mode was stable; identified the process
numbers based on the ascending order of αk’s; after estimating
p̂gk’s from Φ’s, obtained tgk = F−1

t3
(p̂gk); and used columns of

T to select genes using a locfdr cutoff of 0.2 for each subset. The
two features of empirical Bayes hypothesis testing that are useful
here are its mild distributional assumptions on, and no requirement
for modeling the full error structure of tgk’s (Efron, 2007, 2010).

We also apply EdgeR and SPLDA to the cervical cancer data
using tumor status as the response variable. Similarly, EdgeR and
SPLDA are applied to the human data using liver and kidney as
values of the response variable. We obtain gene-wise p-values
for differential expression using edgeR, correct for multiple
comparisons using the BH procedure, and select genes using 0.05 as
the cutoff for the BH corrected p-values. We used 5-fold CV for both
the cancer and human data in SPLDA. While the choice of tuning
parameter using CV is fairly stable for the human data, multiple
tuning parameters lead to the same CV classification error for the
cervical cancer data, which results in unstable gene-selection. For
example, at the same value of CV error for classification, SPLDA
selects 2 genes when the tuning parameter is 8.23 and selects 499
genes when the tuning parameter is 0.57. The reason for these
unstable results is that a large range of tuning parameters yield
the same classification error, 0.172, which corresponds to 10 out
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of 58 errors. Classification error is a very coarse measure (unlike,
for example, the mean square error for regression), so many tuning
parameter values are tied in terms of CV error for classification.
We choose the tuning parameter as the mean of all the tuning
parameter values that correspond to the minimum CV classification
error (personal communication, D. Witten).

3.2.3 Results of EdgeR, LPD-C, and SPLDA Figures 3a and 3b
summarize the number of genes selected in both the cervical cancer
and the human data using EdgeR, LPD-C, and SPLDA, respectively.
The total number of genes selected by EdgeR, LPD-C, and SPLDA
are 267, 265, and 39 for the cervical cancer data, and 12746, 14029,
and 7 for the human data. LPD-C selected 103 unique miRNAs in
the cervical cancer data that are related to different types of cancers,
including cervical cancer, and that are not selected by EdgeR or
by SPLDA. Some of these 103 miRNAs are known to be in the
let-7, mir-7, mir-17, mir-24,mir-26, mir-27, mir-29, mir-124, mir-
127, mir-192, and miR-744 families that have clinical applications
in cancer diagnosis and therapy. Because the human data were
collected for comparing microarray and NGS technology, we did
not investigate the biological annotation of the genes selected by
LPD-C.

LPD-C’s results agree closely with those of EdgeR in that both of
these methods select most of the genes chosen by SPLDA. When
compared to EdgeR, about 61% and 70% of the genes selected
by LPD-C in the cervical cancer data and the human data are also
declared as differentially expressed. We also notice that the number
of genes selected by SPLDA in both datasets is much smaller than
the number of genes selected by either EdgeR or LPD-C. Further,
unlike SPLDA and EdgeR, LPD-C groups the selected genes into
subsets with desirable properties.

Marioni et al. (2008) employed both microarrays and NGS
technologies to compare the differentially expressed genes. They
used two sample t tests for the microarray data analysis using a
Gaussian model and likelihood ratio tests for NGS data analysis
using a negative binomial model. Figure 3c compares the 4105
genes selected only by LPD-C in the human data (Figure 3b)
with the differentially expressed genes in microarray or NGS data
reported by Marioni et al. (2008), excluding the 9924 genes that lie
in the intersection of LPD-C and EdgeR (Figure 3b). We observe
that almost half of the genes that are selected solely by LPD-C are
also reported as differentially expressed in the microarray or NGS
data results of Marioni et al. (2008).

We have demonstrated that LPD-C selects genes that compare
favorably with existing approaches, such as EdgeR and SPLDA,
even though SPLDA consistently selects a smaller number of genes
than EdgeR and LPD-C. We note that this under-selection issue
has been observed in applications of Lasso for variable selection
to high-dimensional data that have dependence among the variables
(Friedman et al., 2010). Since most high-dimensional biological
data, including NGS data, have dependence among their variables,
this could be a potential reason for SPLDA selecting a smaller
number of genes. Furthermore, since the tuning parameters is
not identifiable in the cervical cancer data it leads to an unstable
selection of genes which in turn makes SPLDA undesirable if
used for gene selection. As an alternative suggestion for situations
like these, we recommend using the glmnet algorithm for variable
selection (Friedman et al., 2010).
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Fig. 3: (a) Comparison of the miRNAs selected in the cervical cancer data.
(b) Comparison of the genes selected in the human data. (c) Comparison
of the 4105 genes, selected solely by LPD-C in the human data, with
the differentially expressed genes found in the microarray and NGS data
analyses reported by Marioni et al. (2008). It excludes the 9924 genes
that are in the intersection of EdgeR and LPD-C. Approximately 44% of
the genes that are selected by LPD-C in the human data are differentially
expressed in either the microarray or the NGS data.

Table 1. Number of genes, and fraction of differentially expressed genes,
selected by LPD-C in the five gene-subsets for both the cervical cancer
and the human data. The diagonal elements in columns 1-5 represent the
total number of genes selected by LPD-C in the respective gene-subsets.
The upper off-diagonal elements in columns 1-5 represent the number of
genes that are in common between two gene-subsets, while columns 6-10
represent the fraction of differentially expressed genes among the processes
as determined by edgeR (Robinson et al., 2010).

Number of Selected Genes Differentially Expressed Genes
CERVICAL CANCER DATA

Process 1 2 3 4 5 1 2 3 4 5
1 5 1 2 0 0 0.60 1 0.5 0 0
2 44 13 4 3 0.59 0.62 0.5 0.33
3 61 8 6 0.59 0.75 0.67
4 103 25 0.67 0.80
5 113 0.62

HUMAN DATA

Process 1 2 3 4 5 1 2 3 4 5
1 4128 806 935 1150 1773 0.72 0.74 0.72 0.71 0.79
2 3188 695 985 13 0.78 0.78 0.79 0.46
3 4107 469 1163 0.70 0.84 0.79
4 5476 1391 0.68 0.77
5 5090 0.77

The distinguishing feature of LPD-C is that it selects genes
grouped as subsets having desirable properties. Table 1 summarizes
the number of genes in each of the five gene-subsets as selected by
LPD-C for both the cervical cancer data, and the human data. It
also illustrates the number of genes that are in common when any
two gene-subsets are compared, as well as the proportion of genes
that are differentially expressed. For the human data, where SPLDA
and EdgeR results agree, LPD-C results are similar. For the cervical
cancer data, where SPLDA and EdgeR results do not agree, LPD-C
leads to results that are close to those of EdgeR.

4 DISCUSSION
Due to the decreasing cost of using NGS technologies and
the potential impact of large-scale genome-wide epidemiological
projects, such as 1000 Genomes Project (Siva, 2008), genomic data
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are becoming increasingly complex and large. Bayesian generative
models offer an attractive approach to model the latent structure of
genomic data. We have presented an application of LPD framework
to NGS data, LPD-C, that addresses these challenges in two stages.
LPD-C’s first stage extends the generative Bayesian model of LPD
for modeling microarray data to NGS data. Its second stage uses the
parameter estimates from first stage to select genes, organized as
gene-subsets, that are a small fraction of total number of genes and
that belong their respective subsets with high probability. To achieve
computationally tractable Bayesian inference, we have applied
variational inference, and combined the results of variational
inference with empirical Bayes hypothesis testing to select gene-
subsets that control the number of false discoveries at a certain level.
We have explored LPD-C’s application in the context of simulated
and real NGS data, and demonstrated that LPD-C’s results agree
with competing non-Bayesian approaches.

LPD-C can be easily modified to yield its supervised extension,
SLPD-C. Representing xs as the covariate information for sample
s (e.g., disease status, survival time), SLPD-C extends (3) using a
gene-specific analogue of mixed effects model

nsg|λ̃sg ∼ Poisson(λ̃sg) and log λ̃sg = log λgk + βTg xs +εg,

where βg is the mean covariate effect for gene g and εg is
idiosyncratic noise. Another extension of LPD for modeling data
from time course experiments follows immediately as an extension
of dynamic linear models (Blei and Lafferty, 2006). The apriori
choice of the number of processes, K, facilitates efficient parameter
estimation. Sometimes, however, the apriori knowledge about K is
unavailable or K is unidentifiable from approaches recommended
in Section 3.2.1. In these scenarios it is desirable to adaptively
selectK based on the genomic data using Bayesian Nonparametrics
(Hjort et al., 2010). It is also desirable to develop MCMC algorithms
tuned for LPD to estimate uncertainty in parameters of interest by
sampling from their posterior densities. To this end, the collapsed
Gibbs sampler of Griffiths and Steyvers (2004) can be easily
extended for LPD.

The second stage of the LPD uses the parameter estimates
from the Bayesian model and selects gene-subsets with desirable
properties. Similar ideas about finding groups of differentially
expressed gene-subsets have been explored starting with gene-
set enrichment analysis (GSEA) (Subramanian et al., 2005). We
propose to investigate the relationship between the enriched gene-
subsets obtained from GSEA and those obtained from LPD. Finally,
we propose to incorporate sparsity in the second stage of the LPD
using appropriate priors on Λ from Bayesian variable selection
literature, such as horse-shoe prior and multiplicative gamma prior
(Carvalho et al., 2010; Bhattacharya and Dunson, 2011).
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