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Abstract Gene regulatory networks are collections of genes
that interact with one other and with other substances in the
cell. By measuring gene expression over time using high-
throughput technologies, it may be possible to reverse en-
gineer, or infer, the structure of the gene network involved
in a particular cellular process. These gene expression data
typically have a high dimensionality and a limited number of
biological replicates and time points. Due to these issues and
the complexity of biological systems, the problem of reverse
engineering networks from gene expression data demands a
specialized suite of statistical tools and methodologies. We
propose a non-standard adaptation of a simulation-based ap-
proach known as Approximate Bayesian Computing based
on Markov chain Monte Carlo sampling. This approach is
particularly well suited for the inference of gene regulatory
networks from longitudinal data. The performance of this
approach is investigated via simulations and using longitu-
dinal expression data from a genetic repair system in Es-
cherichia coli.
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1 Introduction

The development of high-throughput technologies, such as
microarrays and next-generation sequencing, has enabled
large-scale studies to simultaneously assay the expression
levels of thousands of genes over time. However, in spite
of the abundance of data obtained from these technologies,
it can be very difficult to unravel the patterns of expression
among groups of genes, often referred to as gene regulatory
networks (GRN; Friedman 2004; Wilkinson 2009). Within
GRN, genes interact with one another indirectly through
proteins known as transcription factors (TF), which control
the transfer of information during transcription by activat-
ing or repressing a ribonucleic acid (RNA) polymerase, and
thus affect the level of gene expression (Fig. 1). A GRN can
thus be described as the interactions that occur (indirectly
through messenger RNA and TF) within a collection of in-
terconnected genes.

In longitudinal studies of gene expression, the number of
samples (i.e., biological replicates or time points) collected
is typically far outweighed by the number of observed genes.
Because of the exponentially large number of possible gene-
to-gene interactions, reverse engineering GRN from lon-
gitudinal studies actually amplifies the “large p small n”
paradigm. In addition, because gene-to-gene interactions co-
incide with reactions in the cellular environment, the net-
work structure can itself be very complex. For this reason,
standard statistical techniques cannot be used to infer GRN
from gene expression data, and a specialized suite of sta-
tistical methodologies have been developed. Among these
methods, a framework known as Dynamic Bayesian Net-
works (DBN) has seen wide application in the context of
GRN (Husmeier 2003; Rangel et al. 2004; Beal et al. 2005;
Rau et al. 2010). A DBN uses time-series measurements
on a set of random variables to characterize their interac-

Author's personal copy

mailto:Andrea.Rau@jouy.inra.fr
mailto:doerge@stat.purdue.edu


1258 Stat Comput (2012) 22:1257–1271

Fig. 1 A simple gene regulatory network made up of four genes.
Each gene is transcribed and translated into a transcription factor (TF)
protein, which in turn regulates the expression of other genes in the
network by binding to their respective promoter regions (Schlitt and

Brazma 2007). The gene regulatory network may be represented using
the graph in lower right corner, made up of four nodes (genes) and five
edges (interactions among the genes). Image taken from Rau (2010)

tions over time. To avoid an explosion in model complex-
ity, a time-homogeneous Markov model is typically used
(Husmeier et al. 2005). This restriction implies that gene-to-
gene interactions are constant across time and that biological
samples are taken at equidistant time points.

Within the framework of DBN, the Bayesian paradigm
is particularly well-suited to the inference of GRN for a
number of reasons. First, the number of possible network
structures increases exponentially as the number of genes
increases (Husmeier et al. 2005). As a large number of net-
work structures may yield similarly high likelihoods, at-
tempting to infer a single globally optimal structure may be
meaningless. In such cases, posterior distributions of gene-
to-gene interactions may better characterize a GRN. Sec-
ond, by examining the shape of the posterior distributions
within portions of a GRN, additional information may be
gleaned about the structure and inferability of specific gene-
to-gene interactions, as well as the system as a whole. Fi-
nally, a Bayesian framework allows a priori knowledge to
be encoded in the prior distribution structure. Prior knowl-
edge may refer to certain features of the topology of a GRN
(e.g., sparsity in the network structure or the maximum num-
ber of regulators per gene) and to prior biological informa-
tion about well-characterized pathways from bioinformatics
databases.

Unless restrictive assumptions are made about the dy-
namics of the system (e.g., Gaussian prior distributions
for gene-to-gene interactions), the likelihood function of a
GRN may be intractable or difficult to calculate. In such
cases, sampling-based Approximate Bayesian Computation
(ABC) methods can allow Bayesian inference to be adopted
(Pritchard et al. 1999; Beaumont et al. 2002; Marjoram et
al. 2003) when simulation from the model is straightfor-
ward. The first implementation of an ABC algorithm was
introduced by Pritchard et al. (1999). In this approach, using
parameter values simulated from a prior distribution, data

are simulated and compared to the observed data. When the
simulated and observed data are sufficiently “close”, as de-
termined by a distance function ρ(·) and tolerance ε, the pa-
rameter values are accepted (Beaumont et al. 2002). The al-
gorithm is approximate when ε > 0, and its output amounts
to simulating from the prior when ε → ∞. For 0 < ε < ∞,
the algorithm results in a sample of parameters from an ap-
proximate posterior distribution.

Because a naive application of ABC methods can be
time-consuming and inefficient, a variety of extensions have
been proposed in recent years. For high-dimensional data,
Beaumont et al. (2002) found that using summary statistics
to compare simulated and observed data, rather than the data
points themselves, enables a reduction of the data without
negatively impacting the approximation. Several adaptations
of ABC algorithms have also been proposed based on Monte
Carlo techniques. For instance, Marjoram et al. (2003) ex-
tended the ABC algorithm to work within the Markov chain
Monte Carlo (MCMC) framework without the use of likeli-
hoods. In this approach, which we refer to as ABC-MCMC,
parameters are proposed from a transition distribution (e.g.,
a random walk) and subsequently used to simulate data.
Sisson et al. (2007) used a Sequential Monte Carlo tech-
nique (SMC-ABC) to propagate a population of parame-
ters through a sequence of intermediary distributions to ob-
tain a sample from the approximate posterior distribution.
In related work Beaumont et al. (2009) applied an adap-
tive sequential technique known as Population Monte Carlo
(PMC) to the general ABC algorithm to improve its effi-
ciency through iterated importance sampling. Further recent
implementations of ABC algorithms can also be found in,
e.g., Leuenberger and Wegmann (2009) and Drovandi and
Pettitt (2011).

In this work, we propose an extension of the ABC-
MCMC algorithm to enable the inference of GRN from
time-course gene expression data. Our approach enables
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Bayesian inference without restrictive assumptions about
the distribution of gene-to-gene interactions within a net-
work. The resulting approximate posterior distributions of
interactions within the network have the added advantage of
providing salient information about the inferability of the bi-
ological system as a whole. Although there have been some
recent developments in network inference using ABC meth-
ods, e.g., to compare the evolution of protein-protein inter-
action networks (Ratmann et al. 2007, 2009) and to conduct
model selection for systems based on ordinary differential
equations (Toni et al. 2009; Toni and Stumpf 2010), to our
knowledge this is the first application of ABC methods in
reverse engineering the unknown structure of a gene regula-
tory network from gene expression data.

2 Approximate Bayesian computation for networks

Let Y be a set of observed gene expression data for P genes
at T equally-spaced time points, where yt = (y1t , . . . , yP t )

′
represents the gene expression measurements at time t . In
this work, we consider two related characterizations of a
GRN: an adjacency matrix G and a parameter matrix Θ ,
both with dimension P × P . For the former, let G be a
matrix such that Gjk = 1 if gene k regulates gene j , and
Gjk = 0 otherwise. For the latter, we define Θ as the param-
eter matrix of a GRN, where θjk represents the relationship
between gene k at time t − 1 and gene j at time t . For this
matrix, a value of θjk = 0 indicates that gene k does not reg-
ulate gene j ; if θjk > 0 (θjk < 0 respectively), gene k acti-
vates (represses) gene j . Note that P(θjk = 0|Gjk = 0) = 1,
and P(θjk = 0|Gjk = 1) = 0. The use of both Θ and G

in this context allows for a distinction between the network
structure (i.e., the set of edges and nodes represented by the
adjacency matrix G) from the network parameters (the ma-
trix Θ); we will further discuss the simultaneous use of the
matrices Θ and G in Sect. 2.5.

Our objective in this work is to determine which gene-
to-gene interactions within the GRN may be inferred, based
on their approximate posterior distributions. To accomplish
this, we first introduce the Bayesian model used to model the
time-course gene expression data Y and corresponding gene
regulatory network Θ . After motivating the use of ABC
methods in this context, we then introduce the ABC-MCMC
algorithm of Marjoram et al. (2003) in greater detail, and de-
scribe our modifications for reverse engineering GRN.

2.1 Bayesian model

2.1.1 Likelihood specification

For a given gene regulatory network Θ , we model the time-
course gene expression data as a time-homogeneous Markov

model

Y ∼
∏

t

f (yt ;yt−1,Θ) (1)

with the convention that y0 = 0. Several authors (e.g., Beal
et al. 2005; Opgen-Rhein and Strimmer 2007; Wilkinson
2009) have found that simple, linear models can in some
cases yield good approximations of the dynamics occurring
within complicated biological systems. To this end, one sim-
ple yet effective choice for the density f in (1) is a first-order
vector autoregressive (VAR(1)) model:

yt = Θyt−1 + et (2)

where et is an error term satisfying E(et ) = 0, E(ete′
t ) =

Σ (a P × P positive definite covariance matrix), and
E(ete′

t ′) = 0. In previous work (e.g., Beal et al. 2005;
Rau et al. 2010), the errors et have additionally been as-
sumed to follow a normal distribution, et ∼ N(0,Σ). In this
work, we do not impose any particular form for the distribu-
tion of the errors et beyond the assumptions on the first two
moments previously mentioned.

2.1.2 Network prior distributions

To fully define the Bayesian model used for Y , we must also
specify the prior distributions for the adjacency matrix G

and parameter matrix Θ , π(G) and π(Θ|G). In a GRN, as
the number of genes (P ) in a network increases, the num-
ber of possible interactions within the network quickly in-
creases (O(P 2)). As a large number of genes may interact
simultaneously with one another in very sophisticated reg-
ulatory circuits, the network topology itself may be quite
complicated. Even so, certain properties of biological net-
works can be useful in limiting the support of the prior dis-
tribution to realistic network topologies. In particular, most
genes are regulated just one step away from their regulator
(Alon 2007), and gene networks tend to be sparse, with a
limited number of regulator genes (Leclerc 2008).

In keeping with these biological hypotheses, we elect
to use uninformative prior distributions with some restric-
tions for both π(G) and π(Θ|G). We restrict the number
of regulators for each gene (referred to as the fan-in for
each gene in the network). Because GRN are known to be
sparse, we choose the prior on the adjacency matrix, π(G),
to be uniform over all possible structures, subject to a con-
straint on the maximum fan-in for each gene in the network,
as has been suggested (Friedman 2000; Husmeier 2003;
Werhli and Husmeier 2007). This restriction is supported
by the biological literature, as genes do not tend to be syn-
chronously regulated by a large number of genes (Leclerc
2008). For the parameter prior π(θjk|Gjk = 1), we use a
uniform distribution, where the bounds are chosen to repre-
sent a realistic range of interaction magnitudes in GRN. In
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this work, we use bounds of −2 and 2 for all θjk , as these
correspond to strong repression and activation effects, re-
spectively.

2.2 ABC motivation

Given the likelihood and prior distributions defined in the
previous section, our goal is to reverse engineer a GRN from
observed expression data Y via the posterior distribution

π(Θ,G|Y) ∝ f (Y |Θ)π(Θ|G)π(G).

In some cases, the error term et included in the likelihood
in (2) is assumed to follow a well-known distribution (e.g., a
Normal distribution). This hypothesis would enable straight-
forward calculation of the likelihood, and in turn, the poste-
rior distribution π(Θ|Y), whether through explicit calcula-
tion or a standard MCMC sampler. However, in this work
we do not impose a specific distributional form for et , and
as such, the likelihood f (Y |Θ) cannot be evaluated. It is ex-
actly in situations such as this that ABC methods have been
successfully developed and applied in recent years.

Simple ABC rejection methods (e.g., Pritchard et al.
1999) have the advantage of being easy to code and gen-
erating independent observations, but can be extremely time
consuming and inefficient, particularly in the case of GRN.
To illustrate, we applied the following simple ABC rejection
method to sample from the approximate posterior distribu-
tion π(Θ,G|Y):

1. Generate G and Θ from π(G) and π(Θ|G), respectively.
2. Generate one-step-ahead predictors y�

t from the model in
(2), given yt−1 and Θ� (see Sect. 2.4 for a discussion of
this simulation strategy).

3. Calculate the distance ρ(Y �,Y ) between Y and Y �.
4. Accept (Θ�,G�) if ρ ≤ ε, where ε is chosen as described

in Sect. 2.6.

Using this algorithm, only 5 proposed networks (Θ�,G�)

are accepted out of a total of 1 × 107 proposals (data not
shown). Due to the fact that this approach is both inefficient
and unpractical, we focus instead on the ABC-MCMC ap-
proach of Marjoram et al. (2003).

2.3 ABC Markov chain Monte Carlo for networks

The ABC-MCMC algorithm (Marjoram et al. 2003) makes
use of the standard Metropolis-Hastings scheme (Hastings
1970) to obtain samples from the approximate posterior dis-
tribution π(Θ,G|ρ(Y �,Y ) < ε). To accomplish this, at iter-
ation (i + 1) matrices Θ� and G� are proposed based on a
proposal distribution q(·|·) and subsequently used to simu-
late data Y � based on a given model f (·|Θ�). Simulated and
observed data are compared using a distance function ρ(·)

and tolerance ε, and proposed parameters are accepted with
probability

α = min

{
1,

π(Θ�,G�)q(Θi,Gi |Θ�,G�)

π(Θi,Gi)q(Θ�,G�|Θi,Gi)
1(ρ(Y �,Y ) < ε)

}

where 1(·) is an indicator function that replaces the likeli-
hood, and π(·) represents the prior distributions of (Θ,G).
Under suitable regularity conditions (Marjoram et al. 2003),
it is straightforward to show that the stationary distribution
of the chain is indeed the approximate posterior distribu-
tion. If ε is sufficiently small, then this distribution will
be a good approximation to the true posterior distribution
π(Θ,G|Y). However, a balance must be achieved between
a small enough tolerance to obtain a good approximation
to the posterior and a large enough tolerance to allow for
feasible computation time. Bortot et al. (2007) proposed a
further adaptation of ABC-MCMC for the purpose of im-
proving its mixing properties using data augmentation tech-
niques, known as the ABC-MCMC augmented algorithm.
Specifically, the parameter space is augmented with the tol-
erance ε, which is treated as a model parameter with its own
pseudo-prior distribution. Although this algorithm alleviates
the problem of insufficient mixing, since larger values of ε

may be accepted, it typically requires a much larger number
of iterations than the original ABC-MCMC algorithm.

Adapting the ABC-MCMC algorithm of Marjoram et al.
(2003) to the context of GRN requires two important con-
siderations to be taken into account: (1) computationally ef-
ficient methods for simulating data Y � from a known GRN
(defined by its parameter matrix Θ�), and (2) an appropri-
ate proposal distribution q(·|·) for both the network struc-
ture and parameters. We refer to the algorithm incorporat-
ing these adaptations as the ABC for Networks (ABC-Net)
method. For clarity, although we limit this discussion to data
with a single biological replicate, the extension to multiple
replicates is straightforward.

2.4 Simulating data for gene networks within ABC

One of the most important considerations in adapting the
ABC-MCMC algorithm to the inference of GRN is identi-
fying an efficient simulator for proposed network parameter
matrix Θ�. Broadly, we simulate gene expression at time t as
a function of gene expression at the previous time point and
the proposed parameter matrix Θ� using a VAR(1) model
as in (2). Specifically, after setting y�

1 = y1, we exploit the
Markov property of the VAR(1) model to obtain one-step-
ahead predictions (i.e., fitted values) of gene expression at
time points t = 2, . . . , T :

y�
t = Θ�yt−1. (3)

Note that the one-step-ahead predictions for yt are made us-
ing the observed data yt−1, and not the simulated data y�

t−1.
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That is, we simulate data deterministically by calculating the
expected value of gene expression at each time point given
the network structure and observed expression values at the
previous time point, rather than incorporating an estimate of
noise in the simulated data.

We are aware that the deterministic simulation procedure
discussed above is somewhat unconventional in the ABC lit-
erature, primarily since it does not incorporate an estimate
of noise in the simulated data Y �. More classically, repeated
sampling is used to control the variability of the data by
simulating several noisy datasets {Y �

1 , . . . , Y �
M } for a given

network Θ�, with M > 1. Keeping this in mind, adding no
noise can be seen as the limiting case of M > 1 replications
of the dataset generated from the same Θ , as advocated in
some ABC procedures (Del Moral et al. 2011). In our case,
the choice to use the one-step-ahead predictors as in (3) is a
practical one. More specifically, because the time-series ex-
pression data are modeled as a VAR(1) process, we found
that adding noise at early time points simply had the effect
of inducing wide discrepancies at later time points, as in-
correct error terms compounded throughout the simulated
time series. This had the effect of creating large distances
ρ(Y �,Y ), even when the true network Θ was used to gener-
ate Y �.

Finally, the appropriateness of using a VAR(1) simula-
tor, (3), is largely dependent on the noise present in ob-
served data, as well as the adequacy of the assumption of
time-invariant, first-order autoregressive dynamics for com-
plicated GRN. In the absence of more detailed information
about the underlying network, it may be reasonable to use a
simple model such as the VAR(1) to generate simulated data.
We note that the ABC-Net algorithm has the flexibility to in-
corporate arbitrary models as data simulators, provided they
are computationally efficient. For instance, in some cases
second-order models, nonlinear models, linear differential
equations, draws from a Dirichlet process, or Michaelis-
Menten kinetics may more aptly describe the dynamics of
a particular GRN; in these cases, the appropriate simulator
model would be used in place of (3).

2.5 Two-step network proposal distributions

Another important consideration is the proposal distribution
q(·|·) that defines the transition from the current proposal
for a GRN to an updated proposal. Based on the current val-
ues of G and Θ , a two-step proposal distribution is used to
produce new samples G� and Θ� for the adjacency and pa-
rameter matrices, respectively. In this context, the adjacency
matrix G may be viewed as an auxiliary variable (Damien et
al. 1999), which is introduced to simplify the Markov chain
Monte Carlo algorithm. As such, the joint distribution of G

and Θ may be seen as a completion of the marginal density
of Θ (Robert and Casella 2004) which facilitates simulation
within the MCMC algorithm.

In the first step, one of three basic moves (Husmeier et al.
2005) is applied to the current adjacency matrix Gi : adding
an interaction (i.e., changing a 0 to a 1), deleting an inter-
action (i.e., changing a 1 to a 0), or reversing the direction
of an interaction (i.e., if Gjk = 1 and Gkj = 0, exchang-
ing these two values). If N (G) represents the neighborhood
size of a particular adjacency matrix G, (i.e., the number of
other network structures that can be obtained by applying
one of these three basic moves), the transition probability of
the first step is given by q(G�|Gi) = 1/N (Gi).

In the second step, the proposal distribution of Θ , given
the current value Θi and the updated adjacency matrix G�,
is defined to be

q(θjk|θi
jk,G

�
jk) ∼

{
0 if G�

jk = 0

N(θi
jk, σ

2
Θ) if G�

jk �= 0
(4)

where σ 2
Θ is the variance of the proposal distribution, and

σΘ may be tuned to obtain an empirical acceptance rate be-
tween 15% and 50%, as recommended in Gilks et al. (1996).
A simple example of the two-step proposal distribution for
GRN is shown in Fig. 2.

It is worth noting that the introduction of the adjacency
matrix G is not strictly necessary to accomplish the two-
step proposal described above. For instance, it would be
straightforward to define the target with respect to a mix-
ture of singular measures, e.g., a Dirac mass and a Gaus-
sian density (see Gottardo and Raftery 2004, for more de-
tails). Furthermore, the three proposal moves (add, delete,
and reverse a network edge) could be defined using a mix-
ture of kernels that include selection probabilities depend-
ing on the current state. Our primary motivation for in-
cluding G is based on the approach for learning Bayesian
networks in Chap. 2 of Husmeier et al. (2005), which
clearly distinguishes the network structure (i.e., the set of
edges and nodes represented by the adjacency matrix G)
from the network parameters (the matrix Θ). The three-
move proposal strategy we apply for the structure of the
network is based on this intuitive representation, and is
rather popular in Bioinformatics (see e.g., Husmeier et al.
2005).

2.6 ABC-Net implementation

The output from the ABC-Net algorithm consists of depen-
dent samples from the stationary distribution of the chain,
f (Θ,G|ρ(Y �,Y ) ≤ ε). In practice, because saving all iter-
ations from the MCMC run can take up a large amount of
storage (particularly as the size of the network increases)
and consecutive draws tend to be highly correlated, we thin
the chain at every 50th iteration. Additionally, as with many
MCMC methods, a burn-in period is implemented to reduce

Author's personal copy



1262 Stat Comput (2012) 22:1257–1271

Fig. 2 Example of two-step proposal distribution for GRN. Top row:
A network in iteration i of the ABC-Net algorithm may be character-
ized both by its adjacency matrix Gi (left) and its parameter matrix Θi

(right). The former encodes only the presence (1) or absence (0) of an
interaction. The latter encodes additional information about the magni-
tude of a particular interaction, where zeros indicate that an interaction
is not present, positive values indicate an activation, and negative val-

ues indicate a repression (interactions with values further away from
zero correspond to stronger effects). Bottom row: An updated network
is proposed by adding, deleting, or reversing an interaction in Gi to
produce G� (left). The parameter matrix Θi is updated using a Gaus-
sian proposal distribution for the nonzero interactions of G� to produce
Θ� (right). Image taken from Rau (2010)

the impact of initial values and to improve mixing for the
chain. The length b of the burn-in depends on the starting
values of the chain, Θ0 and G0, the rate of convergence of
the chain, and the similarity of the transition mechanism of
the chain to the approximate posterior distribution. We fol-
low the suggestion of Geyer (1992), setting b to between 1%
and 2% of the run length n.

We also implement a “cooling” procedure during the
burn-in period similar to that used in Ratmann et al. (2007),
where acceptance of (G�,Θ�) is controlled by a decreasing
sequence of thresholds, until the minimum pre-set accep-
tance threshold ε is reached. Note that tempering the accep-
tance threshold in this way reduces the number of accepted
parameters as the number of iterations increases. This cool-
ing scheme also addresses the poor mixing often observed in
the ABC-MCMC algorithm, as larger tolerances in the early
iterations of the burn-in are associated with higher accep-
tance rates. A total of 200 iterations are run for each of ten
cooled threshold values, and the burn-in period is repeated if
the empirical acceptance rate is less than 1%. This ensures a
minimum burn-in period of 2000 iterations, with additional
iterations included for chains affected by poor mixing.

Because the ABC-Net algorithm relies on a comparison
between simulated and observed data to avoid a likelihood
calculation, long chains are required to ensure the adequacy
of the approximation. Although a single long chain could be
run, it is also possible to run multiple overdispersed chains.
In practice, we run 10 independent chains of length 1 × 106

simultaneously (rather than a single chain of length 1×107).
This approach contributes a two-fold benefit, as calculations
can be performed in parallel to improve computational speed
and a convergence assessment can be conducted using the
Gelman-Rubin statistic R (Gelman and Rubin 1992). Fol-

lowing the recommendation in Gilks et al. (1996) we de-
clare chain convergence if R̂ < 1.2 for all parameters in Θ .
After the chains have converged, draws corresponding to the
smallest 1% of the distance criterion are retained for infer-
ence.

3 Simulation study based on the Raf pathway

In this simulation study, we focus on four specific aspects re-
lated to the performance of the ABC-Net: the distance func-
tion ρ and tolerance ε, the sensitivity to prior distribution
bounds, the suitability of the model used to generate sim-
ulated data when more complicated dynamics are at play,
and the effect of increasing the amount of noise present in
the observed data. To do so, we focus on the Area Under
the Curve (AUC) of the Receiver Operating Characteristic
(ROC) curve as an indicator of performance, as well as qual-
itative examinations of the approximate posterior distribu-
tions of interactions in the network. To calculate the AUC ,
we retain only the samples corresponding to the smallest 1%
of distances ρ(Y �,Y ) for inference. Based on these sam-
ples, we calculate the bounds of the α% credible intervals
for each gene-to-gene interaction, where α = {1, . . . ,100}.
If the α% credible interval for a particular interaction does
not contain 0, the gene-to-gene interaction is declared to be
present; otherwise, the interaction is declared to be absent.
In this way, because the simulation setting determines which
interactions are truly present and absent, true positives, false
positives, true negatives, and false negatives may be calcu-
lated for each α, and the AUC may subsequently be calcu-
lated. The values of α may be adjusted for multiple testing,
if necessary.
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Fig. 3 The currently accepted gold-standard Raf signalling path-
way (Werhli and Husmeier 2007), which describes the interactions
of eleven phosphorylated proteins in primary human immune system
cells (Sachs et al. 2005). Nodes represent the proxy genes of each of

the eleven proteins (i.e., the genes that are transcribed and translated
into the corresponding proteins), and arrows indicate the direction of
signal transduction. Image taken from Rau (2010)

3.1 Simulation design

Rather than defining an arbitrary network Θ , we instead
make use of the structure of a well-characterized pathway
in human immune system cells involving the Raf signalling
protein (Sachs et al. 2005). We generate data based on 11
genes, where the adjacency matrix GRaf is defined using the
structure of the currently accepted Raf signalling network
(Fig. 3). If an interaction is present from gene k to gene j ,
we sample θRaf

jk uniformly from the interval (−2,−0.25) ∪
(0.25,2), and otherwise θRaf

jk = 0. The bounds for non-zero
gene-to-gene interactions were chosen to represent a range
of moderate to strong interactions among genes. We gener-
ate one replicate of expression data for each of the 11 genes
over 20 time points, using the VAR(1) model

yt = ΘRafyt−1 + zt (5)

for t = 1, . . . , T , where y1 ∼ N(0, I ), and zt ∼ N(0, σ 2).
For each simulation, unless otherwise noted, the noise stan-
dard deviation is set to σ = 1, the Gaussian proposal stan-
dard deviation in (4) is set to σΘ = 0.5, and the maximum
fan-in is constrained to 5 or less.

3.2 Choice of ρ and ε

The distance function ρ and threshold ε are essential com-
ponents to the ABC-Net method, as they directly affect the
probability that simulated data Y � generated by a network
Θ� are accepted as being “close enough” to the observed
data. Although there are many potential options for this dis-
tance function, we focus on a comparison among the Man-
hattan, Euclidean, Canberra, and Multivariate Time-Series
(MVT; Lund and Li 2009) distances (see Appendix). For
each choice of ρ, we propose a heuristic method where 5000
randomly generated networks are used to simulate data,

and the corresponding distances ρ(Y �,Y ) are calculated for
each. Subsequently, the minimum acceptance threshold ε is
set to be either the 1%, 5%, or 10% quantile of these dis-
tances associated with 5000 randomly generated networks.1

During the burn-in period, we temper the acceptance thresh-
old with an exponential cooling scheme, starting at some
initial temperature ε0 and cooling at the next iteration i to
εi = .90εi−1, until the minimal temperature ε is reached.
Each combination of ρ and ε was repeated over five inde-
pendent datasets in order to include an assessment of their
variability (only two datasets were simulated for the MVT
distance due to its computational burden).

Each distance function under consideration calculates
and penalizes differences between simulated and observed
data in a different way. In particular, the behavior of the
MVT function appears to differ from that of the other dis-
tance functions, with much lower AUC values for each com-
bination of ρ and ε (Fig. 4). The Canberra, Euclidean, and
Manhattan distances all appear to be on par with one an-
other, particularly when ε is set at the 1% quantile of dis-
tances. However, based on the criterion of AUC alone, there
does not seem to be strong evidence that favors one choice
among the Canberra, Euclidean, and Manhattan distances,
particularly for a cutoff of ε = 1%. That is, although the
MVT distance is a poor choice of distance function within
the ABC-Net algorithm, the remaining distances yield sim-
ilar results. Because it enjoys a slight advantage over the
Manhattan and Canberra distances in terms of computation
time, we use the Euclidean distance with ε set to the 1%
threshold for the remainder of the simulations.

1The number of randomly generated networks was chosen based on a
set of preliminary simulations that indicated that the quantiles for the
corresponding distances ρ(Y �,Y ) seemed to stabilize for 5000 or more
networks (data not shown). For larger networks, further exploratory
simulations may need to be performed to ensure that this number is not
too small.
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Fig. 4 Area Under the Curve (AUC) of the Receiver Operating Char-
acteristic (ROC) curve for four choices of distance functions in the
ABC-Net algorithm: Canberra, Euclidean, Manhattan, and MVT dis-
tances. Black dots represent the value of the AUC for each of five in-
dependent datasets per threshold and distance function (with the ex-
ception of the MVT distance, which was limited to two datasets due to
its computational burden). The threshold ε was set at the 1%, 5%, and
10% quantiles from 5000 randomly generated networks. Lines repre-
sent loess curves (Cleveland 1979). Image taken from Rau (2010)

Fig. 5 Gelman-Rubin statistics (R̂) for each replicate of four choices
of bounds on the prior distribution π(Θ|G). The black dotted line in-
dicates a value of R̂ = 1.2, the cutoff at which convergence is declared
among ten independent chains in the ABC-Net algorithm. Image taken
from Rau (2010)

3.3 Sensitivity to prior distribution bounds

Although the prior bounds (−2 and 2) for π(Θ|G) are rea-
sonable for the context of GRN, we also consider the follow-
ing bounds: (−3,3), (−5,5), and (−10,10). These intervals
include somewhat “unrealistic” values for Θ , but are more
diffuse (and hence less informative). The greatest effect of
using less informative prior distributions is in terms of the
convergence of the ten independent chains, as assessed by

the Gelman-Rubin statistic (Fig. 5). This is most evident
for prior bounds of (−10,10), where a large number of in-
teractions exceed the convergence cutoff of 1.2 by a large
amount. It is perhaps unsurprising that wider prior bounds
lead to problems in chain mixing and convergence, and thus
highlights the need for well-chosen prior bounds for the in-
ference of GRN.

We also consider the effect of the choice of prior bounds
on the shape of the approximate posterior distributions in the
network. In Fig. 6, a graphical matrix of the marginal ap-
proximate posterior distributions of each interaction in the
network is given for prior bounds (−2,2). As may be ex-
pected, the approximate posteriors are generally more dif-
fuse when wider prior bounds are used. However, regardless
of the choice of prior bound, some gene-to-gene interactions
consistently have very flat (diffuse) approximate posterior
distributions (e.g., those in the Pip3 column), while others
tend to be consistently peaked (e.g., those in the Erk col-
umn). We refer to gene-to-gene interactions with these two
characteristics as “flexible” and “rigid”, respectively. Inter-
estingly, in this simulation, the most rigid interactions ap-
pear to correspond to regulators that are furthest downstream
in the simulated pathway (Mek, Erk, and Akt), while those
furthest upstream appear to be the most flexible. In the con-
text of the ABC-Net method, this suggests that rigid inter-
actions (e.g., Mek→Erk) in Θ� must take on values within
a tight interval in order to generate simulated data Y � that
are close (in terms of ρ and ε) to the observed data Y . Con-
versely, flexible interactions (e.g., Pip3→Pip3) can take on
values within a much wider interval without negatively af-
fecting the proximity of simulated and observed data. Thus,
it is likely that the model is most sensitive to parameters
with narrow credible intervals (rigid interactions) and least
sensitive to those that cannot accurately be localized (flex-
ible interactions) by the approximate posterior distribution
(Toni et al. 2009). That is, it appears that some interactions
may intrinsically be easy to infer even with relatively wide
prior bounds, while others cannot be accurately determined
even with reasonable prior distribution bounds.

3.4 Suitability of VAR(1) simulator

The applicability of the ABC-Net method to real GRN relies
heavily on its ability to accurately simulate data for a given
network structure. It is feasible that real biological systems
do not follow a VAR(1) model, and in fact, that they arise
from very complicated, nonlinear relationships. To assess
how the ABC-Net method performs when observed data Y

are actually generated from more complicated models, we
focus on four models (Table 1): a first-order nonlinear VAR
model (VAR-NL(1)), a second-order VAR model (VAR(2)),
a second-order nonlinear VAR model (VAR-NL(2)), and an
ordinary differential equation (ODE). For the VAR mod-
els, ΘRaf

1 and ΘRaf
2 were each defined using the structure of
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Fig. 6 The structure of the true
Raf signalling pathway, ΘRaf,
and a graphical matrix of the
marginal approximate posterior
distributions for every
interaction in the network, with
prior bounds (−2,2). Each
element of the graphical matrix
corresponds to the same element
of ΘRaf, i.e., the density in the
second row and first column
corresponds to θRaf

21
(Pip3 → Plcγ ). The x-axis of
each plot represents the values
of each parameter θRaf

jk , and the
y-axis represents the
corresponding density. Black
dotted lines are included on
plots where θRaf

jk �= 0 at the true
value. Image taken from Rau
(2010)

the Raf signalling network, where existing interactions were
sampled uniformly from the interval (−2,−0.25)∪(0.25,2)

and otherwise set to 0. For the ODE model, coefficients were
randomly drawn from a U (−1,1) distribution and initial val-
ues for all genes were set to 1. After solving the ordinary
differential equations for time points t = 1, . . . ,20, random
noise sampled from N(0,1) was added to each measurement
at each time point.

It is not surprising that the ABC-Net has the best per-
formance in terms of AUC for the VAR(1) model, as the
data Y are generated with the same model that is used to
simulate Y � (Fig. 7). For the other simulator models, the
performance of the algorithm noticeably declines, with the
lowest AUC values observed for the two second-order mod-
els, VAR(2) and VAR-NL(2). The nonlinear first-order VAR
model shows wide variability in its results, ranging from an
AUC of just over 0.40 to over 0.70. Of the alternative mod-
els, the ordinary differential equation appears to have the
highest performance in terms of AUC. As a final note con-
cerning the performance of the ABC-Net algorithm when
alternative models are used to generate Y , recall that the
simulator described in Sect. 2.4 has the flexibility to incor-

porate alternative models, provided they are computation-
ally efficient. In this respect, the VAR(1) model may be
viewed as a kind of robust null model to apply when noth-
ing is precisely known about the dynamics of a particular
system. However, in cases where other models are known
to better fit a given set of data (e.g., a second order or non-
linear model), the ABC-Net method can be adapted accord-
ingly.

3.5 Effect of noise in observed data

We expect that increasing amounts of noise in the observed
data (i.e., σ in (5)) lead to reduced performance for the
ABC-Net algorithm, particularly since the VAR(1) simula-
tor uses one-step ahead predictors to simulate data based on
a given network Θ�. To evaluate this, we consider

σ = {0,0.1,0.25,0.5,0.75,1,1.5,2,3,5},

where zt ∼ N(0, σ ). The AUC results (Fig. 8) indicate that
the presence of increasing noise over the investigated range
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Table 1 Alternative models used to generate observed data Y : an
ordinary differential equation (ODE), a second-order VAR model
(VAR(2)), a first-order nonlinear VAR model (VAR-NL(1)), and a
second-order nonlinear VAR model (VAR-NL(2))

Model Network Equations to Generate Y

VAR-NL(1) y1 = z1

yt = ΘRaf
1 y−1

t−1 + zt ,

for t = 2, . . . , T

zt ∼ N(0,1) for t = 1, . . . , T

VAR(2) y1 = z1

y2 = ΘRaf
1 y1 + z2

yt = ΘRaf
1 yt−1 + ΘRaf

2 yt−2 + zt ,

for t = 3, . . . , T

zt ∼ N(0,1) for t = 1, . . . , T

VAR-NL(2) y1 = z1

y2 = ΘRaf
1 y−1

t−1 + z2

yt = ΘRaf
1 y−1

t−1 + ΘRaf
2 yt−2 + zt ,

for t = 3, . . . , T

zt ∼ N(0,1) for t = 1, . . . , T

ODE y′
Pkc = 0.18yPlcγ − 0.75yPip2

y′
Raf = −0.28yPkc + 0.62yPka

y′
Mek = 0.63yPkc − 0.97yRaf − 0.52yPka

y′
Erk = 0.70yMek − 0.94yPka

y′
Pka = 0.31yPkc

y′
Akt = 0.28yErk + 0.60yPka + 0.92yPip3

y′
P38 = −0.19yPkc − 0.32yPka

y′
Jnk = 0.24yPkc + 0.98yPka

y′
Plcγ = 0

y′
Pip3 = −0.28yPlcγ

y′
Pip2 = 0.83yPlcγ − 0.98yPip3

does seem to negatively affect the performance of the ABC-
Net algorithm, although only for relatively large values of σ

(e.g., σ = 5). As the noise standard deviation increases, it is
not surprising that the performance of the algorithm deteri-
orates, since the one-step-ahead predictors fall increasingly
further from the observed data (even when the true network
is used).

We also examine the approximate posterior distributions
of the network for two different values of noise standard
deviation, σ = 0.5 and σ = 5 (Fig. 9). For the most part,
posterior distributions for both σ = 0.5 and σ = 5 seem to
have the same general shape, with some occasional discrep-
ancies (e.g., Akt→Akt and Akt→Erk). In addition, as in
previous simulations, we note once again the marked dif-
ference in posterior distributions between rigid interactions
(peaked distributions) and flexible interactions (diffuse dis-
tributions). Regardless of the amount of noise incorporated
into the simulated data for the Raf signalling pathway, the

Fig. 7 Area Under the Curve (AUC) of the Receiver Operating Char-
acteristic (ROC) curve for five different model choices to generate Y :
VAR(1), VAR-NL(1), VAR(2), VAR-NL(2), and ODE. Black dots rep-
resent the value of the AUC for each of five independent datasets per
bound. Image taken from Rau (2010)

Fig. 8 Scatterplots of the Area Under the Curve (AUC) of the Receiver
Operating Characteristic (ROC) curve for the ABC-Net algorithm, with
differing values of noise standard deviation σ (0, 0.1, 0.25, 0.5, 0.75,
1, 1.5, 2, 3, 5). Five datasets were generated for each value of noise
standard deviation. The line represents a loess curve (Cleveland 1979).
Image taken from Rau (2010)

approximate posterior distributions for the upstream and
downstream portions of the network are consistently flexi-
ble and rigid, respectively. This seems to indicate that some
interactions are intrinsically easier to infer (even in the pres-
ence of increased noise), while others cannot be accurately
determined regardless of the amount of noise in the data. As
such, the flexibility and rigidity of interactions in a given
system likely plays an important role in the global inferabil-
ity of the network structure.
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Fig. 9 (Color online) The
structure of the true Raf
signalling pathway, ΘRaf, and a
graphical matrix of the marginal
approximate posterior
distributions for every
interaction in the network, for
σ = 0.5 and 5. Each element of
the graphical matrix
corresponds to the same element
of ΘRaf, i.e., the density in the
second row and first column
corresponds to θRaf

21
(Pip3 → Plcγ ). The x-axis of
each plot represents the values
of each parameter θRaf

jk , and the
y-axis represents the
corresponding density. Red and
blue lines correspond to results
obtained with σ = 5 and
σ = 0.5, respectively. Black
dotted lines are included on
plots where θRaf

jk �= 0 at the true
value. Image taken from Rau
(2010)

4 Application to S.O.S. DNA repair system in
Escherichia coli

The S.O.S. DNA repair system in the Escherichia coli bac-
terium is a well-known gene network that is responsible for
repairing DNA after damage. The full network is made up of
about thirty genes working at the transcriptional level. The
behavior of these genes in the presence of DNA damage has
been well characterized (Ronen et al. 2002). Specifically,
under normal conditions a master repressor called lexA re-
presses the expression of the genes responsible for DNA
repair. However, when one of the S.O.S proteins (recA)
senses DNA damage by binding to single-stranded DNA, it
becomes activated and provokes the autocleavage of lexA.
The subsequent drop in the levels of lexA suspends the re-
pression of the S.O.S. genes, and these genes become ac-
tivated. Once DNA damage has been repaired, the level of
recA drops, which allows lexA to reaccumulate in the cell
and subsequently repress the S.O.S. genes. At this point, the
cells return to their original state. Although the network it-

self is quite small, its simple structure allows the cell to react
in very sophisticated ways to conditions within the cell.

4.1 Data

We focus on a sub-network within the S.O.S. DNA re-
pair system made up of eight genes: uvrD, lexA, umuD,
recA, uvrA, uvrY, ruvA, and polB. Using green fluores-
cent protein (GFP) reporter plasmids, Ronen et al. (2002)
measured the expression of these eight genes at fifty time
points (every six minutes following ultraviolet irradiation of
the cells to provoke DNA damage). The quantity of GFP is
proportional to the quantities of the corresponding S.O.S.
proteins, which are in turn proportional to the correspond-
ing mRNA production rates (Perrin et al. 2003). As such,
it is reasonable to assume that the data of Ronen et al.
(2002) directly indicate the expression levels of each of the
S.O.S. genes. These data are available at the authors’ web-
site (http://www.weizmann.ac.il/mcb/UriAlon). In addition,
the study performed by Ronen et al. (2002) consisted of two
different experiments for each of two different intensities of
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Fig. 10 (Color online) Results for the S.O.S DNA repair system for
the EBDBN and ABC-Net methods. Blue and red solid edges in the
graph represent gene-to-gene interactions identified by the EBDBN
method that are “true positives” and “false positives,” according to
the known behavior of genes in the S.O.S. network. Dotted gray lines
represent gene-to-gene interactions supported by the literature that are

not identified by the EBDBN method. Filled densities represent the
marginal approximate posterior distributions found through the ABC-
Net method. The feedback loops on the S.O.S. genes (uvrD, uvrY,
ruvA, and polB) appear to be flexible, while others exhibit greater
rigidity. Image taken from Rau (2010)

ultraviolet light (Experiments 1 and 2 at 5 Jm−2, and Experi-
ments 3 and 4 at 20 Jm−2). One recent study by Charbonnier
et al. (2010) found that Experiments 1 and 4 systematically
led to poor results for network inference methods, although
nothing should distinguish them from the other two experi-
ments. As such, we focus the rest of our discussion on the
data collected in Experiment 3, which was measured with
the higher level of ultraviolet light.

4.2 Analysis

In addition to the ABC-Net method, we apply the Empirical
Bayes Dynamic Bayesian Network (EBDBN) approach of
Rau et al. (2010) with a hidden state dimension of K = 0,
where a 99.9% cutoff is used as a threshold for the z-scores
of the gene-to-gene interactions. This particular method is
chosen to illustrate the benefit of using the ABC-Net ap-
proach in tandem with other inference methods. As before,
we set the Gaussian proposal standard deviation in (4) to
σΘ = 0.5, and we ran the ABC-Net method for ten indepen-
dent chains of length 1 × 106, with a thinning interval of 50.
The VAR(1) simulator is used to generate simulated data
Y �, and the prior bounds of π(Θ|G) are set to (−2,2). We
used the Euclidean distance function, where the threshold ε

is selected using the previously described heuristic method
(Sect. 3.2), based on the 1% quantile of distances for 5000
random networks. Due to the small size of the network, the
maximum fan-in was constrained to 2 or less.

The gene-to-gene interactions identified by the EBDBN
method are illustrated in Fig. 10, where blue and red solid
edges represent “true positives” and “false positives,” ac-
cording to the previously described behavior of the S.O.S.
network. We note that all feedback loops identified by the
EBDBN method correspond to “false positives”, while the
remaining two interactions (from lexA to umuD and uvrA)
correspond to “true positives”. However, we use these terms
somewhat loosely, because even for well-understood net-
works such as the S.O.S. DNA repair system, the absence
of a particular gene-to-gene interaction in the literature can-
not indicate with absolute certainty that such a relationship
is absent. Gray dotted lines represent gene-to-gene interac-
tions supported by the literature that are not identified by
the EBDBN method. We also examine the marginal approx-
imate posterior distributions for each of these interactions
(Fig. 10), as obtained by the ABC-Net method. As previ-
ously seen in the simulation study, these posterior distribu-
tions seem to fall into two categories: flexible interactions
(the feedback loops on uvrD, uvrY, ruvA, and polB) and
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rigid interactions (the others). That is, gene-to-gene interac-
tions identified by the EBDBN with rigid approximate pos-
terior distributions appear to be supported by substantial ev-
idence, as those parameters are restricted to a smaller range
of values in their posterior distributions. On the other hand,
those associated with flexible approximate posterior distri-
butions may indeed represent false positives, since those pa-
rameters take on a wider range of values without negatively
impacting the proximity of simulated and observed data in
the ABC-Net algorithm. In this way, the ABC-Net method
can help yield complementary information about specific
gene-to-gene interactions, as well as the overall dynamics
of a given biological system. That is, the ABC-Net method
can serve as a useful reference tool to confirm or belie results
obtained by a more specific model.

In addition to comparing the results of the EBDBN and
ABC-Net methods, we also examine the most rigid approx-
imate posterior distributions identified by the latter method
(Fig. 11). Interestingly, all of the most rigid interactions in
the S.O.S. DNA repair system are those directly connecting
the recA protein to the other genes in the network, bypassing
the lexA master regulator. This result can be explained by
the one-step time delay inherent in the VAR(1) simulator of
the ABC-Net method. More specifically, when DNA dam-
age in the cell is detected by recA, the abundance of lexA
decreases very rapidly and the remaining S.O.S. genes turn
on almost immediately. However, time-delay models (like
the VAR(1) simulator) are only able to identify gene-to-gene
interactions that occur with a one-step time lag. The result of
this is that in the findings of the ABC-Net method, a strong
link appears to occur directly between recA and the remain-
ing genes in the network.

5 Discussion

Reverse engineering the structure of GRN from longitudinal
expression data is an intrinsically difficult task, given the
complexity of network architecture, the large number of po-
tential gene-to-gene interactions in typical networks, and the
small number of replicates and time points available in real
data. In this work, we proposed a non-standard extension of
the existing ABC-MCMC method (Marjoram et al. 2003) to
enable inference of GRN. Based in approximate Bayesian
computation, the ABC-Net approach enables Bayesian in-
ference for complex, high-dimensional networks for which
the likelihood is difficult to calculate. By sampling from the
approximate posterior distributions of parameters involved
in GRN, this method yields a wealth of information about
the structure and inferability of complicated biological sys-
tems, particularly with respect to the flexibility and rigidity
of network interactions. For the time being, the complexity
of real biological systems and the computing time required
for the ABC-Net limits its application to small networks.

As noted by previous authors (e.g., Sisson et al. 2007;
Wegmann et al. 2009), there are a number of drawbacks to
the ABC-MCMC algorithm. For example, the choice of ε

plays an important role in the chain; too large of a value for
the threshold ε results in a chain dominated by the prior dis-
tribution, while too small of a value leads to extremely low
acceptance rates. As such, implementation of the ABC-Net
method requires some user tuning. In addition, the number
of steps required in the burn-in period and in the chain itself
are also dependent on this threshold value. Further work is
required to fully examine the components of the ABC-Net
method, including more efficient network structure proposal
schemes, and techniques to identify optimal data simulators
for real data. In particular, a key aspect in this work is the
choice of the model used to generate pseudo data; recent ad-
vances in using ABC algorithms for parameter inference and
as an exploratory tool for model assessment (Ratmann et al.
2011) may be useful for this purpose.

In this work, we have suggested the use of somewhat
loosely defined “flexible” and “rigid” gene-to-gene interac-
tions to better understand the inferability of gene regulatory
networks; additional work is required to determine an objec-
tive criterion to characterize this behavior. Although our im-
plementation of ABC methods for reverse engineering GRN
was a first attempt to demonstrate the flexibility and poten-
tial of this procedure, some improvements in performance
and efficiency can be expected from the implementation of
new simulation techniques, such as population and sequen-
tial Monte Carlo (Del Moral et al. 2006, 2011; Robert 2010).
Finally, a substantial advantage of the ABC-Net method is
its capacity to analyze time-series digital gene expression
measurements (e.g., serial analysis of gene expression or
RNA sequencing data) through a simple modification of the
data simulator (e.g., an autoregressive simulator for Poisson
distribution rates). To this end, additional work is required
to determine the most appropriate techniques for simulat-
ing time-series count data, as well as distance functions best
adapted to time-series count data. This goal is particularly
important, as the decreasing cost and refinement of next-
generation sequencing technology ensure that longitudinal
gene expression profiles will likely be studied using RNA
sequencing methodology in the near future.
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Appendix

Let Y and Y � denote observed and simulated time-course
expression data, and let T and P denote the number of time
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Fig. 11 Interactions exhibiting
the highest rigidity in the S.O.S
DNA repair system for the
ABC-Net method. Dotted gray
lines represent gene-to-gene
interactions supported by the
literature. Filled densities
represent the marginal
approximate posterior
distributions found through the
ABC-Net method. The most
rigid interactions in the network
connect the recA protein
directly to the S.O.S. genes,
bypassing the lexA master
regulator. Image taken from Rau
(2010)

points collected and total number of genes, respectively. The
Canberra, Euclidean (L2), and Manhattan (L1) distances, re-
spectively, may be defined as

ρ(Y �,Y ) =
T∑

t=1

P∑

i=1

|y�
it − yit |

|y�
it + yit |

ρ(Y �,Y ) =
√√√√

T∑

t=1

P∑

i=1

(y�
it − yit )2

ρ(Y �,Y ) =
T∑

t=1

P∑

i=1

|y�
it − yit |.

In addition, we also apply a distance measure proposed by
Lund and Li (2009) tailored to multivariate longitudinal data
that we refer to as the Multivariate Time-Series (MVT) dis-
tance. For the MVT distance, under the null hypothesis that
Y � and Y have the same network dynamics, we define

Θ̂Y = 1

T

T −1∑

t=1

yt+1y′
t

Θ̂Y � = 1

T

T −1∑

t=1

y�
t+1y�′

t

Θ̂ = Θ̂Y + Θ̂Y �

2

ŷ�
t = Θ̂y�

t−1

ŷt = Θ̂yt−1

Σ̂ = 1

2T

T∑

t=1

{(y�
t − ŷ�

t )(y
�
t − ŷ�

t )
′ + (yt − ŷt )(yt − ŷt )

′}

where yt and y�
t are the observed and simulated time-course

data, ŷt and ŷ�
t are the best one-step ahead linear predictors

of yt and y�
t , respectively, and Σ̂ is an estimate of the com-

mon covariance matrix of the errors Σ . With these terms
defined, the MVT distance may be defined as follows:

ρ(Y �,Y ) = 1

T

T∑

t=1

[(yt − y�
t ) − (ŷt − ŷ�

t )]′Σ̂−1

× [(yt − y�
t ) − (ŷt − ŷ�

t )].
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