
Soon after the ascension of genome-wide association 
studies (GWASs) as the pre-eminent tool for discovering 
polymorphic genes that influence disease susceptibility 
and quantitative traits, the field of genetics developed 
three major outlooks on the architecture of complex 
traits. When GWASs began, the field was dominated by 
the simple common disease–common variant hypothesis  
(CDCV hypothesis)1–4. This model has now been refuted 
in light of the so-called ‘missing heritability problem’: the 
observation that loci detected by GWASs explain almost 
without exception a small minority of the inferred genetic 
variance5,6. It is simply not the case that a few dozen loci of 
moderate effect and intermediate frequency each explain 
several per cent of disease risk in a population, as is typi-
cally observed in crosses or pedigrees. Since then, the 
genetic component has been attributed instead to one 
of three causes: a large number of small-effect common 
variants across the entire allele frequency spectrum (the 
infinitesimal model)7,8, a large number of large-effect rare 
variants (the rare allele model)9 or some combination  
of genotypic, environmental and epigenetic interac-
tions (the broad sense heritability model)10,11. FIGURE 1 
shows the expected distribution of genome-wide asso-
ciation profiles under each of these three models and 
the CDCV model.

GWASs are neither powered nor designed to detect 
variation under any of these models on a consistent 
basis, so there is as of yet insufficient empirical data to 
resolve the debate. In all likelihood, each of the three 
genetic architectures contributes, possibly to different 
degrees, to different diseases or traits. However, because 
the heritability of risk is generally estimated as narrow 
sense variance, interaction effects should be considered 
to be secondary to the main effects of common and rare 
variants. The purpose of this article is therefore to review 

20 arguments that support or refute the infinitesimal and 
rare allele models. This is not a comprehensive survey 
but is rather an overview of five arguments in favour 
and five arguments against each of these two models 
that have been drawn from theory and data from diverse 
categories of disease. BOX 1 lists each of the arguments 
approximately according to their relative strength.

The models
Infinitesimal model: many variants of small effect. By 
‘infinitesimal model’, I mean the proposition that com-
mon variants are among the major source of genetic 
variance for disease susceptibility and continuous traits, 
where hundreds or thousands of loci contribute in each 
case. The loci detected by GWASs are merely the largest 
effect sizes drawn from a Poisson or similar distribution. 
If half a dozen common variants explain 10% of risk in 
the population, the remainder is attributable to a myriad 
of variants that each explain considerably less than 1% of 
risk and have a genotype relative risk (GRR) of less than 1.1  
(REF. 12). FIGURE 2a shows that affected individuals will 
tend to carry a slight excess of risk variants, as the over-
all distribution of the number of risk alleles per affected 
individual is skewed relative to unaffected individuals. 
If risk alleles follow the same distribution of allele fre-
quencies as neutral variation, then they will include a 
large number of rare variants as well. Ultimately, every 
gene contributes to every trait, but with effect sizes that 
are so small that it would take samples greater than the 
population size of the species to detect them. In practice, 
as shown by the massive meta-analyses of GWASs for 
height and body mass index (BMI)13,14, each involving 
several hundred thousand people, it is unlikely that more 
than a few hundred loci will ever be confirmed for most 
diseases, and these will not necessarily explain even half 

School of Biology and Center 
for Integrative Genomics, 770 
State Street, Georgia Institute 
of Technology, Atlanta, 
Georgia 30332, USA.
e-mail: greg.gibson@biology.
gatech.edu
doi:10.1038/nrg3118

Common disease–common 
variant hypothesis
(CDCV hypothesis). The model 
that complex disease is largely 
attributable to a moderate 
number of common variants, 
each of which explains several 
per cent of the risk in a 
population.

Heritability
The proportion of the 
phenotypic variance in a 
population that is due to 
genotypic differences  
among individuals.

Genetic variance
The contribution of genotypic 
differences among individuals 
to phenotypic variation.

Narrow sense variance
The additive component  
of the genetic variance: 
namely, the average effect  
of substituting one allele  
for another at a locus.

Rare and common variants:  
twenty arguments
Greg Gibson

Abstract | Genome-wide association studies have greatly improved our understanding of 
the genetic basis of disease risk. The fact that they tend not to identify more than a fraction 
of the specific causal loci has led to divergence of opinion over whether most of the 
variance is hidden as numerous rare variants of large effect or as common variants of very 
small effect. Here I review 20 arguments for and against each of these models of the genetic 
basis of complex traits and conclude that both classes of effect can be readily reconciled.
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Figure 1 | Different expected signatures from genome-wide association studies for four models of disease. 
Each plot shows the approximate expected distribution of SNP effects for a modest study of 2,000 cases and controls. 
The y axis is the percentage of the variance for a trait or disease liability in the population explained by each SNP (note 
that standard Manhattan plots typically show the significance instead, which is represented as the negative log

10
 of the P 

value), and the x axis is the location of tens of thousands of SNPs along the chromosome. In the common disease–
common variant (CDCV) model, a small number of moderate-effect loci would produce very strong signals, each of 
which explains several per cent of the genetic variance. Note the expanded scale of the y axis here relative to the other 
plots. In the rare allele model, causal variant effects (yellow dots) may be large in a few individuals but are not common 
enough to explain much variance or result in genome-wide significance. The infinitesimal model, by contrast, does 
produce some significant peaks owing to small effects of common variants, and in each case several SNPs within a 
linkage disequilibrium (LD) block associate with the trait. Finally, it can be argued that if associations are only seen in 
some environments (green and orange signals, bottom right), then in a mixed population the overall effect will be 
reduced at such loci (as indicated by the arrows), and fewer associations will be detected, explaining less of the variance.

Genotype relative risk
(GRR). The ratios of the risk of 
disease between individuals 
with and without the genotype. 
A ratio of 1.1 equates to a 
10% increase in risk.

Penetrance
Describes the proportion of 
individuals with a mutation  
or risk variant who have  
the disease.

Expressivity
The severity of the disease in 
individuals who have the risk 
variant and disease.

Genotype-by-genotype 
interactions
(G×G interactions). Otherwise 
known as epistasis, this refers to 
the situation in which the effect 
of one genotype is conditional 
on genotypes at one or more 
other unlinked loci.

Genotype-by-environment 
interactions
(G×E interactions). Refers to 
the situation in which the effect 
of the genotype is conditional 
on the environment, which may 
include abiotic (temperature), 
biotic (viral exposure) and 
cultural/behavioural influences.

Parent-of-origin genetic 
contributions
Genetic effects that are only 
seen when the allele is 
transmitted either from the 
mother or from the father.

of the genetic variance. The term ‘infinitesimal’ bor-
rows from the initial formulation of quantitative genetic 
theory by Fisher7. Here it simply signifies the idea that 
the heritability is not so much missing as it is hidden 
beneath the significance thresholds used to define risk 
alleles with high confidence15.

Rare allele model: many rare alleles of large effect. The 
alternative view is that most of the variance for certain 
complex diseases is due to moderately highly penetrant 
rare variants, the allele frequency of which is typically 
<1%, most of which are recently derived alleles in the 
human population. Under this model, expressivity may 
be modified by other loci or by the environment16,17, 
but the notion is that the rare susceptibility genotype 
is largely responsible for disease. The rare allele model 
generally refers to dominant effects owing either to hap-
loinsufficient or gain-of-function alleles, where risk is 
elevated twofold or more over the background. Under 
these conditions, penetrance does not need to be any-
where near 100%. In fact, as shown in FIG. 2b, the vast 
majority of unaffected individuals are expected to carry 
one or more risk alleles. The notion is that a disease such 
as schizophrenia is actually a collection of hundreds, 
or possibly even thousands, of similar conditions that 
are attributable to rare variants at individual loci18. If 
each of these variants explains most of the risk in just a 

handful of people, their effects will not explain enough 
of the variance in a total population to be detected by 
standard GWAS procedures. The total number of loci 
that may contribute to a disease of a given prevalence is 
a function of the baseline disease incidence, the num-
ber and frequency of rare variants per locus and their 
GRRs (namely, effect size). For a disease with a high 
heritability, under a multiplicative model, relative risks 
rise steeply as the number of contributing rare alleles in  
an individual increases, but only a very small fraction of 
individuals have a sufficiently large number of alleles to 
ensure high sibling relative risks19.

Broad sense heritability model: non-additive G×G and 
G×E interactions and epigenetic effects. The broad sense 
heritability model posits that additive contributions of 
common variants and large effects of rare variants are 
insufficient to explain the missing heritability. Proponents 
of this model point to a long history of detection of  
genotype-by-genotype interactions (G×G interactions; also 
known as epistasis) and genotype-by-environment interac-
tions (G×E interactions) in model organism quantitative 
genetic research20,21, and note the increasing number of 
studies documenting epigenetic effects22, notably parent- 
of-origin genetic contributions23,24 and inheritance of 
DNA methylation patterns25. The notion here is that as 
GWASs only measure the average effects of alleles across 
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Purifying selection
Selection against genetic 
variants that reduce fitness. 
Purifying selection generally 
keeps deleterious alleles at a 
low frequency or removes 
them from the population.

Chronic disease
Medical conditions that 
develop slowly and persist, 
generally with a strong  
genetic component.

thousands of individuals, they are incapable of capturing 
heterogeneity of effect sizes at the family level that would 
be the hallmark of these broader components of the 
genetic architecture. Although broad sense heritability is 
not considered any further in this article (but see BOX 2), 
I do not disregard its potential contribution. Rather, my 
purpose here is to contrast the two narrow sense models, 
as resolution of their contributions lays the foundation 
for consideration of other genetic mechanisms.

Arguments in favour of the rare allele model
Evolutionary theory predicts that disease alleles should 
be rare. Perhaps the strongest argument for the rare  
allele model comes from evolutionary theory. As dis-
ease is deleterious to fitness, variants that promote  
disease should be selected against; disease-promoting 
variants should therefore not be common3,26,27. The exist-
ence of disease-promoting variants reflects the balance 
between mutation creating new susceptibility variants 
and selection preventing them from drifting to a higher 
frequency in the population2,28. Mutation rates are suf-
ficiently large that purifying selection cannot remove 
all deleterious variants, and those variants that have a 
modest effect on fitness (for example, if they influence 
late-onset diseases29) may rise to allele frequencies of 1% 
or occasionally more, particularly if the effect is reces-
sive. But selection is sufficiently efficient that even a fit-
ness reduction of a fraction of a per cent will keep allele 

frequencies from reaching common levels. The argu-
ment has been made that relaxed selection in modern 
humans may favour the accumulation of deleterious 
rare alleles, greatly increasing the prevalence of disease  
hundreds of generations into the future30.

Empirical population genetic data shows that deleteri-
ous variants are rare. It has been appreciated for some 
time that the distribution of minor allele frequencies 
(MAFs) is strongly skewed towards an excess of rare 
variants: over one-third of all polymorphisms have fre-
quencies below 5%31. Multiple factors contribute to this 
skewed distribution, but the finding from whole-exome 
sequence data that nonsynonymous substitutions are 
even more significantly skewed towards low frequen-
cies almost certainly reflects the operation of purifying 
selection32–34. As a class, amino acid substitutions appear 
to be deleterious. It does not need to follow from the 
observations above that the reduction in fitness is due 
to promotion of chronic disease or that all rare nonsyn-
onymous variants are deleterious. However, these find-
ings are consistent with the theory that selection keeps 
fitness-reducing alleles at a large proportion of genes 
at low frequency35. It remains to be seen whether the 
same is true of regulatory polymorphisms36,37, because 
(despite the considerable technological achievements of 
the ENCODE project) we still lack efficient procedures 
for identifying enhancers and other regulatory regions 
that polymorphisms could disrupt38.

Many rare familial disorders are due to rare alleles of 
large effect. This statement does not apply solely to condi-
tions that are caused by rare, high-penetrance Mendelian 
mutations, such as cystic fibrosis and muscular dystro-
phy. There are numerous chronic conditions that have 
familial analogues: well-known examples include rare 
variants promoting atherosclerosis through hypercholes-
terolemia39, the lesions that are responsible for maturity 
onset diabetes of the young (MODY)40 and the BRCA1 
and BRCA2 breast cancer susceptibility mutations41. In 
fact, perusal of the Online Mendelian Inheritance in Man 
(OMIM) database provides examples of near-Mendelian 
cases of many common disorders42. Probably the most 
comprehensive survey of this model is the demonstra-
tion that one-quarter of the cases of X‑chromosome-
linked intellectual disability can be ascribed to rare 
protein-coding mutations, which were discovered by 
comprehensive sequencing of X‑chromosomal exons43. 
There is thus extensive precedent for rare variants con-
tributing substantially to special cases of complex disease,  
including to risk of infection44.

Rare copy number variants contribute to several complex 
psychological disorders. Copy number variants (CNVs) 
are either hemizygous deletions or local duplications that 
result in three or even four copies of a locus45. Five per cent 
of cases of schizophrenia and of autism have each been 
attributed to CNVs at fewer than half a dozen genomic 
locations46–48. These effects are less highly penetrant 
than Mendelian mutations, implying modification by 
the genetic background. There is no evidence to support  

Box 1 | The twenty arguments

Arguments for rare alleles
•	Evolutionary theory predicts that disease alleles should be rare.

•	Empirical population genetic data show that deleterious variants are rare.

•	Rare copy number variants contribute to several complex psychological disorders.

•	Many rare familial disorders are due to rare alleles of large effect.

•	Synthetic associations may explain common variant effects.	

Arguments against rare alleles
•	Simulation of the allele frequency distribution of data from genome-wide association 
studies (GWASs) is not consistent with rare variant explanations.

•	Genome-wide associations are consistent across populations.

•	Sibling recurrence rates are greater than the postulated effect sizes of rare variants.

•	Epidemiological transitions cannot be attributed to rare variants.

•	Rare variants do not have obviously additive effects.

Arguments for common alleles
•	GWASs have successfully identified thousands of common variants.

•	Model organism research supports common variant contributions to complex 
phenotypes.

•	Variation in endophenotypes is almost certainly due to common variants.

•	The infinitesimal model is standard quantitative genetic theory.

•	Common variants collectively capture most of the genetic variance in GWASs.

Arguments against common alleles
•	The missing heritability has not been accounted for.

•	Demographic phenomena suggest more than a simple common variant model.

•	The quantitative trait locus (QTL) paradox: QTLs that are consistently detected in 
pedigrees and in experimental crosses are not observed in outbred populations.

•	Absence of blending inheritance.

•	Very few common variants for disease have been functionally validated.
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Figure 2 | Expected distribution of risk variants. The approximate frequency distribution of risk alleles in cases (shown 
in blue) and controls (shown in red) under the infinitesimal model for a disease with a high heritability and 10% prevalence 
(a) and under a multiplicative rare allele model for a disease with a high heritability and 2% prevalence (b). a | This 
parameterization assumes 200 loci with risk allele frequencies from 0.1 to 0.9 but is skewed towards lower frequencies. 
Each risk allele is assumed to increase the probability of disease additively by 1.04 relative to the overall risk of 10%.  
The frequency distribution in cases is skewed to the right, but note that the median number of risk alleles in affected 
individuals is only slightly greater than it is in unaffected individuals. b | The multiplicative risk for a disease with 
prevalence K is often represented as K = f

0
(1+p(t–1))2n, where f

0
 is the baseline risk in the absence of disease alleles, t is 

the genotype relative risk (GRR) of each of n alleles at frequency p (REFS 130,131). This parameterization (shown in the 
left-hand panel) assumes 100 loci, each with a risk allele frequency of 1%, such that each risk allele multiplies a 
background risk of 0.2% by a factor of 2.2. The vast majority of unaffected individuals carry at least one allele; the orange 
bars show the expected number of individuals without any risk alleles. The right-hand panel shows the same figure on 
the logarithmic scale, emphasizing how relative risk increases with the number of variants carried. Note that the measured 
per-allele GRR across the population in the presence of 100 other alleles is ~1.15, which is much smaller than the 2.2‑fold 
multiplicative risk due to a single variant. For higher risks (say, for example,  fivefold) and 100 alleles, the frequencies must 
be very low (~0.1%) for a disease prevalence of 1%, and affected individuals will only carry one or two risk alleles.

Ciliopathies
A class of diseases due to 
disruption of the cilium,  
a cellular organelle.

Linkage disequilibrium
(LD). Nonrandom association 
between genotypes, generally 
discussed in relation to loci 
that are closely located on a 
chromosome: for example, 
within a gene.

Haplotype
A set of alleles that commonly 
segregate together and are 
defined as regions of extended 
linkage disequilibrium, which in 
humans is often up to 100 kb 
in length.

the hypothesis that rare single-nucleotide variants  
at the same loci are the major source of genetic variance9, 
but ongoing deep-sequencing studies will quantify such 
effects. In the case of the ciliopathies, there is evidence 
from functional assays that rare variants can both promote 
disease and modify its severity49. It is thus incontrovert-
ible that rare variants contribute to disease risk and that 
identification of such alleles is a powerful mode of genetic 
analysis. The question is whether they can account for  
more than a minor fraction of complex disease risk.

Synthetic associations may explain common variant 
effects. ‘Synthetic association’ describes the situation in 
which the association of a common variant with a dis-
ease is actually due to linkage disequilibrium (LD) between 
the common variant and several disease-promoting rare 
variants that happen to segregate on the same haplotype50.  
Thus, a common variant that is present in 20% of cases 
and that mathematically explains 1% of disease suscep-
tibility may actually simply report the activity of two or 
three rare variants that each substantially elevate risk in 
one or two percent of the cases. Until this year, rare vari-
ants have been excluded from the major whole-genome 
genotyping platforms, so there has been no way to docu-
ment their contribution systematically. Synthetic asso-
ciation is not expected to account for most of the missing 
heritability19,51, but this type of effect must always be 
considered as an explanation for apparent common 
variant effects52.

Arguments against the rare allele model
Analysis of GWAS data is not consistent with rare variant  
explanations. A major argument against rare variants  
as the predominant source of missing heritability comes 
from the analysis of the allele frequency distributions 
of GWAS data19. Considerations of LD using standard 
quantitative genetic theory19 strongly limit the number of 
rare variants and the range of their effect sizes that would 
be compatible with them making a large contribution to 
disease risk yet remaining undetected in GWASs (FIG. 3). 
Furthermore, analyses of the distribution of risk allele fre-
quencies across 8 traits argue that, if anything, MAFs are 
skewed to be >0.2, providing strong empirical evidence 
that rare alleles are not alone responsible53. Rare allele pro-
ponents point out that it is difficult to model the true distri-
bution of rare variants and that the under-representation  
of rare variants on genotyping arrays complicates the  
interpretation. No-one doubts that some fraction of  
the total risk for any complex disease is due to rare alleles, 
but these studies argue that it is not the majority.

Sibling recurrence rates are greater than would be 
expected by the postulated effect sizes of rare variants. 
Heritability of disease is often inferred from elevated sib-
ling recurrence rates relative to incidence in unrelated 
individuals. Intuitively, if a disease has a prevalence of 1% 
in the general population, but 50% of siblings are affected, 
then the odds are elevated 50‑fold in the family, whereas a 
single segregating rare variant with a fivefold effect would 
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Box 2 | Broad sense heritability models

Phenotypic variance is traditionally decomposed into genetic and environmental 
components, and heritability is defined as the ratio of the genetic to the total 
phenotypic variance in a population8. The genetic component of phenotypic variance 
can be further decomposed into additive, dominance and interaction effects. The 
additive component is the average effect of substituting one allele for the other, 
irrespective of whether dominance is present: namely, whether the heterozygotes are 
closer in phenotype to one class of homozygote.
‘Broad sense heritability’ refers to the genetic effect that includes non-additive 

components, such as genotype-by-genotype (G×G) interactions, also known as epistasis, 
genotype-by-environment (G×E) interactions and epigenetics. Epigenetics refers to the 
impact of chromatin modification on the effect of a genotype through DNA methylation, 
alteration of the histone code and, some would argue, microRNA expression.
Genome-wide association studies (GWASs) are not generally powered to detect 

epistasis or G×E interactions121, and they are not designed to detect epigenetic 
influences122 (although recent sampling designs to detect parent-of-origin associations 
do provide evidence for them23). There are two major obstacles to detecting epistasis: 
very large samples are required to find sufficient individuals of each genotype 
combination to measure small effects accurately, and the number of comparisons scales 
exponentially with the number of interactions, so the testing burden is enormous. 
Additionally, epistatic effects are generally thought to probably be small relative to 
main effects, and the GWAS literature provides few examples of departure from 
additivity. Similarly, there is as of yet little evidence for environmental modification of 
genotype effects: a recent example relating to the protective effect of coffee 
consumption on Parkinson’s disease risk provides an exception108. One of the difficulties 
may be that the environment is difficult to define and to measure, and it may be unique 
individual exposures that are more important than exposures that are shared by 
thousands of people.
A particular class of genetic interaction that has yet to attract full attention is 

deleterious intergenic compound heterozygosity: namely, interactions between 
multiple rare variants that lead to disease. Whether and how often such interactions 
extend to heterozygous combinations of alleles has considerable implications for the 
potential of broad sense heritability to be a major component of disease susceptibility. 
If hundreds of mutations that are each at a frequency of <1% all affect a particular 
disease, then many more people will be doubly or triply heterozygous for various 
combinations than are homozygous for any one variant. It is not known how often 
heterozygotes that do not individually associate with disease would be deleterious in 
combination. Synthetic genetic interaction screens in yeast123,124 have demonstrated 
that thousands of combinations of individually viable mutations can jointly be lethal, 
and similar examples have been documented in Drosophila melanogaster and 
Caenorhabditis elegans125,126.

Mutation–selection balance
An evolutionary model that 
accounts for the maintenance 
of genetic variation as a 
balance between mutation 
generating variance and 
purifying selection removing it.

only be expected to result in disease for 5% of carrier 
individuals. Sibling recurrence rates are generally much 
higher than can be attributed to rare variants with the 
postulated effect sizes17. If rare variants are contribut-
ing, then they do so in the context of many other genetic 
variants in the pedigrees, as shown by a recent analysis 
of schizophrenia genetics54. Under multiplicative models, 
diseases may cluster in families owing to segregation of 
multiple rare variants that happen to be brought together 
in the pedigree. Nevertheless, the rare allele model must 
not only explain association data in populations, but it 
must also fit demographic distributions of disease within 
and among families, and more theory is required to  
support the claim that they can do both55–57.

Rare variants do not obviously have additive effects. 
On the face of it, the widely documented additivity of 
genetic associations is inconsistent either with the dom-
inance of rare variant effects or with the assumption 
that they interact multiplicatively within individuals to 

influence disease. However, it turns out that rare vari-
ants can easily induce apparently additive effects statis-
tically, because the homozygotes for the tagging variant 
are twice as likely as the heterozygotes to carry the rare 
variant. Multiplicative interactions between rare vari-
ants are additive on the logarithmic scale but cannot be  
measured in GWASs because of low power. It will  
be important to establish mechanistically whether com-
binations of two or more such mutations increase risk 
in a linear or synergistic manner58,59. Compound het-
erozygosity for two different rare variants at one locus 
is well documented in diseases such as cystic fibrosis, 
haemochromatosis and sickle cell syndromes; extension 
of the concept to include intergenic multiple heterozy-
gosity could represent a large source of genetic variance 
that is almost impossible to detect with current methods.

Epidemiological transitions cannot be attributed to 
rare variants. The fourth argument against rare vari-
ant effects is a demographic one — namely, the chang-
ing prevalence of so many chronic diseases in a span of  
just two or three generations and the known impact  
of environmental variables on risk. For example, diabe-
tes and heart disease have greatly increased in incidence 
in India and China in the past 10 years60,61: an epide-
miological transition that at best implies a change in 
penetrance of genetic effects that are attributable to any 
class of variant, whether rare or common, in the con-
temporary environment. Schizophrenia, a disease with a 
very high heritability (as inferred from twin studies) and 
for which very few replicated hits have been identified 
by GWASs, despite extensive scans, nevertheless shows 
such demographic influences as whether the parents 
live in rural or urban areas (disease rates are elevated in 
children born after migration to cities)62. Paternal age 
effects on psychological disease63 might be attributed to 
elevated mutation rates in sperm, but other hypotheses 
are equally compatible with the data, and maternal age 
effects operate in the opposite direction, as younger 
mothers have higher likelihoods of having affected chil-
dren64. In other words, rare variants alone cannot explain 
the demographic distribution of disease incidence.

GWAS associations are consistent across populations. 
An empirical argument against pervasive rare variant 
effects is that common variants are often consistent across 
populations — such as between Caucasians and Asians 
— despite differences in allele frequencies65,66. If rare vari-
ants are recently derived relative to the common variants, 
then they should be at different frequencies in Caucasians 
and Asians, and we would expect that they would only 
induce synthetic common variant associations in one of 
these populations or at least that they would not tend to 
have the same magnitude of effect. This would be espe-
cially true of common variants that differ in frequency 
between the two populations. Under a mutation–selection  
balance model, it may be possible for different novel 
rare variants to have effects in each population, and 
fine-mapping studies sometimes reveal subtle dif-
ferences in the patterns of association (for example, 
REFS 67,68). Nevertheless, the simplest interpretation of 
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Figure 3 | Inconsistency between genome-wide association study results and rare variant expectations.  
a | The frequency distribution of risk allele frequencies (shown in light red) for 414 common variant associations with 17 
diseases is only slightly skewed towards lower-frequency variants. By contrast, simulations — in this case, assuming up 
to nine rare causal variants inducing the common variant association with SNPs at the same frequency as observed on 
common genotyping platforms (light green bars) — result in a marked left-skew with a peak for common variants 
whose frequency is less than 10%. (The skew is even stronger if only a single causal variant is responsible.) The observed 
data are thus not immediately consistent with the rare variant model. b | Part of the problem with synthetic associations 
is that they would explain too much heritability if they were pervasively responsible for common variant effects. This is 
due to the relationship between allele frequency, maximum possible linkage disequilibrium (LD) and the amount of 
variance explained19. The plot shows the expected odds ratio due to a rare variant of the indicated frequency (from 
0.5% to 2%) if it increases the odds ratio at a common SNP (with which it is in maximum possible LD) by 1.1‑fold. 
Intermediate effect sizes (2 < odds ratio < 5) require combined causal variant frequencies in excess of 1%. As the 
number of rare variants increases, the likelihood that they are in high LD with the common variant also drops, further 
reducing the probability that they can explain observed common variant association. Suppose that a disease has a 
prevalence of 1%. Then ten causal variants that are each at a frequency of 1% would result in 20% of people carrying a 
causal variant. If the penetrance is 5%, then 1% of people would have the disease, and these 10 variants would 
completely explain the genetic risk. Similarly, if 100 causal variants were each at 0.1% frequency, it would take ~10 such 
variants to induce each single common variant association with an observed odds ratio of 1.1. If large genome-wide 
association studies (GWASs) detect dozens of such common loci, and they were actually due to LD with rare variants, 
then the heritability would be explained several times over. Alternatively, if hundreds of very rare causal variants are not 
in LD with common variants, we do not expect to see significant GWAS associations. Data taken from REF. 19.

Decanalization
The notion that genetic 
systems evolved to be buffered 
but that large effect mutations 
or environmental change  
can overcome this buffering, 
thereby increasing the  
genetic variance.

Genomic selection
The use of genetic markers that 
are spread throughout the 
genome to select individuals 
with desired predicted 
breeding values.

Predicted breeding value
The estimated phenotype of 
progeny of individuals that 
have a particular genotype.

the consistency of common variant effects is that they 
are actually due to the common variants themselves or 
to unobserved common variants in high LD across all 
populations.

Arguments in favour of the infinitesimal model
The infinitesimal model underpins standard quantita-
tive genetic theory. Just as evolutionary theory provides 
a strong argument in favour of rare variants, standard 
quantitative genetic theory provides ample support for 
the infinitesimal model7,8. Whatever the causes of the 
maintenance of genetic variance may be, the consistent 
observation is that all diseases have moderately high her-
itability, and so purifying selection has been unable to 
purge the population of disease-promoting variants2. At 
face value, the existence of dozens of susceptibility alleles 
for metabolic and immunological diseases with effect 
sizes that are just not detected for psychological diseases 
implies a difference in genetic architecture between the 
two categories of conditions. This may imply different 
intensities of purifying selection, although other mod-
els, including decanalization69, are also compatible with 
the data. Because most of the genetic variance remains 
unexplained, it is a priori just as likely to exist in the form 
of rare or common alleles, and the fact is that there is 

nothing about GWAS findings that is inconsistent with 
the infinitesimal model of many variants of very small 
effect across the full allele frequency spectrum. This 
model has served applied quantitative geneticists as well 
as evolutionary biologists for close to a century and, in a 
sense, it can be regarded as the null model that needs to 
be disproved before it is abandoned.

Common variants collectively capture the majority of the 
genetic variance in GWASs. Direct empirical support for 
the infinitesimal model comes from genomic variance 
analyses70,71. Animal breeders have been using genomic 
selection methods with great success for the past decade72, 
basing their selection of sires and dams on the overall pre-
dicted breeding value, which is determined from the full 
set of genomic markers that capture variation distributed 
throughout the genome. Similarly, in humans, by taking 
all nominally significant SNPs rather than just the sig-
nificant ones from GWASs, it is possible to capture much 
more of the genetic variance than is explained by the 
highly significant loci73,74 (BOX 3). A multivariate version 
of this approach, which is implemented by regression of 
phenotypic similarity on genetic relatedness, also implies 
that common variants capture most of the genetic vari-
ants71. Furthermore, partitioning of the genetic variance 
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Threshold-dependent 
models
A model that postulates that 
individuals who exceed some 
threshold value of a continuous 
physiological characteristic 
(called ‘liability’) have or are  
at high risk for disease.

Endophenotypes
Intermediate physiological or 
psychological traits, such as 
metabolite and transcript 
abundance or a specific 
neuronal function.

Expression quantitative 
trait locus analysis
(eQTL analysis). Studies of the 
association between genotypes 
and gene expression (transcript 
abundance), leading to the 
detection of eQTLs.

on a chromosome-by-chromosome basis for a diverse 
set of traits shows that the proportion of variance 
explained is consistently proportional to chromosome 
length75,76. Variance is distributed along all of the chro-
mosomes and is therefore attributable to hundreds of 
loci. Because common variants are used for the parti-
tioning, it is most parsimonious to conclude that they 
are responsible, and simulations of rare variants that are  
so distributed capture much less of the variance.

Variation in endophenotypes is almost certainly due to 
common variants. Threshold-dependent models77 postu-
late that disease is more likely to arise in individuals who 
have extreme values of underlying endophenotypes78,79.  
In many cases, causal common variants that are asso-
ciated with a continuous endophenotype have been 
associated with disease (for example, REFS 80–82), and 
in some cases these have been confirmed by in vitro 
biochemical assays for structural and regulatory effects 
(for example, REFS 83–85). Expression quantitative trait 
locus analysis (eQTL analysis) shows that gene expres-
sion and splicing are heavily influenced by common 

variants, possibly for most transcripts86–88. To ignore 
these data is to deny that such transcriptional variation 
and metabolic variation are relevant to disease. It is of 
course possible that disease represents a discrete phase 
shift (for example, in gene expression profiles) that takes 
the organism outside the normal range of continuous 
variation. Thus, tumour samples have discrete transcrip-
tome profile differences89,90, and it is not obvious that the 
normal variability is relevant to pathology. Similarly, at 
least some cortex samples from autistic brains converge 
on a common transcriptional profile91. By contrast, vari-
ous blood disorders have been shown to correlate with 
extreme values for the major vectors of modules of gene 
expression92. More research on the relationship between 
endophenotypes and disease is needed, but most observ-
ers would consider it to be implausible that natural vari-
ation in physiology is irrelevant to variation in disease 
susceptibility and would maintain that common vari-
ants are most likely to be responsible for continuously  
distributed physiological variation.

Model organism research supports common variant  
contributions to complex phenotypes. In model organism 
research, both pedigree analyses and genetic crosses in 
which linkage mapping is used to localize QTLs almost 
always lead to the identification of multiple variants influ-
encing the quantitative trait of interest20. This is as true of 
threshold-dependent characters and cryptic variation93 as it 
is of continuous variation. Furthermore, the phenomenon 
of transgressive segregation in mapping populations of mice 
and flies established from eight founder strains provides 
strong empirical support for the existence of common 
polygenes94–96. The overwhelming evidence from classical 
quantitative genetics is that traits are regulated by many 
loci with a wide range of effect sizes. A counterargument 
is that in any cross or pedigree, there is no information 
about the frequency of contributing QTL alleles in the 
population, so some fraction of the mapped factors are 
likely to be rare variants — and if the parents were selected 
from a base population, possibly most are unusual rare 
variants, including mutations that were unconsciously 
selected in the laboratory. In the past year, resequenc-
ing of evolved outbred populations of Drosophila mela-
nogaster has provided strong support for selection on 
thousands of variants being responsible for changes in the  
highly complex traits of body size and fecundity97,98.

GWASs have successfully identified thousands of common 
variants99. Although there has been a very public focus 
on the failure of GWASs to find the missing heritability5,6, 
the simplest explanation for this is that the expectations 
were based on unrealistic prior assumptions of effect 
sizes. After it has been accepted that most alleles are asso-
ciated with relative risks <1.2, it becomes clear that hun-
dreds of thousands of individuals are required to identify 
more than a few dozen loci than to explain >20% of the 
variance. In fact, sample sizes can be extrapolated from 
the range of variant effects in initial discovery samples12. 
In the case of human height, the GIANT Consortium 
confirmed the inferences from 30,000 individuals100 when 
they increased the study sample to 180,000 individuals, 

Box 3 | Association tests in unrelated individuals

Genome-wide association studies (GWASs) generally start with comprehensive 
SNP-wise evaluation of the significance of the correlation between the genotype and 
the trait. For the most part, it is assumed that genotypic effects are ordered: namely, 
that the heterozygotes will have intermediate risk or trait values to homozygotes.
As millions of tests are performed, the results must be adjusted to control for false 

positives (usually using the conservative Bonferroni correction127), resulting in the 
standard GWAS threshold of 5 × 10–8. The significance of the test statistic is then plotted 
against SNP position along the chromosome (FIG. 1). For the most part, genotyped SNPs 
are thought to ‘tag’ the actual causal variant, so efforts are made to estimate (or 
‘impute’) as many genotypes in the region of a GWAS hit as possible128, increasing the 
chances that the common causal variant is represented or that the effects of less 
common ones are better captured. Owing to improved methods for imputation, most 
minor alleles down to 5% frequency can now be inferred with a high accuracy if the 
reference panel is appropriately matched for population structure129. Rare variants, 
particularly those at a frequency of < 1%, need to be directly sequenced.
Although association tests are reasonably powered for detecting common variants 

that have a genotypic relative risk of 1.2 or more in meta-analyses that include tens of 
thousands of individuals, detecting the effects of single rare variant remains 
problematic. Various score statistics are being developed that evaluate pools of rare 
variants in a part of a gene, or in a group of related genes, for over-representation in 
cases or controls119. These can be conditioned on prior estimation of the likelihood that 
a nucleotide substitution is deleterious. Functional tests are increasingly used to 
validate candidate causal polymorphisms.
Two additional strategies have been proposed to overcome the very high 

false-negative rate in GWASs that results from adopting the strict GWAS significance 
threshold. One strategy is to generate a weighted sum of the contributions of all 
variants beyond nominal statistical thresholds that are observed in a discovery sample 
and then to ask whether it is predictive of risk or phenotype in a second sample53. In 
several instances in which a SNP-wise GWAS has uncovered few loci, this approach has 
provided clear evidence for polygenic risk. However, it must be recognized that the 
high variance in estimation of effects results in noisy scores that, although highly 
significant in the replication sample, only capture over an order of magnitude less of 
the variance and are far from predictive. See REF. 74 for another related strategy. The 
second approach is to evaluate all SNPs simultaneously by multiple regression or to use 
the elegant equivalent of regressing the similarity between individuals on their overall 
genetic similarity71; this gives rise to an estimate of the genetic variance explained by 
all SNPs. Partitioning of the genome into chromosome-sized, or smaller, units75 allows for 
estimation of the contribution of each region of the genome to the genotypic variance.
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Cryptic variation
Genetic variation with effects 
that are only seen under 
perturbed conditions, such as 
in the presence a particular 
mutation or environmental 
exposure.

Transgressive segregation
The appearance of traits  
in the offspring that are more 
extreme than those observed 
in either parent.

Beavis effect
Also called the ‘winner’s curse’, 
this is the observation that the 
effect sizes estimated in a 
discovery sample tend to be 
overestimates of the true effect 
sizes, as they typically receive 
the benefit of sampling 
variance in the same direction 
as the true effect in order to 
exceed strict genome-wide 
significance levels.

which led to the identification of an additional 180 or 
so loci14. Simply put, the data are generally consistent 
with the infinitesimal model to a first approximation, 
even where variants are yet to be identified. It is the ver-
sion of the CDCV model involving common variants  
of moderate effect that needs to be discarded.

Arguments against the infinitesimal model
The QTL paradox. Where are all of the QTLs that are so 
consistently detected in pedigrees and in experimental 
crosses when we transition to outbred populations? Why 
is it that 10 loci can each explain 50% of the genetic vari-
ance and most of the heritability in a cross between two 
strains, but in no cases have GWASs found more than one 
locus with an effect size that large? Two explanations can 
be forwarded immediately: first, the QTLs are actually 
rare variants that only contribute in that cross, and so 
are precisely the rare variants predicted by the rare allele 
theory; or second, each cross captures just a small frac-
tion of the genetic variance in a population, so QTLs with 
large effects in one cross will be expected to be diluted in 
their contribution relative to other QTLs when measured 
in the entire population. Also, in many cases, the effect 
size estimated in the cross will be an overestimate owing 
to the Beavis effect (or ‘winner’s curse’)101,102, whereas in 
an unknown proportion of cases, QTLs will turn out to 
be due to multiple linked variants that coarse mapping 
fails to resolve into individual SNPs103. Nevertheless, there 
remains a general paradox that GWASs have found so few 
variants of moderate effect.

Absence of blending inheritance. A more pointed argu-
ment against the infinitesimal nature of effects is that 
it predicts less granularity in the distribution of risk 
and phenotypic trait variation than is often observed, 
although I am not aware of a quantitative assessment of 
this claim. In the infinitesimal model, disease risk ought 
to blend smoothly when unrelated people have children. 
The larger the number of alleles that affect a trait, the 
lower the among-individual variance should be under 
random mating as most individuals will share similar 
numbers of risk alleles. However, disease incidence and 
complex phenotypes generally cluster in families. A pos-
sible resolution of this conundrum is that the observed 
clustering of disease in families could be explained 
by stochastic variation in the number of susceptibil-
ity alleles: if two people happen to have more than the 
average number of small variants, so will their children. 
Furthermore, homophily — which is the tendency for 
couples to pair on the basis of shared attributes (includ-
ing subclinical disease indicators) — will tend to enrich 
for variants that promote those attributes104. Granularity 
of traits is difficult to document, but facial features pro-
vide a good example of a suite of traits that do not sim-
ply follow either blending or Mendelian inheritance105. 
Certain features, such as the shape of the nose, location 
of the cheek bones or curve of the lips, run strongly in 
families, appearing in distant relatives in patterns that 
are suggestive of large genetic effects. If such clustering 
is also true of endophenotypes, then the infinitesimal 
model will be incomplete.

Demographic phenomena suggest more than a simple 
common-variant model. As with the rare allele model, 
infinitesimal effects are also not consistent with a wide 
range of demographic effects that are indicative of G×E 
interactions and complex genetic interactions. Prime 
among these are: the pervasiveness of differences in dis-
ease risk between geographic areas that are not obviously 
explained by genetic differentiation; increasing burden 
of complex disease in the span of one or two generations 
(both of these phenomena are obvious on browsing the 
US Centers for Disease Control and Prevention (CDC) 
website for incidence data); and conditioning of the risk 
for one disease on another disease in the same individ-
ual106,107. This does not counter the existence of thou-
sands of small-effect loci that affect each trait or disease 
risk profile, but it suggests that the narrow sense genetic 
effects alone are unlikely to be sufficient explanation. 
It must be noted that there is very little evidence from 
GWASs for either G×E or G×G interactions108, but such 
effects could be mild at the level of individual associations  
and could be below the power of detection.

Very few common variants for disease have been func-
tionally validated. A technical argument against all 
common variant models is that association alone is 
insufficient evidence of function: correlation is not cau-
sation. Very few of the thousands of significant GWAS 
associations have been shown using molecular genetics, 
biochemistry or biophysics to be the actual risk vari-
ant38,109. In this context, prudence suggests an open mind 
in each individual case as to whether the variant, another 
common variant in LD or a series of less common vari-
ants of large effect that are synthetically associated may 
be responsible. The case of protection against anaemia 
in chronic hepatitis C — where the initial GWAS clearly 
captured two less common causal coding variants at the 
inosine triphosphate pyrophosphatase (ITPA) locus — is 
a good example110.

What accounts for the missing heritability? Finally, there 
is the argument that there truly is missing heritability in 
GWASs. It is rarely appreciated that GWASs do not actu-
ally measure heritability (that is, the ratio of genetic to 
total phenotypic variance in a population), but rather 
they just measure the genetic variance. Missing heritabil-
ity is inferred with respect to heritability estimates that 
generally derive from family studies, where, ironically, 
direct estimates of the genetic contribution are lacking. 
Consequently, it is difficult to estimate actually how much 
of the variance GWAS-captured variants should explain 
in outbred populations. However, in the case of height, 
where heritability is as high as 80%, over 50% of the phe-
notype can be attributed to common variants using the 
mixed linear modelling approach71, and after adjustment 
for allele frequency skews and incomplete LD, essen-
tially the entire genetic contribution has been ascribed 
to genotypic variation. Yet the same methods applied to 
BMI do not capture much more than half of the expected 
genotypic variance, and it is not clear whether they are as 
efficient for schizophrenia, arthritis or intelligence75,76. In 
these cases, it can be argued that the infinitesimal model 

R E V I E W S

142 | FEBRUARY 2012 | VOLUME 13	  www.nature.com/reviews/genetics

© 2012 Macmillan Publishers Limited. All rights reserved

http://www.cdc.gov


Nature Reviews | Genetics

Glucose-1-P

Glucose-6-P

Fructose-6-P

Fructose-1,6-2P

Glyceraldehyde-3P

Glycerate-1,3-2P

Glycerate-3P
Glycerate-2,3-2P

Glycerate-2P

Pentose
phosphate
pathway

Glucose-1-P

Glucose-6-P

Fructose-6-P

Fructose-1,6-2P

Glyceraldehyde-3P

Glycerate-1,3-2P

Glycerate-3P
Glycerate-2,3-2P

Glycerate-2P

Health

Disease
Fl

ux

Enzyme activity

Pentose
phosphate
pathway

Figure 4 | Joint effects of rare and common variants. A straightforward reconciliation of the effects of rare and 
common variants supposes that pervasive common variation influences the expression and activity of genes in pathways, 
establishing the background liability to disease that is then further modified by rare variants with larger effects. In this 
hypothetical example of central metabolism, standing variation results in some individuals having lower flux than others 
(left versus right; coloured boxes imply enzyme activity differences from low activity (red shading) to high activity (green 
shading)), but according to standard biochemical theory130, systems evolve such that most variation is accommodated 
within the healthy range. The impact of a rare variant that knocks out one copy of the enzyme indicated by the cross is 
conditional on this liability, pushing the individual on the left beyond the disease threshold, whereas the individual on 
the right can accommodate the mutation, given higher activity elsewhere in glycolysis.

does not capture the full range of genetic variance and 
that there is a true missing heritability problem that will 
need to be addressed with rare alleles and broad sense  
heritability components that were introduced in BOX 2.

Conclusions
The true debate over the source of genetic variation for 
disease is not one of ‘is it caused by rare or common vari-
ants?’ or even of ‘how much does each class contribute?’ 
but rather ‘how do they work together?’111. An interest-
ing thought experiment is to ask whether a population 
of individuals who are only polymorphic for common 
variants differ in their common disease risk or, con-
versely, whether rare variants are sufficient to explain the 
observed distribution of risk in the absence of common 
variants. The result of both experiments is likely to be 
negative, but the challenge is to devise strategies to test 
the hypotheses.

Empirically, there is ample support for both class of 
effect. As of June 2011, the US National Human Genome 
Resource Institute (NHGRI) GWAS catalogue lists 1,449 
genome-wide significant associations with 237 traits and 
diseases spread across all chromosome except the Y chro-
mosome99. Some of these may be due to LD with rare 
variants, but parsimony suggests that most are common 

variant effects. MutDB112 contains a much larger num-
ber of rare coding variants that are either associated 
with disease or that are predicted to be damaging. As 
more individuals are sequenced, many of these appear 
in healthy controls, but it must be recognized that even 
large effect alleles are subject to background modifica-
tion and incomplete penetrance. Initial resequencing of 
genes that have been identified by GWASs113 has pro-
duced mixed results: only 1 of 63 genes in an initial screen 
for inflammatory bowel disease found evidence for rare 
variant effects (and these were protective114, but see also 
REF. 115), whereas a significant excess of rare coding vari-
ants was found in four genes for hypertriglyceridemia116. 
Considerable resolution of the burden of deleterious 
rare variants will no doubt emerge in the next few years 
as whole-exome and whole-genome sequencing ramps 
up117,118. Interpretation will be complicated by the natu-
ral tendency to under-report negative results, by difficult 
statistical issues119 and by the problem of how to define 
regulatory effects.

The typical resolution of the observation that dis-
ease is categorical (that is, people are either cases or 
controls) but genetic contributions are complex is that 
disease is generally a threshold-dependent response 
that is superimposed over a continuous liability120. 
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This interpretation actually provides a straightforward 
framework for integrating rare and common variant 
effects (FIG. 4). Liability is likely to be established by the 
additive and infinitesimal contributions of hundreds of 
polymorphisms, each regulating a series of biochemi-
cal traits that impinge on the phenotype: for example, 
metabolite abundance, gene expression and hormone 
levels. Disease arises either in individuals at the extremes 
of the liability scale who move beyond the threshold or 

in individuals close to the threshold who are pushed into 
adversity through environmental and behavioural agents 
or because they carry several rare variants. In this model, 
a rare variant can either increase or decrease function 
and whether or not it associates with disease will be 
conditional on the background liability. The notion that 
even rare variants have variable penetrance thus blurs 
the distinction between infinitesimal and major-effect 
models of disease susceptibility.
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