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Review
Glossary

Expression quantitative trait loci (eQTL): Term most commonly used to

describe a statistically significant genotype–gene expression level correlation.

Expression is detected by using microarrays or RNA-seq, and genotypes can be

collected at a high density (typical for association-based mapping) or lower

density (utilized in family- or model organism-based linkage or eQTL

mapping).

Genome-wide association studies (GWAS): GWAS use large case-control

cohorts of individual- or population-based samples with quantitative pheno-

typic data (such as height or lipid levels), which are characterized for genetic

variation at a high density, e.g. 500 000 to 1 000 000 genotypes collected across

the genome. The links between polymorphisms and disease risk or quantita-

tive traits are then observed by the point-wise assessment of genetic marker

alleles for enrichment among cases or among tails of distribution for

quantitative phenotypes.

Linkage disequilibrium (LD): The nonrandom association of alleles at different

loci. LD is usually the result of a close physical location and lack of

recombination between loci. One of the consequences of high LD in the

human genome is the presence of haplotype blocks consisting of large

numbers of polymorphic markers that can be grouped into a limited number of

haplotypes.

Next-generation sequencing (NGS): Techniques based on the amplification

and sequencing of short stretches of DNA in parallel for millions of individual

target molecules using randomly ordered arrays or the suspensions of sheared

target molecules.

Paired-end reads: NGS targets are generally short sheared DNA fragments that

can be sequenced from one or both ends of the fragment. The latter approach

allows the collection of physically linked, or paired-end reads, facilitating the

mapping and understanding of polynucleotide sequences beyond the read

length of a single NGS read.

RNA sequencing (RNA-seq): NGS application for RNA species present in a

sample. Typically, mRNA is isolated from a tissue of interest, converted into

cDNA and sheared into smaller fragments, millions of which can be sequenced

in parallel using one of the NGS technologies. Aligning these short fragments

to the genome can explain the sequence composition in mRNA, expression

level (based on the number of overlapping sequences to a specific gene) and
Common DNA variants alter the expression levels and
patterns of many human genes. Loci responsible for this
genetic control are known as expression quantitative
trait loci (eQTLs). The resulting variation of gene expres-
sion across individuals has been postulated to be a
determinant of phenotypic variation and susceptibility
to complex disease. In the past, the application of ex-
pression microarray and genetic variation data to study
populations enabled the rapid identification of eQTLs in
model organisms and humans. Now, a new technology
promises to revolutionize the field. Massively parallel
RNA sequencing (RNA-seq) provides unprecedented res-
olution, allowing us to accurately monitor not only the
expression output of each genomic locus but also recon-
struct and quantify alternatively spliced transcripts.
RNA-seq also provides new insights into the regulatory
mechanisms underlying eQTLs. Here, we discuss the
major advances introduced by RNA-seq and summarize
current progress towards understanding the role of
eQTLs in determining human phenotypic diversity.

Complex traits and common variants in humans:
noncoding DNA takes center stage
The majority of mutations underlying monogenic disease
traits alter protein structure. As a consequence of this
observation, protein-coding variants were the primary
candidates in the early search of susceptibility alleles for
multifactorial, complex disease traits [1]. However, the
first 5 years of genome-wide association studies (GWAS)
for complex disease have shown that if mapping had been
restricted to coding variants alone, only approximately 5%
of the currently validated disease associations would have
been discovered [2]. Thus, the dissection of the genetic
architecture of human disease is now focused on variants
residing outside of coding regions; that is variants that
potentially affect regulatory elements. A well-known ex-
ample, the lactase persistence phenotype in European
populations, was mapped 50 distal to LCT, a gene coding
for the lactase enzyme in the small intestine [3]. This
noncoding stretch of DNA within an intron of an adjacent
gene and with no known function was subsequently shown
to contain a distal enhancer specific to enterocytes produc-
ing lactase in the digestive track [4]. The replication of this
association in other ethnicities [5] confirmed the role of
nucleotide substitutions within this element in regulating
LCT expression and explaining population differences in
their abilities to digest milk sugar (lactose tolerance). The
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more widespread importance of noncoding or regulatory
DNA alterations in disease as implied by GWAS now calls
for approaches to characterize such a variation and its
links to disease phenotypes.

Genome-wide identification of loci controlling gene
expression
The parallel assessment of thousands of transcripts using
DNA microarrays is clearly one of the revolutionary tech-
nologies that launched the ‘genomic’ era. The genome-
wide association of genetic and transcriptome variations
was first achieved in yeast [6], where expression traits of
the progeny were shown to be largely correlated with the
genetic contribution of parental genotypes. The excite-
ment of observing thousands of quantitative traits, or
eQTLs, in a technically straightforward experiment quick-
ly spread to studies inmore complex genomes [7] including
the human genome [8]. Several eQTL studies in humans
gene structure (based on splice junctions).
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Box 1. The study of eQTL in humans

In humans, identifying eQTLs is usually carried out by analyzing the

linkage or association [8,11,42,82] between gene expression levels

and genetic markers in cis (within a preselected interval close to the

gene) or in trans (distant or located on different chromosomes). In

the genomic era, many screens for eQTLs have been carried out by

measuring the expression levels of a large number of genes and

testing them for linkage (in families) or association (in populations)

with a large number of genetic markers. Although such approaches

have enjoyed some success, as in any whole-genome analysis false

positive results can be introduced due to multiple testing problems

– for example, when testing tens of thousands of genes against

millions of SNP markers – and systematic errors related to the

specific genomic technologies used. Hence, the choice of a most

accurate gene expression assay is a crucial component of eQTL

surveys. A recent suggestion is that RNA-seq can provide the more

accurate assessment of expression, and extending this technology

to studies of population variation could potentially provide refined

information at the isoform, transcript and allelic expression levels.

With this approach even minute changes in the levels of the

expression of genes are detectable, but detecting variations in

relative isoform abundance or allelic expression can need substan-

tially higher coverage than for observing population variation in full

transcript expression [25,26,59]. In RNA-seq, establishing optimal

correction for known and hidden technical biases in experiments

[26] as well as modeling for isoform structures based on short-read

data [25] are crucial. However, a generalizable approach has yet to

emerge given the rapid progression of NGS technology in terms of

throughput and read length, which are both influencing the choice

of raw data processing.

Box 2. A comparison of microarray and RNA-seq

approaches

The genome-wide profiling of gene expression has traditionally

been carried out using microarrays. The most common 30 targeted

microarrays contained probes predominantly located in the 30 UTRs

of genes. This design, implemented in popular Affymetrix and

Illumina expression microarrays, attempted to target areas common

to most or all isoforms produced by a genomic locus to represent

the total mRNA output of a locus, regardless of how the transcript

was spliced and polyadenylated. A more comprehensive design, as

used by the Affymetrix Exon Array, targeted probes to individual

exons. Combining the exons into transcriptional units still allowed

monitoring expression at a whole ‘gene’ level, whereas analyzing

exons individually identified changes at the level of distinct,

alternatively spliced isoforms. Several groups made inroads into

the genomic analysis of splicing using exon arrays [21,83]; however,

the analysis was complicated and the results noisy due to the

limitations imposed by small probe design regions (exons). A

higher level of resolution at the splicing level could be obtained with

arrays composed of both exon and junction-targeted probes [84,85].

Such approaches were sometimes implemented in custom-de-

signed platforms, but required a priori knowledge of the isoforms

to be targeted, and, largely because of elevated costs, complexity of

design and analysis, junction microarrays have not achieved

mainstream popularity. RNA-seq combines all the advantages of

the different array designs mentioned above, but overcomes many

of the shortcomings [35]. Large numbers, typically tens to hundreds

of millions of random sequence tags, are produced and can be used

to monitor both the expression and isoform structure of each gene

(Figure 1). No selection of target regions is needed prior to the

experiment because the random sequence tags can be mapped to

all known annotated transcripts – to exons and across exon–exon

junctions. The sequence data can also be used to identify yet

unknown isoforms and new genes [86]. False positive results are

generally a consequence of sequence alignment artifacts, particu-

larly in the case of gene families and repetitive sequences. However,

many of the artifacts can be removed after carrying out the

experiment using rapidly improving bioinformatic approaches [86]

– a strategy that was not possible for analog, hybridization-based

techniques.
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have subsequently been conducted using family-based sam-
ples of cultured or purified cells [9–12] (Box 1), as well as
population-based samples of cultured cells [13–15], purified
cell populations [16,17] or complex tissues [18–20]. Simi-
larly, the microarray platforms used in these studies have
evolved from arrays querying only well-known transcripts
[9] to ones assessing all known and predicted exons [21].
Despite diverse study designs and expression microarray
platforms, some common observations have emerged. First,
local genetic associations, which are assumed to act directly
or in cis on target gene regulation, have a strong influence
and can often be observed across studies and validated by
independent methods. Second, distal genetic associations
acting in trans have more subtle effects, appear more
numerous in the genome and are considerably more diffi-
cult to validate [10,22]. Consequently, trans-eQTLs might
not be replicable across studies and their validity is a much
more contentious issue compared with cis-eQTLs. Further-
more, although studies in mice have established the bio-
logical reproducibility of eQTL mapping on the same
microarray platform [23], similar studies have not been
performed in human tissues or across microarray plat-
forms. Therefore, despite reports of thousands of genetic
associations contributing to population variation in gene
expression, there is currently no consensus as to what is the
optimal approach to explore gene expression variation
comprehensively, or a set of most robust and replicable
eQTLs in humans. Some of these issues could be solved by
applying a yet undetermined ‘gold standard’ methodology
to transcriptomic data, which would avoid biases related to
the sparse sampling of complex gene structures [21], be
resistant to spurious signals due to related gene sequences
or genetic variants [24] and have the ability to measure
transcripts not known in the public domain.
RNA-seq could provide a platform-independent and
objective standard compared with the microarray ap-
proach (Box 2). Recent RNA-seq-based eQTL studies have
both confirmed and further clarified previous microarray
results [25,26]. The first comparisons of cis-eQTL detection
by RNA-seq compared with microarray-based approaches
are promising; when disagreeing results between two
approaches have been detected, the RNA-seq data have
more frequently matched the allelic biases observed by the
Sanger sequencing-based validation method [27]. Impor-
tantly, sequencing technologies are advancing so rapidly
that even the most recently published RNA-seq studies
have used already outdated platforms, with low sequenc-
ing coverage and short reads. Technologies available today
allow much higher coverage and longer reads at a reduced
cost. In parallel with these incremental improvements, the
introduction of ‘third generation sequencing’ [28] promises
to allow simple sample preparation (without the need for
amplification) and longer read lengths (thousands of bas-
es), resulting in a more direct assessment of RNA abun-
dance and mRNA isoforms.

In the following sections, we describe in detail the major
advances brought about by RNA-seq that have allowed us
to identify the eQTLs responsible for variations at the
transcript, isoform and allele levels. We also outline the
73



[()TD$FIG]

Figure 1. The use of RNA-seq to profile gene expression. (a) A gene-level view illustrating sequencing reads (light gray track) mapped to the genome (dark gray line). The

height of the upper track represents the number of sequences covering any given region. Most of the reads will map to exons (blue rectangles), and averaging the number

of reads over all exons provides an estimate of the total transcriptional output of a given locus. (b) An exon-level view showing individual reads (black lines) mapping to

exons (exon body reads) and across junctions (junction reads, with gaps in the alignment indicated by dotted lines). A combination of exonic and junction reads can be used

to estimate the frequency of alternative splicing. In this example, the middle exon appears to be alternatively spliced and included in one out of three transcripts. (c) At

heterozygous positions, reads containing each allele of a SNP can be used to detect allelic imbalance. Here, the G allele appears to be expressed at a level twice as high as

that of the T allele.
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remaining hurdles that must be overcome to connect the
increased understanding of eQTLs with the phenotypic
traits that they potentially influence.

Investigating eQTLs affecting alternative splicing using
RNA-seq
The human genome contains surprisingly few, in fact fewer
than 21 000, distinct protein-coding genomic loci [29]. This
number is only slightly higher than the number of genes
present inmuch less complexorganisms, suchas the fruit fly
and thenematode,and is lower thanthatofmostplants.One
of the mechanisms for creating complexity using a limited
number of loci is through alternative pre-mRNA splicing
(AS) [30], which is the variety of ways exons within a gene
are joined together to formmRNAmolecules. Recent studies
have estimated that the vast majority of mammalian genes
(more than 95%) produce more than one isoform [31]. Such
isoforms might be produced via the alternative initiation of
transcription, usage of alternative polyadenylation sites or
alternative splicing of internal exons.

Variation in pre-mRNA splicing is known to be respon-
sible for introducing phenotypic diversity within human
populations. It is estimated that 10% of all mutations
involved in human Mendelian disorders affect splicing
[32]. Even subtle differences in the ratio of AS isoforms
might lead to visible phenotypic effects, as illustrated by
splicing mutations causing frontotemporal dementia [33].
Hence, it is important to identify genetic variants influ-
encing the quantitative expression of individual alterna-
tively spliced isoforms. Such variants have been referred to
74
as isoform eQTLs or sQTLs (where the s stands for splic-
ing).

RNA-seq can be used to profile individual alternatively
spliced isoforms of a gene. The most useful feature of RNA-
seq data is the presence of sequence reads that map to
splice junctions. Mutually exclusive splice junctions (i.e.
those joining alternatively spliced exons) can then be quan-
tified to estimate the relative abundance of alternative
isoforms. Novel spliced isoforms can be detected by joining
together all annotated exons, and novel exons can be
discovered by the use of de novo spliced alignment algo-
rithms [34]. Several approaches already exist that combine
junction- and exon-mapping reads (Figure 1) to fully opti-
mize the reconstruction and quantification of individual
isoforms [26,35–37]. Current sequencing reads, which are
commonly shorter than 100 nucleotides, allow only the
monitoring of a single splice junction at a time. However,
as the read lengths increase, profiling splice variants at a
single molecule level, which will allow the detection of
combinatorial splicing patterns, will become possible.

In previous microarray approaches to the genome-wide
analysis of AS, the nature of each alternative event had to
be deduced from the hybridization levels of individual
probes [38] and RT-PCR reactions had to be designed to
verify the expected products, which in turn had to be
quantified and sequenced [39]. RNA-seq data provide
quantification and sequence information in one fast and
convenient, albeit still expensive, step. False positive
results still occur – most often because of sequence align-
ment artifacts – however, at a rate much lower than in
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microarray studies. A recent study benchmarking the
efficacy of RNA-seq in detecting AS obtained a greater
than 85% validation rate of alternative events using RT-
PCR [35].

Microarrays, along with RT-PCR validation, have been
previously used to detect dozens of genetically regulated
alternatively spliced isoforms [21,40]. RNA-seq data raise
this number into the hundreds, confirming that the genetic
regulation of pre-mRNA splicing is indeed prevalent in
human populations. In addition, the new data show that
some previous microarray results confounded splicing and
whole-transcript changes, particularly in experiments
where microarrays targeting specific transcript regions
were used [26]. Hence, by clearly identifying the precise
location of isoform level changes, RNA-seq will also facili-
tate the identification of nearby causative polymorphisms.

Investigating eQTLs affecting transcription using RNA-
seq
The regulation of gene expression has been postulated to
be achieved at three levels: transcriptional, cotranscrip-
tional and post-transcriptional [41]. Transcription levels
might be affected by modifying the efficiency of initiation,
as well as the speed of transcription. Cotranscriptional
regulation refers to mRNA processing, such as splicing, 50

capping or polyadenylation. Post-transcriptional regula-
tion refers to processes affecting the mRNA molecule after
the transcript has been completed and has fully dissociated
from the DNA strand; these processes include mRNA
stability, antisense RNA-mediated degradation and non-
sense-mediated decay. It should be noted that all these
processes are to some extent coupled and interdependent;
however, the regulatory variants underlying eQTLs will
most likely affect only one of the processes at a time.
Understanding the regulatory mechanisms underlying
eQTLs and being able to identify the precise regulatory
variants is essential if we are to use eQTLs as diagnostic
markers of disease or to design therapeutic approaches
targeting the causative polymorphisms.

Very few regulatory single nucleotide polymorphisms
(SNPs) discovered by eQTL mapping have been experi-
mentally validated, and there is some controversy as to
what their predominant regulatory mechanisms are. Ini-
tially, it was assumed that regulatory SNPs act by affect-
ing transcription factor binding sites. This hypothesis was
supported by early results obtained for the chitinase 3-like
2 gene (CHI3L2) [42], where a SNP in the promoter was
implicated in recruiting variable amounts of RNA poly-
merase, implying regulation at the level of transcription.
However, because of the ubiquitous presence of extended
regulatory haplotypes – comprised of many SNPs often in
perfect linkage disequilibrium that are all associated with
the expression level of a given gene – and difficulty in
demonstrating causation, this result has not yet been
generalized. More recently, an alternative hypothesis to
transcriptional regulation was suggested, proposing that a
large fraction of eQTLs can be regulated by post-transcrip-
tional mechanisms [43]. The authors observed an excess,
over the null expectation, of regulatory SNPs in both the 50

and 30 regions of target genes. Hence, they proposed that
upstream SNPs might act by regulating transcription,
whereas a nearly equal number of the downstream regu-
latory variants – located in 30 UTR regions of genes – might
act post-transcriptionally by affecting RNA stability. This
could take place by altering microRNA binding sites or
polyadenylation patterns. One example of such a 30 UTR
variant has been detected in large-scale studies [21] and
validated in the laboratory [44]: a SNP affecting a poly-
adenylation recognition element in the interferon regula-
tory factor 5 (IRF5) resulted in a longer, less stable isoform
associated with slightly reduced expression levels of the
protein [21].

However, recent RNA-seq data do not support 30, post-
transcriptional regulation as a major determinant of eQTL
action. Themore precise quantification of expression at the
individual isoform level suggests that the number of 30

regulatory SNPs is much lower than previously believed
[25,26]. It is therefore possible that the effect observed in
earlier studies was an artifact of probe placement in 30

targeted microarrays, and that many of the presumed
eQTLs are actually splicing differences occurring in the
30 genic regions, rather than whole gene expression
changes.

RNA-seq results also highlight a general relationship
between eQTLs and sQTLs. It is probable that some SNPs
that affect splicing patterns result in the production of less
stable isoforms, which in turn affect the expression of the
entire transcripts. At least one example of such a mecha-
nism has been experimentally dissected so far [45]:
ERAP2, encoding an endoplasmic reticulum-specific ami-
nopeptidase, contains a SNP affecting an intronic donor
splice site, resulting in alternative splice site usage and the
insertion of a premature stop codon in the mRNA. This
isoform has been shown to be a target for nonsense-medi-
ated decay, and the causative splicing SNP is associated
with both the splicing pattern and gene expression levels
[40]. Because the level of mRNA of this gene is regulated
post-transcriptionally, RNA-seq can be used to demon-
strate that RNA expression differences cannot be detected
in reads that map to intronic sequences (which represent
the primary, unprocessed product of transcription), but can
be readily seen in exonic reads (which represent the ma-
ture mRNA) [26].

Regulation at the level of pre-mRNA splicing is gener-
ally controlled by polymorphisms located in the vicinity of
the splice sites [46]. Although it is still not feasible to
confidently predict a priori the regulatory potential of a
randomly selected SNP on splicing [47,48], once an sQTL is
identified there has been a good level of success pinpointing
the nearby regulatory variant [40]. The effects of those
SNPs can be predicted in silico by determining the effect of
each allele on the strength of consensus splice sites [49], of
accessory splicing control elements (such as the polypyr-
imidine tract) or of exonic and intronic splicing enhancer
and silencer elements. Downstream in vivo validation can
be carried out using transient transfection of minigene
constructs [50], which in most cases unequivocally con-
firms the function of the causative polymorphism.

Until now, because microarray probes were targeted to
exons, it has been difficult to distinguish between the
transcriptional, cotranscriptional or post-transcriptional
regulatory mechanisms. By monitoring expression levels
75
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across the entire transcript, without the need for a targeted
design, RNA-seq allows us to deconvolute the expression
levels of individual isoforms and significantly clarifies our
understanding of eQTL regulation [25]. In addition, be-
cause the information contained within RNA-seq data is
not only quantitative but also ‘digital’ – providing the
identity of every single nucleotide within a transcript –

this technique allows us to monitor not only expression
levels but also allelic expression; that is the transcriptional
output of each individual allele at polymorphic loci.

Direct detection of cis-regulatory variation by allele
counting in RNA-seq data
The strongest genetic effects observed for the expression of
individual genes predominantly localize close to the gene
itself. These local associations are assumed to alter the
function of regulatory elements directly controlling expres-
sion in cis. Such cis-regulatory variants should give rise to
the unequal regulation of alleles in samples heterozygous
at the site. To detect allelic expression, the expression
profiling method needs to be able to distinguish the
expressed alleles quantitatively. The test for differential
allelic expression [51] can be used to independently vali-
date local eQTLs and provide a specific approach to confirm
cis-regulatory variation [52]. The relative expression of two
alleles in autosomes (or the female X-chromosome) can be
carried out genome-wide using genotyping microarrays
[53]. The promise of allelic expression is the dissection of
the genetic (or epigenetic) control of gene expression to its
cis-and trans-acting components [54]. In principle, the
allelic expression test provides greater power to detect
genetic variants acting in cis compared with eQTL map-
ping [53] because allelic differences are measured within
rather than between samples.

The quantitative assessment of allelic effects by geno-
typingmethods is complicated by unequal signals from two
alleles even when they are equally represented in the
sample, thereby requiring the careful normalization of
allele ratios [53]. Methods based on single molecule detec-
tion allow, in principle, the unbiased assessment of true
allele ratios based on simple allele counting. The first
measurements of allelic expression were realized even
before next-generation sequencing (NGS) [55], and early
applications of NGS in allelic expression used allele count-
ing for specific amplified cDNAs [56]. The latter approach
is not scalable so more recently the large-scale capture of
specific fragments of cDNAs harboring genetic variation
have been coupled with NGS [57,58], which can be used to
detect allelic biases across thousands of polymorphic-
expressed sites. The expansion of RNA-seq studies to nu-
merous individuals and coupling genotype informationwith
transcriptome analysis (i.e. population-based RNA-seq
studies) will, in principle, also allow the assessment of
population variation in the allelic expression and mapping
of its genetic determinants. The first explorations of RNA-
seq across human populations did not use allelic expression
patterns as a tool to map cis-regulatory variation, but
showed that this should be feasible, because the prevalence
[59] of differential expression as well as concordance with
cis-eQTLswere shown to be high [25,26]. At this early stage,
the optimal approach for population RNA-seq studies is
76
unclear, but paired-end sequencing coupled with counting
alleles has been shown to be beneficial in deciphering ge-
netically controlled alternative splicing patterns [25]. It has
also been suggested that allelic expression states detected
by RNA-seq in only a few individuals would be sufficiently
powerful to observe effects exerted by rare cis-regulatory
alleles [25]. To date, studies have shown that the investiga-
tion of allelic expression in addition to eQTLs in population
RNA-seqdata can enhance thedetection of genetic variation
[25,26], although this would optimally require higher se-
quence depth than that applied to date because of the
relatively sparse distribution of variation in human coding
regions [60]. This technical limitation will easily be over-
come with the decreasing cost of NGS. Similarly, longer
reads [28]will render a high proportion of reads informative
for the allelic state, thereby improving the ability to study
allelic and total expression levels in parallel.

The allele specificity of RNA-seq has also been used to
study the epigenetic mechanisms of cis-regulation in in-
bred mice [61,62]. The results of two early studies were
however discordant, yielding strikingly different estimates
of imprinting prevalence in the developing mouse brain.
One of the studies suggested that there could be over a
thousand imprinted genes based on paternal or maternal
allelic expression biases observed in RNA-seq data [61]. By
contrast, the other study concluded that less than a hun-
dred of the already known imprinted genes would repre-
sent a relatively complete list [62]. Such discrepancies
between studies with seemingly similar designs highlight
the early stage of the interpretation of allelic information
from RNA-seq datasets. Allelic data from RNA-seq can be
technically biased by steps in the sample (library) prepa-
ration or the actual base incorporation rates in sequencing
[59] as well as analytical differences that can arise depend-
ing on alignment approach [63]. These systematic biases
are in addition to stochastic variation at individual regions
inherent to large-scale experiments. These issues will
prompt the development of common guidelines to filter,
validate and normalize RNA-seq data, similar to the guide-
lines established for microarrays [64].

Hurdles in the large-scale translation of population
expression variation into biological insight
One of the greatest challenges in eQTL analysis is to prove
the causal relationship between disease processes and
gene regulatory changes. An excess of eQTLs among dis-
ease-associated SNPs has been reported [65,66]. The in-
terpretation of these enrichments is complicated because
they tell little about the role of individual variants. More-
over, the observed excesses might be biased towards non-
causal links simply because disease variants and eQTLs
might both be more commonly observed in genomic regions
harboring expressed genes. Direct evidence of common
regulatory alleles in human disease phenotypes, similar
to the LCT variants involved in lactose tolerance, has been
found for only a few genes. A change in TATA-binding
protein binding to dinucleotide repeat in the promoter of
UGT1A1, coding for a UDP-glucuronosyl transferase cru-
cial for bilirubin metabolism in the liver [67], explains the
strong association of Gilbert’s syndrome with this variant
[68]. The same variant has since turned out to be involved



Box 3. Transcriptomics, proteomics or metabolomics to

measure population variation at a genome-wide scale

eQTLs have been considered an intermediate phenotype that might

connect regulatory genetic variants and phenotypes. However, and

particularly in view of the increasingly large number of small effect

eQTLs, it would be interesting to consider the next level of

intermediate phenotype – namely the protein expression level.

Currently, it is unclear to what extent compensatory mechanisms at

the level of translation might overcome mRNA-level differences and

stabilize potential functional variations. Such compensatory me-

chanisms are suggested by the observation of higher evolutionary

correlations among expressed proteins than among expressed

transcripts [87]. In the case of sQTLs and other isoform changes,

many of the observed splicing variants might actually not result in

the production of stable proteins. Some, or many, might represent

an increased level of background noise, and be subject to correction

by processes such as nonsense-mediated decay [88]. However,

although protein abundance in yeast shows a strong correlation

with corresponding mRNA abundance [89], less than 10% of the

yeast protein products could be measured with sufficient accuracy

to carry out genome-wide eQTL mapping [90]. Despite great strides

in quantitative proteomics [91], the application of shotgun (non-

targeted) proteomics in complex organisms still suffers from low

dynamic range and suboptimal sensitivity. Early attempts to

associate human protein production [78] or metabolites [79] with

genetic variants, while providing a proof-of-principle, still await a

more comprehensive demonstration of the utility of proteomics in

population studies to decipher functional variation at a genome-

wide scale.
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in the pharmacogenetics of multiple drugs [69]. In the case
of malaria resistance, a SNP in the FY promoter altering
GATA-1 binding abolishes the expression of the Duffy
antigen, a glycoprotein present on the erythrocyte surface
in the erythroid cell lineage [70]. The first ‘modern’ exam-
ple exploiting the overlap between GWAS and eQTL data
to identify andmolecularly dissect a disease-coding variant
showed that a common SNP upstream of sortilin (SORT1)
alters the binding of the CEBP transcription factor in
hepatocytes, leading to differences in circulating LDL
levels [71]. These successes in linking gene expression-
altering polymorphisms to complex phenotypes share some
features: in all cases, there is strong genetic evidence for
the involvement of a particular variant in the phenotype
observed, and each regulatory variant has been shown to
exert its function primarily in the tissue or cell-type of
interest, whereas many eQTLs show effects across tissues
[72]. Therefore, establishing the links between regulatory
variants and the molecular processes directly linked to the
phenotypes is possible.

Therefore, can we expect an increase in the identifica-
tion of mechanistic links between genotypes and pheno-
types in the coming years with the large numbers of
disease associations already characterized and the emer-
gence of eQTL surveys? Describing molecular processes
underlying gene expression variation in metabolic pheno-
types in mice has allowed the identification of a large gene
network, where new candidate regulators for metabolism
have emerged by perturbing key genes [73]. By contrast,
the use of a similar approach to study human metabolic
phenotypes, although showing an enrichment of obesity- or
diabetes-associated alleles among SNPs associated with
expression profiles in adipose or liver tissues, did not
identify new genes or provide mechanistic insights into
the function of individual variants [18,74]. These latter
studies highlight the challenge of correlating the relatively
weak marginal effects of individual human complex dis-
ease-associated SNPs with eQTL associations; both often
exist in a genomic region with multiple correlated variants
and provide only weak evidence for causality without
extensive follow-up experiments [71].

The serendipitous overlap between regulatory and dis-
ease-associated variants can be expected to increase with
thehigher resolutionandhigherdiscoveryratesofRNA-seq-
based eQTL studies [25,26]. Consequently, in cases where
eQTLs have been characterized in tissues with known rele-
vance to disease processes, a necessary step in establishing
the linkbetweenregulationandphenotype is the isolation of
regulatory variants underlying the eQTLs. Causal variants
can be identified by combining independent methods mea-
suring both gene expression and transcription in the same
samples to assess allelic function at individual loci [56] or
genome-wide [75]. Given the multitude of potential connec-
tions in complex gene networks between heritable variants
governing gene expression and complex disease association
data [74] finding causal variants in the appropriate tissues
will be insufficient. Links between disease phenotypes and
common regulatory variants are facilitated for traits where
subsets of patients harbor highly penetrant, deleterious
coding variants unequivocally linking the gene productwith
disease pathogenesis [76]. Depending on the architecture of
complex traits and the success of sequence-based complex
trait studies [77], such a strategy of first establishing links
between rare variants in specific genes and complex phe-
notypes can provide stronger a priori evidence for making
causal connections between common regulatory variation
and phenotypic variation in populations. In addition to
ensuring that phenotype and expression traits map to the
same variants and to establishing the role of genes in the
disease trait, the downstream effects of regulatory SNPs
could be observed and verified by other high-throughput
methods linking protein levels [78] ormetabolites [79] to the
same variants. However, these methods currently do not
have adequate coverage or sensitivity to provide genome-
wide measurements of downstream consequences of eQTLs
(Box 3).

Concluding remarks
NGS technologies offer functional genomic data at a higher
resolution than DNA microarrays. In parallel, these same
technologies are enabling studies of virtually all common
genetic variants in association studies [80] as well as the
high-throughput identification of regulatory elements in
our genomes [81]. The integrative analysis of variation in
transcriptome, sequence and regulatory sites using popu-
lation-based samples is consequently expected to result in
unprecedented accuracy in both mapping as well as un-
derstanding the consequences of regulatory variation at
single base resolution. The next challenge is the large-scale
translation of these functional variants into insights into
the molecular pathogenesis of complex traits. The pace of
discovery for links between regulatory variation and dis-
easewill increase, particularlywith parallel improvements
in disease variant fine mapping and the development of
genome-wide post-transcriptomic techniques. Therefore,
early isolated successes in characterizing the roles of
77
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individual regulatory variants in disease [71] are likely to
becomemore frequent and provide us with themechanistic
basis of genetic disease associations and human gene
regulation.
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