
© 2001 Macmillan Magazines Ltd

R E V I E W S

techniques include single-marker mapping13–15, interval
mapping16, composite interval mapping24,28,30,31 and mul-
tiple trait mapping32–36, which allow statistical analyses of
the associations between phenotype and genotype for the
purpose of understanding and dissecting the regions of a
genome that affect complex traits.

However, even when statistically significant associa-
tions between the complex quantitative trait(s) and
molecular markers are identified, the genomic regions
are usually so large that subsequent experiments, used
to zero in on these regions, are often expensive.
Through the limitations of the technology, this results
in the loss of at least one of the regions of interest. In
the event of success, and the genomic region contain-
ing genes that are responsible for the complex trait
variation37, the expense and time from the beginning to
the end of this process is often too great for widespread
application to problems of scientific, economic or
medical importance. For years, access to knowing
which genes are responsible for the genetic variation of
complex traits has held scientists back. Furthermore,
the subset of genes that are thought to contribute to
variation has often provided only a limited and disap-
pointing percentage of the total variation associated
with the trait.

The vision of the early population geneticists Sax1,
Thoday2 and Fisher3, combined with the scientific and
technological breakthroughs in molecular genetics of
Watson and Crick4, Southern5, Sanger et al.6 and Saiki et
al.7, to name only a few, have brought us to a revolution-
ary time in science. These advances and ideas have
empowered science to the point of turning biology from
a once observational perspective into that of prediction
(BOX 1), whereby the connection between genotype and
phenotype can be more completely understood.
Monogenic traits supplied the early and encouraging
successes in associating genotype with phenotype in
humans8–10, and domesticated animal11 and plant12 pop-
ulations. By contrast, COMPLEX TRAITS have proved to be
more challenging, simply because it is impossible to fol-
low all genomic regions that are responsible for the
complex variation of the trait without some further idea
of how these regions segregate.

A key development in the field of complex trait analy-
sis was the establishment of large collections of molecu-
lar/genetic markers, which could be used to construct
detailed genetic maps of both experimental and domesti-
cated species. These maps provided the foundation for
the modern-day QUANTITATIVE TRAIT LOCUS (QTL) mapping
methodologies13–36 that are the focus of this article. These

MAPPING AND ANALYSIS OF
QUANTITATIVE TRAIT LOCI IN
EXPERIMENTAL POPULATIONS
Rebecca W. Doerge

Simple statistical methods for the study of quantitative trait loci (QTL), such as analysis of
variance, have given way to methods that involve several markers and high-resolution genetic
maps. As a result, the mapping community has been provided with statistical and computational
tools that have much greater power than ever before for studying and locating multiple and
interacting QTL. Apart from their immediate practical applications, the lessons learnt from this
evolution of QTL methodology might also be generally relevant to other types of functional
genomics approach that are aimed at the dissection of complex phenotypes, such as microarray
assessment of gene expression.

Department of Statistics,
and Department of
Agronomy, and
Computational Genomics,
Purdue University,
West Lafayette,
Indiana 47907-1399, USA.
e-mail: doerge@purdue.edu
DOI: 10.1038/nrg703

NATURE REVIEWS | GENETICS VOLUME 3 | JANUARY 2002 | 43

COMPLEX TRAIT

A trait determined by many
genes, almost always interacting
with environmental influences.

QUANTITATIVE TRAIT LOCUS

A genetic locus identified
through the statistical analysis of
complex traits (such as plant
height or body weight). These
traits are typically affected by
more than one gene, and also by
the environment.
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EPISTASIS

In the broad sense used here, it
refers to any genetic interaction
in which the combined
phenotypic effect of two or more
loci exceeds the sum of effects at
individual loci.
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only provide one more piece (that is, transcriptional
profile) of the puzzle. The translation of genes into
proteins is another key step in gene action and it will
be essential to subject protein synthesis, as well as pro-
tein interaction, to the same genome-wide analysis43,44,
to understand how genotype can influence a complex
phenotype.

There are many reviews and texts on QTL analy-
sis45–49, and on the present status of array technol-
ogy38,50,51. How the growing collections of data at the
DNA, RNA and protein levels can be combined to dis-
sect complex traits and diseases remains to be seen. It
has been proposed that the power available through the
merger of genetics and genomics (called genetical
genomics by Jansen and Nap52) might lead to further
unravelling of metabolic, regulatory and developmental
pathways, but rigorous investigations still need to be
completed. What is clear, however, is that technology
(BOX 1) is emerging that will supply quantities of data
that require detailed statistical and mathematical analy-
ses. With this as the motivation, this review summarizes
the principal steps and statistical contributions made in
the past 20 years towards the detection and location of
QTL in experimental populations. It also previews the
potential that these methods have in associating modifi-
cations in gene expression to genetic maps for any
diploid, and potentially polyploid53,54, species under
investigation. Borrowing from what has been learned in
developing statistical methodology for quantitative trait
mapping, the hope is that the statistical design of
genome-wide experiments and analyses of the resulting
data might culminate in the complete dissection of
complex traits.

Quantitative trait locus mapping
A QTL is a region of any genome that is responsible for
variation in the quantitative trait of interest. The goal of
identifying all such regions that are associated with a
specific complex phenotype might, at first, seem quite
simple, especially with all the genomic and computa-
tional tools available to help us. Unfortunately, the task
is difficult because of the sheer number of QTL, and the
possible EPISTASIS or interactions between QTL, and
because of the many additional sources of variation55. To
combat this, QTL experiments can be designed with the
aim of containing the sources of variation to a limited
number, so that dissection of a complex phenotype
might be possible. In general, a large sample of individu-
als has to be collected to represent the total population,
to provide an observable number of recombinants and
to allow a thorough assessment of the trait under inves-
tigation. Using this information, coupled with one of
several methodologies to detect or locate QTL (see
below), associations between quantitative traits and
genetic markers are made as a step towards understand-
ing the genetic basis of complex traits.

The first step in any QTL-mapping experiment is
usually to construct populations that originate from
homozygous, inbred parental lines (FIG. 1). The resulting
F

1
lines will tend to be heterozygous at all markers and

QTL. From the F
1

population, crosses are made (for

Genomics has brought a new level of hope to
unravelling the secrets of complex traits. Genome
sequences themselves have the potential to provide a
comprehensive list of the genes in an organism.
Functional genomics approaches can then be used to
generate information about gene function, as well as
data on genetic interactions, not only among and
between gene complexes, but also in response to envi-
ronmental stimuli. At present, microarray, or array,
technology38 is providing the most comprehensive
assessment of gene function and variation. Our ability
to view the transcription of the genome is improving
rapidly and, as a result, the potential to dissect complex
traits is also developing. Already, array technology has
been instrumental in identifying groups of co-
expressed genes in various physiological states, includ-
ing stages of development39,40 and disease41,42. Although
array technology is valuable, these data are not conclu-
sive or comprehensive as regards gene function, and

Box 1 | Evolution of the central dogma

The central dogma outlines the flow of information that is stored in a gene, transcribed
into RNA and finally translated into protein. The ultimate expression of this information
is the phenotype of the organism. Each step of the central dogma is accompanied by
recent technological innovations that allow genome-wide analysis. Although the central
dogma once presented a view that was essentially descriptive, and limited to gene-by-gene
studies, it can now be coupled with technology and viewed as experimental and testable.
Hypotheses can be formulated and revised for the purpose of elucidating the detailed
connections between genotype and phenotype, therefore unravelling the inner molecular
biology of an organism.
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QTL. Typically, the null hypothesis tested is that the
mean of the trait value is independent of the geno-
type at a particular marker. The null hypothesis is
rejected when the test statistic is larger than a crucial
value (to be discussed later), and the implication is
that a QTL is linked to the marker under investiga-
tion. Although the t-test, ANOVA and simple linear
regression approach are all equivalent to each other
when their hypotheses are testing for differences in
the phenotypic means, they fail to provide a CLOSED

FORM ESTIMATE of QTL location, or recombination fre-
quency between the marker and the QTL. This is
because the QTL effect and the location are con-
founded, or are unable to be estimated separately. The
effect of this phenomenon has recently been high-
lighted in the context of human genetics56.
Confounding, in these situations, is addressed by
(incrementally) fixing the location of the QTL and
estimating the QTL effect between intervals of mark-
ers. These intervals of markers lead naturally to a
method that estimates both QTL effect and the loca-
tion, known as ‘interval mapping’16 (see below).

Detecting QTL by this type of single-marker
approach is a simple procedure that can be accom-
plished with any standard statistical analysis software
package, and has the potential to identify numerous
significant markers. Two important issues should be
considered when assessing these statistical results. The
first consideration is sample size. The number of indi-
viduals studied provides information for the estima-
tion of phenotypic means and variances. A large 
sample of individuals provides the opportunity to
observe recombinant events and to estimate parame-
ters with greater accuracy and, therefore, a greater
ability to detect QTL through a single-marker test.
The second issue concerns the problem of multiple
testing and arises when many markers are investigated
through independent statistical tests. This problem is
coupled with the level of statistical significance that is
set by the investigator and can lead to detection of
false-positive QTL. Typically, an investigator is willing
to tolerate incorrectly detecting a QTL in, for exam-
ple, 5% of cases. Therefore, given a 5% level of signifi-
cance, and 100 positive, unique marker tests, five of
the 100 markers would detect QTL incorrectly. This
problem can be accounted for through a multiple
test57 adjustment, such as Bonferroni, Scheffe or
Tukey, that will correct the SIGNIFICANCE LEVEL according
to how many independent statistical tests are made.

Single-marker analyses are still used as a means to
identify markers that are segregating with a trait. Most
of these applications58–60 deal primarily with detecting
individual markers, rather than genomic regions, and
are a quick and efficient means to screen large popula-
tions for specific traits, such as disease resistance.
Typically, when investigations focus on questions of
genomic location, then more sophisticated methods of
QTL analysis, which rely on the estimated order of
markers, are used. The added information that is gained
from knowing the relationships between markers is
essential to QTL methodologies that aim to locate QTL.

example, backcross, F
2

intercross and crosses to generate
RECOMBINANT INBRED LINES), and the segregation of markers
and QTL are statistically modelled. In general, experi-
menters assume that markers are segregating randomly,
but if, in fact, markers are subject to SEGREGATION 

DISTORTION, it is not possible to anticipate how the result-
ing estimates of recombination will be affected, as well
as any potential QTL locations. Once the data are col-
lected on each individual, statistical associations
between the markers and quantitative trait are estab-
lished through statistical approaches that range from
simple techniques, such as analysis of variance
(ANOVA), to models that include multiple markers and
interactions. The simpler statistical approaches tend to
be methods of QTL detection that assess differences in
the phenotypic means for single-marker genotypic
classes. The actual location of QTL involves an esti-
mated genetic map with known distances between
markers, and evaluations of a likelihood function that is
maximized over the established parameter space.

Single-marker tests
Simple, single-marker tests (for example, using t-test,
ANOVA and simple linear regression statistics; BOX 2)
that assess the segregation of a phenotype with respect
to a marker genotype (FIG. 1), indicate which markers
are associated with the quantitative trait of interest
and, therefore, point to the existence of potential

RECOMBINANT INBRED LINES

A population of fully
homozygous individuals that is
obtained by repeated selfing
from an F

1
hybrid, and that

comprises ~50% of each
parental genome in different
combinations.

SEGREGATION DISTORTION

The non-random segregation of
alleles. Apparent segregation
distortion can result from
incorrect genotype classification.

CLOSED FORM ESTIMATE

An estimate of a population
parameter that can be calculated
directly from an equation to
obtain an exact solution.

SIGNIFICANCE LEVEL

A probability for a test statistic
that gives the maximum
acceptable value of rejecting a
‘true’ null hypothesis.

Parent 1: P1

M1Q1R1/M1Q1R1: Y~N(  1,   2)µ σ

B1

Y~mixture distribution

B2

Y~mixture distribution

First filial: F1

M1Q1R1/M2Q2R2: Y~N(  F1,   2)

Parent 2: P2

M2Q2R2/M2Q2R2: Y~N(  2,   2)µ σ

µ σ

Figure 1 | Experimental design for quantitative trait loci mapping. Standard backcross
mating design for markers M (with alleles M1 and M2) and R (with alleles R1 and R2). The
hypothetical quantitative trait locus (QTL) Q, with alleles Q1 and Q2, is also illustrated. The
haplotypes are separated by a solidus. The trait value (Y) is assumed to have a normal distribution
(N) with mean µ and variance σ 2 in the parental populations P1 and P2. B1 and B2 represent the
reciprocal backcross progeny. The trait value in the backcross progeny has a distribution that
represents the mixture of the F1 trait distribution and the respective (recurrent) backcrossed
parental line. Statistical tools are applied to test whether there is an association between the
genotypic and quantitative trait information collected from either backcross population.
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supplying the structure in which to search for QTL,
the estimated genetic map benefits the estimation of
missing marker information by using the surround-
ing marker genotypes to infer knowledge of the miss-
ing marker genotypes.

When using genetic maps in this way, it is impor-
tant to distinguish between recombinational events
and genetic distance. The essential difference is that
genetic distances are additive, whereas recombination
units are not because they are probabilities and
because of GENETIC INTERFERENCE. Recombinational units
and genetic distance can be translated between by
using a map function (such as the Haldane and
Kosambi map functions). The practical value of a
genetic map is that the QTL can be mapped more
easily in an interval of defined genetic distance. The
methods for linearly ordering the molecular markers
rely on minimizing the recombination between pairs
of markers. As the estimated genetic distance between
markers is a function of the average number of
observed recombination events between them, mini-
mizing these values best represents the frequency of
recombination. The unit for expressing the genetic
distance between markers on a chromosome is the
Morgan (or, more usually, the centiMorgan, cM), and
is defined as the distance along which one recombi-
national event is expected to occur per gamete per
generation. When several markers are considered,
they are ordered simultaneously on the basis of mini-
mized recombination — an approach called multi-
point linkage mapping61–64 (BOX 2).

The accuracy of locating QTL is limited by the
information, in particular the number of recombi-
nants, that is gained from observing the genotypic
states of the markers. These observed recombinants
can be limited by both small sample size and missing
genotypic data. With this in mind, a commonly asked
question is: ‘Should I genotype more markers on
fewer individuals, or score more individuals (for geno-
type and phenotype) on fewer markers?’ Because
observed recombinants provide the information, scor-
ing more individuals addresses both previously men-
tioned concerns. Lynch and Walsh47 and Lui48 present
standard closed form calculations for the purpose of
evaluating how many markers to genotype relative to
the desired QTL location accuracy, and how many
individuals to phenotype given a particular signifi-
cance level, QTL effect and location.

Genetic maps
Single-marker analyses investigate individual markers
independently, and without reference to their posi-
tion or order. When markers are placed in genetic
(linear) map order, so that the relationships between
markers are understood, the additional genetic infor-
mation gained from knowing these relationships pro-
vides the necessary setting to address confounding
between QTL effect and location. A genetic map also
provides a genetic representation of the chromosome
on which the markers and QTL reside (FIG. 2).
Pairwise information, or recombination, is first esti-
mated for all markers that are segregating as
expected, and then any marker that is linked to any
other marker is placed in the same linkage group. The
linear arrangement of markers into linkage groups, or
chromosomes, provides the genetic map for locating
QTL that are relative to intervals of markers (or sta-
tistically related sets of markers). In addition to 

GENETIC INTERFERENCE

The presence of a
recombinational event in one
region affects the occurrence of
recombinational events in
adjacent regions.
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Figure 2 | A genetic map of mouse chromosome 11. The first step in quantitative trait locus (QTL) identification and location is 
to estimate the linear ordering, or genetic map, of markers in a linkage group. These markers are linearly ordered (this map was
estimated with MAPMAKER/EXP21,64) across the chromosome to minimize the genetic distance between markers, and therefore
across the chromosome99. Genetic distances (cM) are given relative to chromosome 11. In the second stage of QTL mapping, 
the estimated genetic map becomes the x axis of the LOD (logarithm of the odds) score profile (y axis) for QTL mapping (FIG. 3).

Box 2 | Statistical and genetic mapping software

Statistical software
• SAS

A comprehensive set of statistical analysis procedures that can be used to model and 
test for various quantitative trait loci (QTL) effects.

• Minitab
A user-friendly statistical software package that provides simple analyses, often used
for single-marker QTL mapping, as well as regression analysis.

• Splus
Powerful suite of mathematical and statistical functions that provide a programming
language environment (similar to the C programming language), in which unique
QTL analyses and graphical summaries can be calculated.

Genetic mapping software
• An alphabetical list of genetic analysis software

A comprehensive list of gene and QTL mapping, and linkage, software (with links and
updates) that covers the vast range of applications, with no limitations due to species
or lack of population structure.

• Quantitative genetics resources
General information on mapping quantitative traits.

• QTL mapping software
Additional QTL mapping software information for experimental populations.

• QTL references
A very-detailed reference list of influential QTL methodological publications.

The URLs for these resources are provided in the links box at the end of this article.



© 2001 Macmillan Magazines Ltd
NATURE REVIEWS | GENETICS VOLUME 3 | JANUARY 2002 | 47

R E V I E W S

each increment. In addition, as the LOD scores taken
together represent a LOD profile across the genetic
map, the locations of the maximum LOD profile have
the potential to indicate multiple or GHOST QTL67 incor-
rectly when a single QTL model is used (FIG. 3).
Determining which of the many peaks indicates a sin-
gle QTL leads to issues of determining statistically sig-
nificant results. Because the likelihood is usually 
a function of mixtures of (normal) distributions46

(FIG. 1) and, when maximized under both the null and
alternative hypotheses, leads to test statistics that fail
to follow standard statistical distributions, it is diffi-
cult to declare a QTL with confidence. This happens
even when the previously noted issues of multiple
testing are taken into consideration. Both multiple
testing and distributional assumptions of the test sta-
tistic can be accounted for through an application of
resampling methodology68 that will be discussed later.
Nevertheless, although interval mapping is certainly
more powerful than single-marker approaches to
detect QTL (because of the structure and additional
genotypic information supplied by the genetic map),
it is limited by both the model that defines it as a sin-
gle QTL method, and by the one-dimensional search
that does not allow interactions between multiple
QTL to be considered.

Multiple quantitative trait loci
Statistical approaches for locating multiple QTL are
more powerful than single QTL approaches because
they can potentially differentiate between linked
and/or interacting QTL. When the alleles of two or
more QTL interact (epistasis), this has great potential
to alter the quantitative trait in a manner that is diffi-
cult to predict. One of the most extreme (and sim-
plest) cases is the complete loss of trait expression in
the presence of a particular combination of alleles at
multiple QTL. The ultimate challenge in the search
for multiple QTL is to consider every position in the
genome simultaneously, for the location of a poten-
tial QTL that might act independently, be linked to
another QTL, or interact epistatically with other
QTL. Interacting QTL are of particular interest as
they indicate regions of the genome that might not
otherwise be associated with the quantitative trait
using a one-dimensional search.

Although the concept of locating multiple, interact-
ing QTL is straightforward, implementation is quite dif-
ficult due to the tremendous number of potential QTL
and their interactions, which lead to innumerable statis-
tical models and heavy computational demand. One
heuristic approach that has been taken69 is to first locate
all single QTL, then to build a statistical model with
these QTL and their interactions and, finally, search in
one dimension for significant interactions. Kao et al.33

made such a proposal through a direct extension of
interval mapping to include a simultaneous search for
multiple epistatic QTL. Owing to the computational
intensity of a multidimensional search, a simultaneous
investigation is not possible, and the search is referred to
as a quasi-simultaneous investigation. Approaches like

Interval mapping
Interval mapping65,66, made popular by Eric Lander
and David Botstein16 (BOX 2), uses an estimated genetic
map as the framework for the location of QTL. The
intervals that are defined by ordered pairs of markers
(FIG. 2) are searched in increments (for example, 2 cM),
and statistical methods are used to test whether a QTL
is likely to be present at the location within the interval
or not. It is important to realize that interval mapping,
as defined by Lander and Botstein, statistically tests for
a single QTL at each increment across the ordered
markers in the genome. The results of the tests are
expressed as LOD (logarithm of the odds) scores,
which compare the evaluation of the likelihood func-
tion under the null hypothesis (no QTL) with the
alternative hypothesis (QTL at the testing position) for
the purpose of locating probable QTL.

Interval mapping searches through the ordered
genetic markers in a systematic, linear (also referred to
as one-dimensional) fashion, testing the same null
hypothesis and using the same form of likelihood at

GHOST QTL

Quantitative trait locus (QTL)
effects that occur as artefacts due
to real QTL in surrounding
intervals.
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Figure 3 | Choices of analysis for quantitative trait locus mapping. The data shown are
from an analysis of mouse chromosome 11 for the quantitative trait called ‘severity’ in a study
of experimental allergic encephalomyelitus (EAE)99. EAE is the principal animal model for
multiple sclerosis in humans. Microsatellite markers (FIG. 2) were genotyped in 633 F2 mice
that were followed for this study. Severity of the disease was quantified from the average of
several assessments of ‘tail droopiness’ per mouse. Quantitative trait locus (QTL) analysis was
carried out using QTL-Cartographer and several different approaches: single-marker analysis
using a t-test (black diamonds); interval mapping (blue line); and composite interval mapping
(green line). The red line represents the 95% significance level on the basis of 1,000
permutations of the phenotypic data. The single-marker t-tests identify one significant marker
(D11Mit36), interval mapping locates four maximum QTL locations on the LOD (logarithm of the
odds)  profile, and composite interval mapping finds two significant QTL. The differences seen
between the single-marker analysis, and interval and composite interval mapping, are the result
of information gained from the estimated genetic map. The difference between interval
mapping and composite interval mapping is the result of composite interval mapping’s use of a
‘window’ or genomic region that allows other effects that are outside the window, but
associated with the quantitative trait, to be eliminated from the analysis point under
consideration. The benefit of defining a window is that the variation associated with the point of
analysis is confined to the QTL effects within the window and not outside the window, thereby
reducing the effects of linked and ghost QTL. The result of composite interval mapping is
illustrated by elimination of the two central (ghost) QTL.



© 2001 Macmillan Magazines Ltd
48 |  JANUARY 2002 | VOLUME 3 www.nature.com/reviews/genetics

R E V I E W S

searches, has recently been put forward by Sen and
Churchill73. The approach breaks the QTL problem into
two distinct parts: the relationship between the QTL and
the quantitative trait, and the location of the QTL.
Disjoining these two independent relationships allows
the initial focus to be placed on estimation of the
unknown QTL genotypes, and then on allowing the
search for different models and their comparisons with
the information gained from completing the QTL geno-
type information. The power in breaking a problem into
two independent parts is not new as it was dealt with by
Jansen in 1993, and lies in the fact that information is
gained in the first part that can be used in the second
part. Once the QTL genotypes are estimated, Sen and
Churchill explore all possible models using an approach
that allows distinct models of different QTL numbers to
be considered. As the QTL genotypes are calculated
independently from the QTL effect and location, previ-
ous issues of epistasis and linked QTL are eliminated
because the state of the QTL genotype and QTL number
are known before the estimation of their effects and
interactions.

Multi-trait QTL mapping can also benefit from the
computational framework of Sen and Churchill by sim-
ply extending from a single phenotype to multiple cor-
related phenotypes, and by dissecting the problem in a
similar manner. The additional information gained
from knowing the covariation between multiple traits is
the same as the treatment originally detailed by Jiang
and Zeng32, but the computational mechanics of the
solution follow the Sen and Churchill approach.
Although the Sen and Churchill view has been shown to
benefit QTL mapping, it might have an even larger
potential for accommodating other types of problem
and data structure. The power of this computational
approach30,73 lies in its ability to dissect the problem into
two unique and independent parts, and might prove to
have an even greater potential for the dissection of com-
plex traits using microarray technology (see below).

Statistical significance
Regardless of the method used to estimate and locate
single or multiple QTL, once the test statistics are calcu-
lated the likelihood of the event is assessed. The statisti-
cal basis of these comparisons relies on model assump-
tions, the most common of which requires the
quantitative trait values to be normally distributed. If in
fact these assumptions hold, many wonderful statistical
properties follow, and valid conclusions can be drawn
from a range of powerful statistical tests. In reality 
(FIG. 1), however, the distribution of the trait values is not
normal, and needs to be considered as a mixture of
(normal) distributions46. Violating the normality
assumption has an impact on the distribution of the sta-
tistic used to test for a QTL79–81, which makes standard
statistical procedures potentially inaccurate.

One approach to obtaining the distribution (or
behaviour, in the long term) of the test statistic is to use a
computer simulation to produce the data16,30,82.
Thousands of data sets, taken from the same statistical
model, are simulated and the test statistics calculated.

this have the potential to work in many situations, but
are limited to the pool of QTL that resulted from the
first-pass QTL analyses, and have little hope of establish-
ing true epistatic effects for QTL that are not individu-
ally significant. Searching through all potential models is
a problem known as model selection, and remains an
active area of research in theoretical statistics.

Composite interval mapping24,28 as introduced by
Zhao-Bang Zeng in 1993 and, similarly, multiple QTL
mapping30,31,49,70 as introduced by Ritsert Jansen in the
same year, achieve the same result by reducing the num-
ber of potential models under consideration. Both
methods extend the ideas of interval mapping to include
additional markers as cofactors — outside a defined
window of analysis — for the purpose of removing the
variation that is associated with other (linked) QTL in
the genome. The limitations of both approaches are that
they are restricted to one-dimensional searches across
the genetic map, and are challenged at times by the mul-
tiplicity of epistatic QTL effects. There is also a risk of
putting too many markers in the model as cofactors71,
and care should be taken to preserve the amount of
information that is available for estimation of the QTL
effect. The benefits of composite interval mapping are
seen in FIG. 3.

The importance of developing models with multiple
QTL is well understood for linked QTL, and has an even
greater role in the estimation and location of epistatic
QTL. The limiting feature in successfully using multiple
QTL models is not our inability to write an equation for
a model, it is our inability to identify the best model, or
subset of models (from potentially millions).
Enumeration of all possible QTL models that consider
the appropriate genetic architecture for the experiment,
as well as linkage and epistasis, is a daunting task.
Accurate and fast simultaneous multidimensional
searches through the most likely models, and their com-
parisons, are required to determine the most feasible
models that warrant further investigation. As we have
seen, one-dimensional searches (for example, interval
mapping and composite interval mapping) have bene-
fited the mapping community, but are limited in their
inability to accommodate multiple linked QTL. Because
a stepwise linear approach to model building57, by
adding and deleting every combination of multiple
(linked) QTL and their interactions, is not computa-
tionally feasible, many investigators72–74 have proposed
solutions by addressing the computational issues rather
than the QTL-mapping method itself. One approach is
to globally search for the optimum multiple QTL geno-
type using GENETIC ALGORITHMS75–78. The application of
genetic algorithm(s) to multiple QTL problems is one of
many beneficial approaches because it allows a sampling
of the QTL models across unequal QTL numbers to be
considered, and because it can be used in conjunction
with any QTL-mapping methodology that is imple-
mented for a multidimensional search of a genome.

An inclusive computational framework for address-
ing many of the previously mentioned challenges,
namely, covariates, non-normal trait distributions,
epistatic QTL and the issues of multiple simultaneous

GENETIC ALGORITHM

Numerical optimization
procedures based on
evolutionary principles, such as
mutation, deletion and selection.



© 2001 Macmillan Magazines Ltd
NATURE REVIEWS | GENETICS VOLUME 3 | JANUARY 2002 | 49

R E V I E W S

some other individual might receive the same random
trait assignment. The debate about permutation or
bootstrap randomization is continuing, and is based on
the argument that a permutation retains the summary
information of the trait, whereas the bootstrap changes
the mean and variance of the bootstrap sample. In both
resampling approaches, the genotypic (marker) assign-
ments remain as in the original data and, therefore, the
genetic map does not change. An additional implication
of not changing the genetic map is that all genotypic
and population information are retained (such as segre-
gation distortion, missing data and recombination frac-
tions). Both resampling methods have been noted as
being computationally demanding techniques that
require more than 1,000 resamples, and each potentially
leads to different results. Additionally, when the models
are very complex, the extension of resampling methods
to these situations quickly becomes computationally too
demanding, as one would have to provide up to 1,000
resamples for every model considered.

Motivated by the computational intensity of the
resampling-based methods, Piepho86 suggests a quick
method for calculating approximate QTL thresholds
that are based on the work of Davies87,88. Because the
Piepho thresholds are theoretically based and do not
retain the previously mentioned genetic specifications,
they remain constant across experiments, even though
it is well known that the environment has a large role in
the variation of a quantitative trait and, therefore, the
accuracy of QTL location. In situations in which the
biological and statistical effects are minimized (for
example, segregation distortion, environmental varia-
tion, small sample size and incomplete data), the theo-
retical and resampling-based thresholds are generally
the same89,90. An example of this can be seen in FIG. 3 in
which the permutation threshold (based on 1,000 per-
mutations) is 3.9, and Van Ooijen’s89 simulation-based
threshold has a value of 4.0.

Dissecting quantitative traits using arrays
Advances in technology are providing tools that allow
the simultaneous quantification of both gene expres-
sion and protein expression (BOX 1). Specifically, gene-
expression arrays have become more accessible in
recent years, and are providing new and abundant lev-
els of information on genome-wide patterns of tran-
scription. It is expected that protein arrays43,44 will
evolve in a similar manner and will provide the same
challenges as incurred by microarray experimentation.
Realizing that routine application of high-quality pro-
tein arrays is yet to be established, this discussion will
focus on gene-expression arrays in which experiments
can be designed to accommodate various treatments in
various situations, and for data to be collected. How
these data are examined is relevant to the dissection of
quantitative traits.

If taken in its simplest setting, expression data for a
single gene can be viewed as a quantitative assessment
of the activity of a gene and how it changes. So, we
can think of change in a particular gene as an expres-
sion-level polymorphism (ELP; D. St Clair and 

Together, these test statistics show the behaviour of the
test in the long run and, therefore, represent the statistical
distribution of the particular test statistic. From this dis-
tribution, one chooses the level of statistical significance
or threshold above which results are considered statisti-
cally significant (valid). This approach is indeed useful if
the model used to simulate the data is the true model.
However, the model rarely describes the complicated rela-
tionships that occur in the genome. For example, epistasis
is difficult to model unless the interacting QTL are
known in advance of modelling.When a detailed model
accurately describes complex relationships between mul-
tiple (interacting) QTL, it is often the case that simula-
tion-based thresholds are the only practical way to assess
statistical significance because alternative approaches are
so computationally demanding (see below).

NON-PARAMETRIC resampling methods83 have provided
a useful alternative to simulation-based thresholds.
Permutation resampling3,68 and bootstrap resam-
pling84,85 have been applied as a means of randomizing
the phenotypic (trait) data for the purpose of evaluating
any test statistic under a null hypothesis that tests for a
QTL (FIG. 3). A permutation randomization of the data
samples phenotypes without replacement. In other
words, traits are randomly assigned to individuals in the
data set with no single trait value being assigned to more
than one individual. A bootstrap randomization of the
data samples phenotypes with replacement such that
after an individual receives a random trait assignment,

DENDROGRAM

A branching ‘tree’ diagram that
represents a hierarchy of
categories on the basis of degree
of similarity or number of
shared characteristics, especially
in biological taxonomy. The
results of hierarchical clustering
are presented as dendrograms, in
which the distance along the tree
from one element to the next
represents their relative degree of
similarity in terms of gene
expression.

NON-PARAMETRIC

Statistical procedures that are
not based on models, or
assumptions pertaining to the
distribution of the quantitative
trait.

Box 3 | Transcriptional profiling with microarrays

A microarray comprises a set of hundreds or thousands of nucleic-acid spots, or
features, on a solid support — often a glass slide. Each spot represents an expressed
sequence, and consists of an oligonucleotide or cDNA probe. When a labelled cDNA is
hybridized to the array, the amount of hybridization to each feature is quantified as an
intensity reading that represents individual gene activity. This provides a global picture
of gene transcript levels, and has become a widely used technique that is being used to
study gene expression during development, in particular disease states and so on.
Various statistical methods50,92–96 can be used to identify statistically significant changes
and groupings of gene expression. At present, these statistical methods are viewed as
either linear-model-based approaches93,94 that account for both biological variation and
technological variation, or multivariate approaches, such as clustering95,96, that allow the
relationships among gene profiles (across time or treatments) to group the genes
according to similar behaviour. Model-based inference is formulated around a scientific
hypothesis that can be tested through a statistical calculation (or statistical test), and
from which statistically significant conclusions can be drawn. Conversely, multivariate
analyses are clustering techniques that are viewed as summary/exploratory in that they
are typically not hypothesis based, and the resulting DENDROGRAMS are not testable.
However, the testability of gene-expression dendrograms has recently been
addressed97,98 to assess statistical significance.
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Genes might be considered one at a time, in
groups, or as the total in the genome. The relation-
ships between the ELP and genetic map can be
achieved by using the framework of Sen and
Churchill to allow the dissection of genomic state and
location. The expression variation is explained
through a statistical relationship (akin to the multidi-
mensional model searches discussed earlier) and
associated with the genome through genetic markers
that are aligned on a genetic map. A single expression
analysis has the potential to identify significant
regions of the genome, but, more interestingly, when
groups of genes are taken together, their coordinated
gene expression (that is, co-variation) has the poten-
tial to uncover associated regulatory segments of the
genome. To accomplish this, it is expected that the
multi-trait analyses that have been developed for
QTL mapping might be useful. The results of ELP
analyses might turn out to be a key factor in under-
standing the role of epistasis in genetic variation, as
the co-variation and relationships between the genes
are an inherent part of the data. If the full sequence of
an organism is available, this approach will be even
more powerful, and not necessarily limited to the
level at which the gene activity is measured (for
example, mRNA, protein or metabolic).

As exciting as these combined approaches might
seem, some caution should be expressed, because the
issues that haunt every statistical analysis remain. And,
although the technological advances are supplying
information at increasingly impressive scales and levels
of molecular detail, we should not forget the many sta-
tistical issues that have come before us in QTL mapping.
Most notable are the statistical issues that are related to
sample size, statistical design and modelling, multiple
testing and statistical significance. It can only be
expected that these statistical issues will continue to pro-
vide challenges to the scientific community, but, if dealt
with appropriately, are not insurmountable.

Conclusion
Not long ago, detecting a QTL was the motivation for
many scientific investigations and was an achievable goal.
Now, locating the multiple interacting QTL that are asso-
ciated with multiple traits, by continually evolving sophis-
ticated statistical analyses, is the goal and the jumping-off
point for further investigations that are supported by
technology and result in even more data.What this tech-
nological and statistical progression has hopefully shown
is that new levels of data are being collected that explain
the flow of information through the central dogma (BOX

1). Quantitative variation is evident at each of these stages,
and is supplying us with the knowledge that, when com-
bined with proper statistical attention, is unprecedented
in its power to unravel the inner workings of a genome.
As we look ahead to developing new technologies,
methodologies and training new minds, we must remem-
ber that no single technological advance or statistical
method will unravel the genomic mystery. Instead, it will
be the conglomeration of ideas, techniques and analyses
that provide the end to this endeavour.

R. Michelmore, personal communication), which, in
part, reflects the underlying genetic variation. ELPs
can be associated with regions of the genome, much
like QTL. As there are thousands of genes, some of
which are functionally related, this approach seems to
have great potential for dissecting the complex rela-
tionship among and between genes across some con-
dition or set of conditions. Essentially, the same
framework and machinery that exists for QTL map-
ping can now be superimposed on the gene-expres-
sion data, and can be used as a means to identify
regions of a genome associated with the expression of
groups of (potentially, interacting) genes. (See BOX 3

for basic information on microarray analysis, and REFS

38,50 for further reading.)
Although gene-expression analysis and its results pro-

vide valuable information towards understanding gene
function, these results are not helpful in relating gene
function to complex traits, because they do not address
anything other than the relative change in gene expres-
sion across treatments (for example, condition or time).
Total genomic approaches, although powerful in their
ability to provide an understanding of complete meta-
bolic, regulatory and developmental pathways, will most
likely be limited in their explanation of the complexities
of segregating populations. Towards this end, Jansen and
Nap52 have recently outlined a strategy called ‘genetical
genomics’ that couples the power of traditional genetics
with the recent technological successes of genomics.
Although they point out that genetical genomics is likely
to be most successful in self-compatible plants, it should
be applicable to any segregating population and 
should benefit directly from more advanced QTL frame-
works, such as those detailed by Sen and Churchill. The
details of how ELP mapping can be accomplished are in
the process of being worked through, and therefore must
be considered premature. My purpose here is to expand
on the vision of Jansen and Nap to provide a forecast of
how genomic regions that are associated with variation
in gene expression could be identified using existing QTL
methods and software.

We have seen that QTL methodology is powerful for
identifying the genomic regions that are associated with
quantitative traits. The same QTL methodology has
great potential to associate changes in gene expression
with a genetic map for the purpose of pursuing QTL at
the molecular level and determine gene function. QTL
experiments continue to widen our understanding of
quantitative variation and complex interactions, but
they are failing to identify anything more than large
genomic segments. Those QTL experiments that have
shown progress have been refined investigations37,55,91,
which use fine mapping, and have delivered precise
results that account for a great proportion of the quan-
titative variation. However, so far, no one has identified
all QTL (major and minor) that explain epistasis, let
alone total variation in a quantitative trait. With this as
motivation, one can look to the future and realize that
gene-expression data are quantitative assessments of
gene-related variation that can benefit from the tools
developed for QTL analysis.
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Online links

DATABASES
The following terms in this article are linked 
online to:
OMIM: http://www.ncbi.nlm.nih.gov/Omim/
multiple sclerosis

FURTHER INFORMATION
An alphabetical list of genetic analysis software:
http://linkage.rockefeller.edu/soft
Minitab: http://www.minitab.com
QTL mapping software:
http://dendrome.ucdavis.edu/qtl/software.html
QTL references:
http://www.stat.wisc.edu/~yandell./statgen/reference/qtl.html
Quantitative genetics resources:
http://nitro.biosci.arizona.edu/zbook/book.html
SAS: http://www.sas.com
Splus: http://www.umich.edu/cscar/software/splus.html
Access to this interactive links box is free online.




