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ABSTRACT
Motivation: The majority of Next-Generation Sequencing (NGS)
technologies effectively sample small amounts of DNA or RNA that
are amplified (i.e., copied) prior to sequencing. The amplification pro-
cess is not perfect, leading to extreme bias in sequenced read counts.
We present a novel procedure to account for amplification bias and
demonstrate its effectiveness in mitigating gene length dependence
when estimating true gene expression.
Results: We tested the proposed method on simulated and real data.
Simulations indicated that our method captures true gene expres-
sion more effectively than classic censoring-based approaches and
leads to power gains in differential expression testing, particularly for
shorter genes with high transcription rates. We applied our method to
an unreplicated Arabidopsis RNA-seq data set resulting in disparate
gene ontologies arising from gene set enrichment analyses.
Availability: R code to perform the RASTA procedures is freely
available on the web at www.stat.purdue.edu/∼doerge/
Contact: doerge@purdue.edu

1 INTRODUCTION
One cause of technical variation in Next-Generation Sequencing
(NGS) studies is amplification bias. Fragmented cDNA is subje-
cted to amplification via polymerase chain reaction (PCR) in all
NGS applications (Margulies et al., 2005; Mardis, 2008; Bennet,
2004). The amplification process is not perfect, and reads can suf-
fer from amplification bias (Chepelev et al., 2009). This means that
there may be extra copies of certain reads, perhaps tens of thousands
of extra copies. The typical statistical procedure to correct for this
bias is to ignore any duplicate reads by limiting the number of reads
starting at the same base to be 1 read. This censoring procedure,
herein referred to as “Censoring,” ignores the possibility of natu-
ral read duplication (multiple copies of the same read which is not
due to amplification bias), and thus underestimates true read count.
For example, in the human liver samples analyzed by Marioni et al.
(2008), 10-15% of the genic bases exhibited duplication, accounting
for approximately 30% of the observed reads. While approximately
only 1% of the bases exhibited more than 10 duplicated reads, the
number of reads starting at these bases comprised approximately
10% of the total reads. The prevalence of duplicated reads in these
samples illustrates the need for statistical methods that are able to
correct for amplification bias without needlessly censoring natural
duplication.
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The effects of Censoring on gene expression depend primarily on
gene length and rate of transcription. Under Censoring, at most only
one read is considered to originate from each nucleotide in a gene.
This artificially limits the estimate of gene expression to values less
than or equal to gene length. Assuming that the sonication process
randomly fractionates the mRNA, the expected occurrence of natu-
ral read duplication decreases as gene length increases for a given
level of gene expression. Thus, the effects of Censoring decrease
as gene length increases. Conversely, for a given gene, the effects
of Censoring are more pronounced when gene transcription incre-
ases or when the total number of reads increases. In these cases,
the sensitivity to detect differences between genes of short length
is typically lower than that for longer genes when reads are cen-
sored. This length bias can be dramatically reduced when natural
read duplication is allowed since the dependence on gene length is
mitigated.

We present a novel approach to correct for amplification bias
while allowing for natural duplication. The proposed method,
Robust Adjustment of Sequence Tag Abundance (RASTA), accu-
rately estimates true tag abundance by separating legitimate reads
from incorrectly amplified reads through a novel application of hie-
rarchical clustering. Further, it sets appropriate thresholds for the
amplified reads through a novel application of the zero-truncated
Poisson distribution. The impact of properly accounting for amplifi-
cation bias using RASTA when testing for differential gene expres-
sion testing, both in terms of power and ranking of results, are
investigated.

2 METHODS
Observed RNA-seq reads are assumed to be generated by two distinct pro-
cesses: legitimate reads (including natural duplication) and amplification
bias. For a given mapped read, we define “read count” as the number of obse-
rved mapped reads which start at the same base in the genome. Let xgi be the
read counts for base i = 1, . . . , n for a given gene g, where n is the number
of bases with observed reads in gene g. Given that the xgi are generated by
two distinct processes, the goal in correctly accounting for amplification bias
is to accurately classify each xgi into legitimate and erroneous clusters.

RASTA approaches this goal in two steps: hierarchical clustering and
distributional approximation. Hierarchical clustering, using complete lin-
kage and Canberra distance (Lance and Williams, 1966), is used to cluster
the read counts into two distinct groups. Since NGS gene expression studies
produce discrete read counts, clustering is performed on the unique read
count values. Let (ξg1 , . . . , ξ

g
m), where m ≤ n, be the unique read counts

values corresponding to (xg1, . . . , x
g
n) for gene g. The Canberra distance for
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two unique read counts (ξgi , ξ
g
j ) is defined as

dgij =
|ξgi − ξ

g
j |

|ξgi + ξgj |
. (1)

In practical settings and simulations m << n, thus providing a mar-
ked computational time improvement over traditional clustering algorithms
based on all read counts.

In order to estimate the distribution of the legitimate reads for each gene
g, we assume that the sonication and selection process (Bennet, 2004) ran-
domly fragments the mRNA. Given this random fragmentation process,
let xgi be the read counts for the n legitimate bases with observed reads
for a given gene g. Since xgi are restricted to be positive only, the legi-
timate base counts for a given gene are modeled using a zero-truncated
Poisson(γ∗g ) (ZTP) distribution via the VGAM package (Yee, 2010) in R
(R Core Development Team, 2011).

For an estimated value of γ̂∗g , a threshold T ∗
g can be defined such that any

counts greater than T ∗
g at a given base location can be considered to be a

result of amplification bias. Here, T ∗
g is defined as the 95th percentile of the

ZTP (γ∗g ) distribution. Then, for each xgi , define

ygi = min(xgi , T
∗
g ) (2)

and the digital gene expression (DGE) estimate for gene g is defined as

DGEg =
∑
i

ygi . (3)

3 SIMULATION

3.1 Simulation Design
A simulation study was conducted to evaluate and compare the performa-
nce of RASTA to “Censoring”. For 1,000 genes, gene counts were simulated
following Auer & Doerge (2011) with the following modifications: Amplifi-
cation bias was incorporated by setting the prevalence of bias to πbias

g = .05
(or 1 out of every 1000 bases), and the bias DGE count to

λbiasg ∼ exp(Poisson(λ = 4)) (4)

for each of the 1,000 genes. The value of πbias
g and the distribution of λbiasg

are based on the Arabidopsis samples sequenced in Lister et al. 2008. Gene
lengths were also simulated based on Arabidopsis with

Lg ∼ exp(Normal(µ = 7, σ = 2)). (5)

For a given gene with parameters λg and λbiasg , the legitimate reads follow

Poisson(γg =
λg

Lg
) (6)

and the counts arising from amplification bias follow

Poisson(πbias
g

λbiasg

Lg
). (7)

For each gene, these counts were preprocessed by either truncating all counts
to 1 (the current Censoring practice) or via RASTA, in addition to investi-
gating the uncorrected data. These counts were then summed, giving rise
to three separate DGE values for each gene. This process was repeated 500
times to account for simulation-to-simulation (sampling) variability.

For the 1,000 simulated genes, both non-differentially expressed (500)
and differentially expressed (500) genes were generated for three replicates
in two treatments. DGE rates for each gene were generated (Equations 6 - 7)
with the following modifications: for differentially expressed genes, means
were sampled separately from (6), yielding λT1

g and λT2
g for treatments T1

and T2; for non-differentially expressed genes, the means were sampled
together (λg). In addition, bias prevalence was set at πbias(T1)

g = .05

and π
bias(T2)
g = .02 for the two treatments. For each simulated data
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Fig. 1. Gene length bias simulation results. FDR-adjusted p-values are com-
pared against corresponding gene lengths for each of the three read count
adjustment methods Censoring, RASTA, No Correction). The Censoring
approach displays a bias of significant p-values toward longer genes. This
bias is not evident in the RASTA and No Correction p-values, though
RASTA allowed for more significant test results.

set, we applied RASTA and “Censoring” to the observed base counts.
The adjusted gene counts were analyzed for differential expression using
the exact negative binomial model in edgeR under a common dispersion
assumption (Robinson and Smyth, 2008). P-values were adjusted using the
Benjamini-Hochberg procedure in edgeR (Benjamini and Hochberg, 1995).

3.2 Simulation Results
Genewise log fold changes, as estimated by edgeR, were compared against
simulated true log fold changes across the 1,000 genes in each simulation.
RASTA yields the greatest correlation between estimated and true values
(r=0.52), compared to the correlations yielded by uncorrected (r=0.32) and
censored (r=0.29) data. In order to assess the effects of gene length on
differential expression estimates, adjusted p-values and gene length were
compared using 2D histograms (Figure 1) for each of the three read count
adjustment methods (Censoring, RASTA, No Correction). By more accura-
tely estimating DGE using RASTA, especially for shorter genes with high
DGE, RASTA is able to all but eliminate length bias in these simulations.

4 APPLICATION TO ARABIDOPSIS

4.1 Materials and Methods
The Censoring and RASTA approaches were used to preprocess the unre-
plicated Arabidopsis RNA-seq data from Lister et al. (2008), and were
compared to uncorrected read counts. In this study, met1-3 mutants (defici-
ent in methylation) were compared to wild-type (Col-0) controls. Gene start
and stop locations were used to define 22,266 annotated genomic regions,
and were based on the Columbia reference genome gained from The Arabi-
dopsis Information Resource (TAIR, Swarbreck et al. (2008)). Although the
total number of mapped reads for the met1-3 and Col-0 samples were appro-
ximately equal (5,997,689 and 6,283,230, respectively), the occurrence of
read duplication, either from natural duplication or amplification bias, was
dramatically different between the two samples (Table 1).

Gene counts under each of the control procedures were analyzed using
the exact negative binomial model in edgeR (Robinson and Smyth, 2008).
P-values were adjusted using the Benjamini-Hochberg FDR procedure (Ben-
jamini and Hochberg, 1995), and the nominal significance threshold was
set at α = 0.01. Gene set enrichment analysis (GSEA) was performed on
the resulting lists of significant genes using agriGO (Du et al., 2010; Berg
et al., 2009). The agriGO toolkit performs GSEA based on a hypergeometric
distribution to assess the over- or under-representation of gene ontologies
in the lists of significant genes when compared to all genes with annotated
ontologies, and corrects for multiple testing using FDR under dependence
assumptions (Benjamini and Yekutieli, 2001). The collection of gene ontolo-
gies for each differentially expressed gene are collated, and if the proportion
of a particular ontology in the differentially expressed genes is significantly
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Table 1. Distribution of read duplication for the unreplicated
met1-3 and Col-0 Arabidopsis lines in Lister et al. (2008). The
Col-0 wild-type sample displays considerably more duplication
than the met1-3 mutants at each of the levels presented.

met1-3 Col-0
Total Reads 5997689 6283230

Unique Reads 2991256 1264135
Single bases with ≥ 5 reads 139972 285610

Single bases with ≥ 10 reads 38718 72227
Single bases with ≥ 100 reads 232 849

Max number of reads at a single base 5525 17063

different (higher or lower) than the corresponding proportion in the entire
gene set, that function is reported in agriGO.

4.2 Results
The presence of DNA methylation typically serves as a transcriptional
regulator in eukaryote species; when depleted, gene transcription typically
increases (Riggs, 1975; Robertson, 2005; Shames et al., 2007). The RASTA
and No Correction approaches yielded many more statistically significant
differentially expressed genes than the Censoring method (8912, 9366, and
2855 genes, respectively). This increase is in concordance with the biolo-
gical knowledge that when comparing the two Arabidopsis lines, met1-3 is
deficient in methylation maintenance which reduces the degree of gene regu-
lation (Lister et al., 2008). The differentially expressed genes vary between
the three approaches, though nearly all of significant genes yielded by the
Censoring approach were also found in the other two approaches. In addi-
tion, the RASTA and uncorrected approaches yielded more significant genes
with shorter length than did the Censoring approach (Figure 2). The agriGO
GSEA results based on the three gene lists (Table 2) display a stark contrast
in enriched gene ontologies, indicating that appropriate amplification bias
control is important for discovery and downstream confirmation studies. In
fact, of the top ten significant ontologies produced by each approach, only
two are similar between the Censoring and RASTA, and only six are similar
between RASTA and No Correction.

5 DISCUSSION
Accurately estimating digital gene expression, and subsequently dif-
ferential gene expression, is a primary challenge in Next-Generation
RNA sequencing studies. One of the key sources for technical
variation between samples, and between or within treatments, is
amplification bias. Controlling for this bias not only improves the
accuracy of DGE estimates, it dramatically changes downstream
analyses. Since confirmatory studies often target the most statisti-
cally significant differentially expressed genes (i.e., the genes with
the lowest p-values), the ordering of results plays an important role
in downstream analyses.

As the costs for sequencing decrease, we anticipate that resea-
rchers will want a greater number of sequenced reads in order to
more accurately detect differences in expression levels between tre-
atments. This scenario provides some cause for caution, as blindly
seeking high read counts invites the possibility of over-amplification
in order to achieve a particular observed sequencing depth or cove-
rage. If sequenced reads are systematically over-amplified, as is the
case in Shiroguchi et al. (2012), the hierarchical clustering used in
RASTA erroneously classifies many amplified reads as legitimate,
therein overestimating true read counts. In these cases, research-
ers are relegated to only two approaches: Digital RNA Sequencing
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Fig. 2. Distribution of significantly differentially expressed genes under
Censoring (red), RASTA (blue), and No Correction (orange) amplification
bias control procedures for the unreplicated met1-3 and Col-0 Arabidopsis
lines in Lister et al. (2008). The RASTA and uncorrected approaches both
yielded many more significant results than the Censoring method, and these
significant genes were shorter on average than the Censoring results.

(DRS, (Shiroguchi et al., 2012)), when the additional amplification
is expected before sequencing; and Censoring, when the ampli-
fication is not planned. DRS is a promising biological approach
to account for amplification bias, but its use comes at significant
cost to the researcher. First, it requires greater sequencing depth
than conventional RNA-seq studies in order to effectively sample
read/barcode pairs. Secondly, DRS prohibits barcoding for efficient
sequencing. Where several samples could be sequenced in the same
lane using sample-specific barcodes normally, the DRS procedure
requires separate lanes for each sample. Finally, at least in the E.
coli data from Shiroguchi et al. (2012), the extra time and seque-
ncing costs associated with DRS could be eliminated by just using
the Censoring approach, since both approaches yield very similar
results in these data. This would be true when reads are systemati-
cally over-amplified in general. However, the Censoring approach
is insensitive to natural read duplication, which in turn results in
an underestimation of true DGE when reads are actually naturally
duplicated.

Achieving greater sequencing depth can be done correctly, with-
out limiting the choice in amplification bias control procedures,
simply by using a larger sample of mRNA from subjects. As seque-
ncing depth increases due to larger biological samples of mRNA, the
occurrence of legitimately duplicated reads will increase. Assuming
that reasonable amplification is employed prior to sequencing, the
proposed RASTA approach is well-suited to account for amplifica-
tion bias even in the context of increased natural read duplication. In
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Table 2. Gene Set Enrichment Analysis results (top five ontologies) from the
agriGO toolkit under Censoring, RASTA, and No Correction amplification bias
control procedures for the unreplicated met1-3 and Col-0 Arabidopsis lines in
Lister et al. (2008). The “GO Term” and “Description” columns represent the
gene ontologies enriched in the significant gene lists when compared to all Arabi-
dopsis gene ontologies. The p-values are based on the hypergeometric distribution,
and are adjusted via FDR under dependence (Benjamini and Yekutieli, 2001). The
resulting enriched ontologies for the Censoring and RASTA approaches are quite
disparate, while the RASTA and No Correction approaches several similar onto-
logies. These results indicate that the control procedure is highly influential in
downstream analyses.

Censoring
GO Term Ontology Description Adj. p-value
GO:0009628 Response to abiotic stimulus 2.2e-19
GO:0050896 Response to stimulus 8.2e-17
GO:0009791 Post-embryonic development 1.6e-16
GO:0006950 Response to stress 3e-16
GO:0044262 Cellular carbohydrate metabolic process 3.3e-16

RASTA
GO Term Ontology Description Adj. p-value
GO:0009791 Post-embryonic development 4.2e-76
GO:0034641 Cellular nitrogen compound metabolic process 5.7e-33
GO:0032501 Multicellular organismal process 2.4e-24
GO:0009987 Cellular process 5.9e-24
GO:0007275 Multicellular organismal development 1.4e-23

No Correction
GO Term Ontology Description Adj. p-value
GO:0009791 Post-embryonic development 1.4e-80
GO:0034641 Cellular nitrogen compound metabolic process 1.6e-40
GO:0010035 Response to inorganic substance 1.1e-30
GO:0009987 Cellular process 1.1e-29
GO:0006950 Response to stress 6.3e-23

these settings, the Censoring approach will consistently underesti-
mate the true DGE; on the other hand, the DRS approach is likely to
produce similar results to RASTA, though with greater restrictions
and increased sequencing cost.

The clustering and distributional considerations made in RASTA
assume that the mRNA fragmentation process is random, and the
amplification process is unbiased to genomic content. These assum-
ptions may be violated under GC amplification bias, differential
isoform expression, or genomic sonication bias. In these cases, the
zero-truncated Poisson (ZTP) distribution used in RASTA could be
replaced by a similarly formed zero-truncated Negative Binomial
(ZTNB) distribution. When the ZTNB distribution was applied to
simulated data and the Lister et al. (2008) Arabidopsis data, the
resulting model fits were very similar to the ZTP model fits, and
the analyses took nearly three times longer when using the ZTNB
parameterization. However, the negative binomial approach may be
more applicable in other data sets, and is a straightforward extension
to RASTA. In addition, the hierarchical clustering and ZTP/ZTNB
estimation procedures used in RASTA could serve as a precursor
to subsequent isoform discovery and abundance estimation analyses
proposed by Mezlini et al. 2013.

As a statistical procedure, RASTA costs very little to the resea-
rcher since it is computationally efficient and requires no additional
sequencing or sequencing reagents. At the same time, the hiera-
rchical clustering and zero-truncated Poisson estimation procedures
used in RASTA are powerful and are able to accurately classify
legitimate and erroneous reads when both exist for a given gene.
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