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Abstract Detection of quantitative trait loci (QTL) in

breeding populations offers the advantage that these QTL

are of direct relevance for the improvement of crops via

knowledge-based breeding. As phenotypic data are rou-

tinely generated in breeding programs and the costs for

genotyping are constantly decreasing, it is tempting to

exploit this information to unravel the genetic architecture

underlying important agronomic traits in crops. This

review characterizes the germplasm from breeding popu-

lations available for QTL detection, provides a classifica-

tion of the different QTL mapping approaches that are

available, and highlights important considerations con-

cerning study design and biometrical models suitable for

QTL analysis.

Introduction

Most important agronomic traits are quantitatively inher-

ited as opposed to traits that are controlled by a single gene

(monogenic) or by a few genes (oligogenic) (Lynch and

Walsh 1998; Falconer and Mackay 1996). The nature of

quantitative traits is that their expression is controlled by

tens, hundreds, or even thousands of quantitative trait loci

(QTL), most of them having only a small effect on the trait

(Mackay et al. 2009). Since the advent of molecular

markers, researchers and breeders have aimed to identify

functional markers associated with these QTL for

implementation of marker-assisted selection (Dekkers and

Hospital 2002). Historically QTL detection started with

linkage mapping in biparental populations. As the results

were often not transferable to other populations, research-

ers opted for meta-QTL studies, and more recently for the

joint analysis of multiple segregating populations. In

addition, technological advances in recent years leading to

an abundance of markers even for polyploid species and

the option for full-genome sequencing for crops (Ganal

et al. 2009; Varshney et al. 2009) have driven the devel-

opment of novel QTL mapping approaches. Different

aspects of QTL mapping have been addressed in recent

reviews (e.g., Jansen 2007; Nordborg and Weigel 2008;

Myles et al. 2009; Van Eeuwijk et al. 2010b) but these have

not focused on the specific requirements of QTL detection

in breeding populations, i.e. populations derived from

applied breeding programs.

This review aims to bridge this gap and provide an

overview of the current status of methods used for QTL

detection in breeding populations. In particular the objec-

tives are to (1) characterize the germplasm available for QTL

detection in breeding programs, (2) classify the different

mapping approaches with regard to the composition of the

mapping population, the use of identity-by-descent infor-

mation, the exploitation of linkage disequilibrium, and the

biometrical model used for analysis, (3) outline important

considerations resulting from the choice of a QTL mapping

approach and (4) discuss the contribution of epistasis to the

expression of complex traits in breeding populations.

Properties of breeding populations

Breeding populations are different from natural popula-

tions in that instead of undergoing natural selection they
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are subject to selection by the breeder. In addition, the

mating process is also controlled by the breeder. Thus,

some of the forces affecting natural populations are also

active in breeding populations (e.g., genetic drift), but their

composition and genetic properties are tightly controlled.

As breeding populations represent elite material their

genetic basis is generally much smaller than that of natural

populations. Hence, QTL affecting the trait in natural

populations may not be segregating in breeding popula-

tions due to fixation. Consequently, QTL mapping exper-

iments based on crosses between elite and exotic material

have a high chance of detecting QTL, but these are often

only of relevance for applied plant breeding for the intro-

gression of traits from exotic material, but not for the

selection within elite material (Jannink et al. 2001). By

contrast, QTL mapping in elite breeding material offers the

possibility to dissect the genetic architecture underlying

quantitative traits in breeding populations and to identify

QTL which are of direct relevance for breeders.

All breeding programs follow a certain general scheme

(Fig. 1a). New genotypic variation is generated by crosses

between promising lines. The resulting families will, in

early generations (e.g. F2), be rather large and consist of

unselected material. These plants are only phenotyped at

few locations and the heritability is low or moderate. The

selection intensity is high and consequently mid-generation

lines are already selected and family sizes reduced. These

plants are phenotyped more intensively and further selec-

tion results in highly selected lines in late generations,

which are phenotyped most intensively resulting in the

highest heritabilities. This iterative process is initiated

every year such that at each time-point, plant material from

all different stages is available representing a mixture of

breeding populations with related individuals.

Classical QTL mapping is achieved using biparental

populations. In breeding programs these early-generation

families are often of insufficient population size to warrant

a high QTL detection power and are phenotyped with low

heritability. Thus, single families from breeding programs

will in most cases be inappropriate for QTL detection. QTL

mapping experiments can rather be carried out on multiple

early- or mid-generation families, or with a diverse panel

of late-generation lines that at the same time represent the

parents of future crosses. Both the selection of promising

parental lines from the breeding pool and the selection of

superior progenies within families can be facilitated by the

detection of QTL. The biometrical approaches available for

QTL detection, even though not specifically designed for

that purpose, reflect these two scenarios.

It must be noted here that with the exception of families

directly derived from F1 plants (F2 or DH), the lines in

breeding populations that are used for QTL analysis are

phenotypically preselected resulting in unequal allele fre-

quencies at the loci under selection. This unidirectional
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selection process can have a significant effect on the QTL

detection power and the estimation of QTL effects. Bio-

metrical approaches to account for this problem in the

analysis have been devised for biparental populations (e.g.,

Melchinger et al. 2012), but still need to be developed for

populations comprising multiple families.

Classification of QTL mapping approaches

Since the first QTL mapping experiments in biparental

populations, many QTL mapping approaches have been

implemented which are in part similar but also possess

conceptual differences. The following section provides a

classification of the different QTL mapping approaches.

Family and population mapping

One distinguishing feature is whether QTL detection is

done based on segregating families or on a diverse panel of

lines. Following Myles et al. (2009) these are further

referred to as family mapping and population mapping,

respectively (Fig. 1b). The latter represents a diverse panel

of lines but can also be regarded as many families with

very small family size (i.e. only one individual per family

in the most extreme case). Nevertheless, there is no clear

distinction but rather a smooth transition between family

and population mapping (Fig. 1b). While family mapping

investigates only few alleles per locus at a time (the alleles

present in the parents of the families), population mapping

includes many more alleles in the analysis (potentially as

many as there are lines) and therefore represents a wider

sample of germplasm and genetic backgrounds.

Identity-by-state and identity-by-descent

Another way of characterizing the different mapping

approaches is by their utilization of identity-by-state (IBS)

or identity-by-descent (IBD) information (Fig. 1c). IBS

refers to alleles that are identical irrespective of whether

they are inherited from a common ancestor. IBD estimates

on the other hand provide a measure of whether alleles that

are IBS are copies of the same ancestral allele; that is

whether they are identical by descent. Conceptually IBD

estimates can also be interpreted as predictions of IBS at

unobserved loci (Powell et al. 2010).

IBS approaches have the disadvantage that plants car-

rying identical marker alleles are grouped together, but in

case linkage disequilibrium (LD) between the marker and

the QTL is not complete, not all plants with this marker

allele will carry the positive QTL allele (Fig. 2). This is

especially true for biallelic marker types such as commonly

used SNPs. The grouping of markers to haplotypes

(Fig. 2b) or the estimation of IBD probabilities helps to

alleviate this problem (Jansen et al. 2003). Association

mapping approaches as used nowadays operate with iden-

tity-by-state information of each marker. By contrast,

linkage mapping methodology is an identity-by-descent

approach that traces the parental origin of the alleles.

However, information beyond the parents is not considered

and all parents are regarded as unrelated, an assumption

that is certainly not valid in breeding populations. In order

to incorporate relationship information above the parent’s

level, more sophisticated identity-by-descent approaches

have been suggested (e.g., Wu and Zheng 2001; Meuwis-

sen et al. 2002; Van Eeuwijk et al. 2010a). These use

pedigree and/or marker information to obtain IBD esti-

mates at each tested locus which can be integrated into the

model in the form of a symmetric matrix of IBD proba-

bilities among all lines.

The availability of full-genome sequence data will

enable a further step toward the true relationships between

the genotypes of the mapping population. On the other

hand, sequence data will also identify all causal polymor-

phisms such that the mapping approaches will no longer

rely on LD between a marker and the QTL, rendering IBD
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estimates unnecessary. The contribution of intragenic

epistasis, i.e. favorable haplotypes, to the heritability of

complex traits (Würschum et al. 2012a), however, may

make the use of haplotypes still worthwhile. One difference

between these IBS and IBD approaches is the theoretical

reference population. The following reference populations

are conceivable: the current population under study, the

parental population, intermediate founder individuals some

generations before the parents, or the ultimate founder lines

even further back in the pedigree. It must be noted that the

QTL effects that are estimated are specific for the chosen

reference population. Thus, if an ancient base population is

used, the genetic variance and the effects are specific for

this ancient base and are more difficult to interpret. It is

therefore convenient to use approaches with the current

population as the base (Powell et al. 2010).

Exploitation of linkage disequilibrium

As implied by the name, linkage mapping utilizes linkage

whereas association mapping, also referred to as linkage

disequilibrium mapping, is based on linkage disequilibrium

between markers and the QTL (Fig. 2a). Association

mapping approaches are advantageous as they facilitate a

higher mapping resolution. The drawback of association

mapping is its reduced QTL detection power, which is

linearly dependent on the LD between the QTL and the

marker. QTL with small effects can only be detected if they

are in strong LD with a marker (Van Inghelandt et al.

2011). In addition, incomplete LD between a marker and a

QTL will lead to an underestimation of the variance

explained by the QTL. Again, the availability of sequence

data and consequently of the causal polymorphisms

(LD = 1) will eliminate this disadvantage of association

approaches. The methodology is applicable to both popu-

lation and family mapping. Applied to the latter, the

approach exploits the LD generated by linkage in addition

to the historical LD present between the parental lines. The

inclusion of an IBD matrix or of a variance–covariance

matrix for the QTL effect calculated based on pedigree

and/or marker information can also be interpreted as the

addition of linkage disequilibrium information to a linkage

analysis (Van Eeuwijk et al. 2010a). Such approaches

exploiting linkage and LD thus potentially offer a high

QTL detection power combined with a good mapping

resolution.

Biometrical models for QTL detection

Classical linkage mapping methodology operates with

estimated conditional probabilities instead of marker data

alone and uses background markers as covariates to control

for QTL outside the genomic region of interest (Jansen and

Stam 1994; Zeng 1994). This approach is also applicable to

family mapping as it can be extended toward multiple

segregating families (Blanc et al. 2006). Association

mapping, which has been developed by human geneticists,

has recently been adopted by plant geneticists and applied

to population mapping and to family mapping (Thorns-

berry et al. 2001; Breseghello and Sorrells 2006; Zhao et al.

2007; Harjes et al. 2008). To detect QTL in populations

with complex pedigree, mixed models (e.g. Parisseaux and

Bernardo 2004; Yu et al. 2006; Van Eeuwijk et al. 2010a)

and Bayesian approaches (e.g. Bink et al. 2002, 2008;

Bauer et al. 2009; Gasbarra et al. 2009) have been pro-

posed. An alternative to the joint analysis of experimental

data are meta-QTL analyses, which compare QTL results

from different experiments and can identify commonly

detected QTL.

In the context of a mixed model analysis, the QTL can

be modeled as fixed or as random effect. Generally, the

objective of a fixed effect approach is to estimate

the effects of specific alleles, whereas a variance due to the

effect is estimated if QTL are modeled as random. An

advantage of fixed QTL effects is that the test for signifi-

cance is less stringent, and in addition fixed QTL effects

readily allow the estimation of an effect of each allele and

thus the identification of the favorable allele as well as

lines carrying that allele. However, to impose a variance–

covariance structure on the QTL effect (e.g., IBD matrix) it

must be modeled as random. Incorporating kinship infor-

mation by mixed models has recently also been shown to

be advantageous for QTL detection in populations derived

from genetically complex crosses that have been subject to

selection (Malosetti et al. 2011).

Design of QTL mapping experiments and important

considerations

The above-mentioned examples show that different

approaches are available for QTL detection in breeding

populations. There are, however, conceptual differences

between the approaches and the advantages and limitations

that need to be considered are discussed here.

Choice of the mapping population

The choice between population mapping (parents or late

generations) or family mapping (early or mid generations),

and consequently the composition of the mapping popu-

lation, greatly depends on the intention of the experi-

menter. Population mapping evaluates individual lines

from the breeding pool while family mapping investigates

the effects of QTL within families. If the experimenter is

interested in an analysis of QTL present in the potential
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parents of future crosses then a population mapping

approach should be taken. Subsequent to the selection of

promising parental lines, new variation in breeding pro-

grams is accomplished by crosses between these lines.

Consequently, breeders are also interested in QTL that

facilitate the identification of superior lines within such

crosses and to this end family mapping is the appropriate

choice.

For population mapping, the composition of the data set

is crucial as the effect of favorable alleles can only be

detected if they are present in the population at a certain

frequency. If the experimenter is interested in QTL for a

resistance trait, for example, then enough plants carrying

that resistance must be included in the population since

QTL with low minor allele frequency will not be detectable

(Myles et al. 2009). The experimenter should also be aware

that such lines often have a lower performance for other

traits, e.g., yield, which means that yield QTL will be

identified that distinguish the resistance carrying lines from

the elite lines. These QTL are only of use for the breeder to

clean the genetic background when the resistance is

introduced into elite material, but will not be informative

within elite material. In breeding programs this situation is

often encountered when plant material from pre-breeding

programs is included in the mapping population. These

genotypes enrich the population with new alleles and can

increase the genotypic variance but a careful interpretation

is required for the implementation of the detected QTL

(e.g., von der Ohe et al. 2010; Miedaner et al. 2009). In

addition, the mapping population must have a certain size,

as small population sizes typically lead to the detection of

only large effect QTL and increase the chance of false

positives (Wang et al. 2011).

The design of family mapping experiments is also an

important issue. As mentioned later, the LD generated by

the design is minimized by a high number of parental lines

(Würschum et al. 2012b). Mating designs including many

parents with a balanced contribution are, for example,

single round robin or double round robin designs. Popu-

lations derived from breeding programs will generally not

follow such a specific design and will include families of

varying size. This alone, however, will not have a strong

negative impact on the QTL analysis. Nevertheless, when

compiling a breeding population for a family mapping

experiment the aim should be to balance the contribution of

parental alleles (Liu et al. 2012a). If a particular parent

would only contribute to a single small family, the QTL

detection power for these alleles would be low. An

advantage of family mapping over population mapping is

that it enables the detection of QTL that are only present in

the breeding population at low frequency, as the controlled

crosses allow the frequency of such QTL to be artificially

increased (Myles et al. 2009). The QTL detection power in

family mapping will be largely determined by the popu-

lation size (Verhoeven et al. 2006). Large population sizes

([500 individuals) are required to detect QTL with med-

ium effect size and to enable the detection of QTL with

small effects the population size must be increased even

further.

Collection of phenotypic data

An important issue for QTL detection in breeding popu-

lations is that the phenotypic data from breeding programs

is often generated by combining multiple trials thus

resulting in unbalanced designs. For population mapping,

Wang et al. (2011) have recently compared balanced with

unbalanced data sets and found that balanced data sets may

be advantageous in reducing the number of false-positive

QTL. Despite the potential problem of an inflated false-

positive rate, these results demonstrate that phenotypic data

from breeding programs can be used for QTL detection

without the need for specialized balanced experimental

designs. In line with this, approaches have been suggested

to mine existing phenotypic and genotypic data that are

routinely generated in breeding programs for the detection

of QTL (Parisseaux and Bernardo 2004; Yu et al. 2005).

Another important consideration is that a statistically

sound joint analysis of the phenotypic data requires over-

lapping genotypes between different trials, locations and

years (breeding cycles). As the genotypes within the

breeding programs are constantly changing, the checks

included in each field trial appear predestined for this

purpose. In breeding programs these are, however, often

chosen by the local breeder and thus not overlapping. In

order to link different phenotypic data in a joint analysis, it

therefore appears advisable to use common checks

throughout the breeding program. If checks must be

changed over time, then not all of them should be replaced

at once, to allow an overlap with previous years.

Another crucial factor that strongly determines the

success of a QTL mapping experiment is the phenotyping

intensity. High heritabilities are a prerequisite for reliable

QTL results and a high predictive power of the detected

QTL i.e. a low bias in the estimation of the proportion of

genotypic variance explained by these QTL (Bradbury

et al. 2011; Liu et al. 2012a). In addition, if breeding

germplasm is selected for a QTL mapping approach, it may

be sensible to replace the casual measurements commonly

used in breeding trials with more careful measurements to

fully exploit the potential of QTL detection approaches

(Wang et al. 2011). To take full advantage of the vast

amount of phenotypic data generated in breeding programs,

a comprehensive database management system that allows

the integration of phenotypic and genotypic data is cer-

tainly advantageous (Heckenberger et al. 2008).
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Confounding effects of genetic relatedness

A potential problem of population mapping is the inherent

population stratification present in plant populations.

Population stratification can be divided into population

structure, that is the presence of two or more major

sub-populations, and family structure which refers to the

different degrees of relatedness among the lines. As for

‘‘true’’ QTL, any non-functional associations between

the variation of the trait and the genetic relatedness will

also be detected as QTL (Zhao et al. 2007). Such geno-

type–phenotype covariance is especially apparent for traits

involved in adaptation as phenotypic variation between

populations is highly correlated with genotypic differences

between them. It has long been recognized as a potential

problem that can result in spurious associations and thus in

a high number of false-positive QTL (Lander and Schork

1994), and different approaches have been developed to

correct for genetic relatedness. Different methods have

been suggested to correct for population structure (Q or P

matrix) and family structure (K matrix) (Price et al. 2006;

Yu et al. 2006; Malosetti et al. 2007; Zhang et al. 2010).

All are based on marker data and their simultaneous use

may result in an over-correction and consequently in a

reduced QTL detection power if Q (P) and K explain a

major part of the phenotypic variation already. The appli-

cation of the K matrix by mixed models has recently been

shown to be sufficient for the analysis of breeding popu-

lations (Bradbury et al. 2011; Wang et al. 2011; Würschum

et al. 2011a, b). However, as the appropriate correction

depends on the extent of the genotype–phenotype covari-

ance this must be determined separately for each data set.

Family mapping, by contrast, limits these problems

encountered by population mapping as the controlled

crosses allow to break up the covariance between genotype

and phenotype (Myles et al. 2009). Thus, for traits showing

a high correlation between genetic relatedness and pheno-

typic similarity, family mapping is a promising method to

detect true QTL and minimize the detection of false-posi-

tive QTL. However, even family mapping approaches

require a correction for population structure; i.e. for the

different segregating families. A recent comparison of

biometrical models for family mapping has shown that if

marker effects are not modeled as nested within families,

an effect for the segregating family should be included in

the model to correct for differences in family means

(Fig. 3) (Würschum et al. 2012b).

Variation in QTL effect estimates

A major limitation of QTL mapping in biparental popula-

tions is that the estimated effects are specific to that pop-

ulation and QTL results are often not transferable to other

populations thus limiting their use for marker-assisted

selection programs (Holland 2007; Bernardo 2008). The

advantage of family mapping is that QTL are detected

based on multiple segregating families which should allow

more robust estimates of QTL effects across populations.

Based on a diallel design, Steinhoff et al. (2011) recently

partitioned the effect of each detected QTL into a part that

is variable between families and a part that is common to

all families. Their results confirm that for the majority of

the QTL the effect estimates are specific for a particular

family and can consequently not easily be transferred to

other families.

This finding is further substantiated by several mapping

experiments based on multiple families (Blanc et al. 2006;

Coles et al. 2010; Liu et al. 2011) which showed that there

is tremendous variation in allele substitution effects if these

are estimated separately in each family. Allele substitution

effects are a population-specific measure and often this

variation is interpreted as a dependency of the QTL effect

on the genetic background; i.e. epistasis. Steinhoff et al.

(2012) showed that such differences in allele substitution

effects are more likely to arise due to multiple alleles at a

QTL locus or due to differences in allele frequencies

between families. Allele frequencies are affected by seg-

regation distortion that can arise due to selection

(McMullen et al. 2009; Alheit et al. 2011), but are also

subject to the sampling process especially if family sizes

are small (Fig. 4). Taken together, even when QTL are

mapped in multiple families the effects of the QTL in

independent populations remain difficult to predict.
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206 Theor Appl Genet (2012) 125:201–210

123



If QTL are detected by population mapping, the esti-

mated allele substitution effects are specific for this pop-

ulation of diverse lines, and based on this the effect of the

QTL within families cannot be predicted. Thus, population

mapping can identify lines carrying certain favorable

alleles as well as estimates of the position of the QTL, but

does not provide estimates of the QTL effects within

families. These have to be determined in independent

experiments.

Mapping resolution

Both linkage mapping and linkage disequilibrium mapping

approaches identify associations between the genotype and

the phenotype. The difference lies in the number of

recombinations that are exploited and consequently in the

mapping resolution that can be achieved. QTL mapping

approaches based on genetic linkage within a segregating

family exploit only the comparably few recombinations

that have occurred during the establishment of that family.

Owing to the short history of that population, recombina-

tion has had little time to shuffle the genome to smaller

fragments surrounding the QTL and consequently QTL can

only be localized to large chromosomal regions.

By contrast, mapping approaches that exploit linkage

disequilibrium make use of all recombinations that have

occurred during the history of the sampled population and

consequently warrant a much higher mapping resolution.

LD, the correlation of alleles at separate loci, is subject to

different forces (Flint-Garcia et al. 2003) and is therefore

always population specific. The decay of LD with genetic

map distance is variable across the genome and conse-

quently so is the mapping resolution that can be achieved

(Fig. 2a) (Van Inghelandt et al. 2011; Würschum et al.

2011a). In addition, LD is variable among, but also within

species. In elite lines of the outbreeding species maize,

examples showed LD to decay within an extremely short

distance (Van Inghelandt et al. 2011) and to stretch long

distances in more closely related lines (Rafalski 2002). By

contrast in breeding material of self-pollinating species like

wheat, LD decays more slowly (Reif et al. 2011). The

exploited LD stems from unrecorded forces during the

history of that population and must be investigated as a first

step in linkage disequilibrium mapping to obtain an idea of

the mapping resolution that can be realized and the

required marker density. In addition, it must be noted that

LD in family mapping is also generated by the mating

design and the number of parental lines (Verhoeven et al.

2006; Würschum et al. 2012b). A high mapping resolution

in family mapping can thus only be realized by including a

high number of parental lines.

Predictive power of detected QTL and validation

Recent family mapping results based on elite maize breeding

material have shown that QTL for complex traits such as

grain yield and grain moisture could be detected (Blanc et al.

2006; Liu et al. 2011, 2012b; Steinhoff et al. 2011). Applying

a cross-validation approach revealed a relative bias in

the estimates of genotypic variance explained by the

detected QTL of 10–60 % depending on the trait and the

experiment. This highlights that irrespective of the bio-

metrical model used for the analysis, a cross-validation

approach should be applied to obtain unbiased estimates of

the predictive power of the detected QTL. A major

advantage of breeding programs is that there will always be

independent populations available, even from subsequent

breeding cycles. These enable a rapid validation of the
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identified QTL and the elimination of false-positive QTL.

Thus, valuable QTL can readily be identified and incor-

porated in marker-assisted selection programs.

An important consideration when analyzing multiple

families is that the genotypic variance explained by the

detected QTL can be attributable to within-family variance

and/or to among-family variance (Würschum et al. 2012b;

Liu et al. 2011). QTL due to among-family variance can

arise if different alleles are fixed in families with different

family means (Fig. 3). These QTL are, however, prone to

an enhanced false-positive rate. An efficient way to detect

QTL explaining mainly within-family variance is the

choice of an appropriate biometrical model (Fig. 3)

(Würschum et al. 2012b).

Taken together, even for highly complex traits, QTL

mapping experiments in breeding populations can identify

QTL that explain a considerable proportion of the geno-

typic variance and these can be validated in available

independent populations. This illustrates that a three-step

analysis may be most appropriate for the detection of QTL

by family mapping and validation in breeding programs. In

a first step, QTL are detected in single families and can in

the next generation(s) be used for the identification of

plants within this family that are homozygous for the

detected QTL. Interestingly, these plants that have been

identified as being homozygous for important QTL can

already be used for crosses with complementary plants

from the same or from other crosses to recombine positive

alleles from different QTL into a single genotype. The

separate analysis of single families has the additional

advantage that it can increase QTL detection power as

compared to a joint analysis, particularly if the families are

very heterogeneous with regard to QTL that are segregat-

ing in them (in that case the non-segregating families will

attenuate the QTL signal) (Li et al. 2011). Second, a joint

analysis of multiple families will yield additional infor-

mation concerning the variation in QTL effects and the

transferability of the detected QTL. In the third step,

families from subsequent cycles can be used for validation

of the identified QTL. Conversely, if a population mapping

approach is applied, the identified QTL can be used to

select parents based on a gene stacking approach (i.e.,

combining favorable alleles from different parents). The

same QTL can then be used for the selection of the desired

plants in early generations.

Contribution of epistasis

Epistasis refers to interactions between alleles from two or

more genetic loci in the genome (Carlborg and Haley 2004;

Phillips 2008). The consequence of epistasis is that the

phenotype of an individual cannot be predicted simply by

the sum of the single-locus effects, but rather depends on

the specific combinations of loci (Lynch and Walsh 1998).

In germplasm that has experienced selection, epistasis has

been shown to contribute to the expression of complex

traits (Dudley and Johnson 2009). It is thus of importance

for plant breeders to obtain an estimate of the genetic

architecture of the trait, that is of the contribution of main

effects and of epistatic interactions to the genotypic vari-

ance. It must be noted that the detection of epistatic QTL

will rely even more on large population sizes than the

detection of main effects. The most promising approach to

detect epistatic QTL appears to be a full two-dimensional

scan for all possible pairwise interactions. Such scans are

nowadays computationally feasible and have successfully

been used to detect epistatic interactions in family mapping

(e.g., Buckler et al. 2009; Liu et al. 2011; Steinhoff et al.

2012; Würschum et al. 2012c), and in population mapping

(e.g., Li et al. 2010; Massman et al. 2011; Reif et al. 2011;

Würschum et al. 2011a, b; Yu et al. 2011).

In summary, epistasis appears to be of minor importance

in breeding populations. For most crops and traits, epistasis

could be detected but the proportion of genotypic variance

explained by these epistatic QTL was small compared to

that of the main effect QTL. There are, however, excep-

tions where individual epistatic QTL have been identified

which explain a proportion of genotypic variance compa-

rable to that of the main effects (Miedaner et al. 2011; Reif

et al. 2011). As the forces active in natural populations are

not effective in breeding populations, epistatic interactions

may be selected and maintained, thus contributing to the

expression of the trait (Steinhoff et al. 2012). In addition,

some results suggest the presence of epistatic master reg-

ulators; i.e. loci that appear to be involved in a large

number of interactions (Reif et al. 2011; Würschum et al.

2011a). In conclusion, the contribution of epistasis to the

genetic architecture of agronomic traits in breeding popu-

lations appears to be small. Nevertheless, given the effort

required to establish, phenotype and genotype these pop-

ulations, an epistasis scan seems advisable as single epi-

static QTL may have large effects and thus may improve

knowledge-based breeding.

Conclusions

The availability of vast amounts of phenotypic data from

breeding programs and the decreasing costs for genotyping

or even re-sequencing make it attractive to exploit this

information for QTL detection. Depending on the intention

of the experiment, population mapping can be used to

identify potential parents in the breeding pool carrying

favorable alleles. Alternatively, family mapping can be

used to detect QTL for the selection of superior lines within
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crosses. Both approaches will profit from a further increase

in marker density or the availability of sequence data.

Irrespective of the mapping approach, the selection of

plants to be included in the mapping population is of

utmost importance as is the choice of an appropriate bio-

metrical model. Challenging research questions remain,

such as how to incorporate sequence data or biometrical

approaches to account for the influence of selection within

families on the QTL detection power in family mapping.

Taken together, the mapping approaches available today

represent a powerful tool to dissect the genetic architecture

of complex agronomic traits in breeding populations for an

improved knowledge-based breeding of crops.
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