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A Likelihood Ratio-Based Mann-Whitney Approach Finds Novel
Replicable Joint Gene Action for Type 2 Diabetes

Qing Lu,1 Changshuai Wei,1 Chengyin Ye,1 Ming Li,1 and Robert C. Elston2∗

1Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan
2Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, Ohio

The potential importance of the joint action of genes, whether modeled with or without a statistical interaction term, has long
been recognized. However, identifying such action has been a great challenge, especially when millions of genetic markers
are involved. We propose a likelihood ratio-based Mann-Whitney test to search for joint gene action either among candidate
genes or genome-wide. It extends the traditional univariate Mann-Whitney test to assess the joint association of genotypes
at multiple loci with disease, allowing for high-order statistical interactions. Because only one overall significance test is
conducted for the entire analysis, it avoids the issue of multiple testing. Moreover, the approach adopts a computationally
efficient algorithm, making a genome-wide search feasible in a reasonable amount of time on a high performance personal
computer. We evaluated the approach using both theoretical and real data. By applying the approach to 40 type 2 diabetes
(T2D) susceptibility single-nucleotide polymorphisms (SNPs), we identified a four-locus model strongly associated with T2D
in the Wellcome Trust (WT) study (permutation P-value < 0.001), and replicated the same finding in the Nurses’ Health
Study/Health Professionals Follow-Up Study (NHS/HPFS) (P-value = 3.03 × 10−11). We also conducted a genome-wide
search on 385,598 SNPs in the WT study. The analysis took approximately 55 hr on a personal computer, identifying the
same first two loci, but overall a different set of four SNPs, jointly associated with T2D (P-value = 1.29 × 10−5). The nominal
significance of this same association reached 4.01 × 10−6 in the NHS/HPFS. Genet. Epidemiol. 36:583–593, 2012. C© 2012 Wiley

Periodicals, Inc.
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INTRODUCTION

With high-throughput genotyping technology and ever-
decreasing genotyping cost, the analysis of genome-wide
association studies (GWAS) has become commonplace
[Hardy and Singleton, 2009; Hirschhorn and Daly, 2005].
To date, hundreds of GWAS have been conducted and sig-
nificant progress has been made in discovering previously
unknown genetic variants predisposing to common com-
plex diseases [Goldstein, 2009]. The findings from GWAS are
expected to advance our knowledge of the genetic causes
of diseases, and this may lead to more effective methods
for prevention or treatment [Hirschhorn, 2009]. Despite
these achievements, for most if not all of the common com-
plex diseases, a large proportion of the genetic variants
contributing to them still remains undiscovered [Manolio
et al., 2009]. Gene-gene interactions may play impor-
tant roles in the biological pathways causing com-
mon complex diseases. However, they have not been
taken fully into account by many GWAS, which
have used a single locus approach. The identification
of such interactions should help elucidate how ge-
netic variants interplay with each other within biolog-
ical pathways to cause disease [Cordell 2009; Eichler
et al., 2010; Maher, 2008].

Recognizing this, recent studies have been conducted to
evaluate the joint action among existing genetic variants
[Culverhouse et al., 2011; Kirchhoff et al., 2008; Liu et al.,
2011], whether with or without considering a statistical in-
teraction term. Most of these studies have focused on evalu-
ating two-way joint action among a limited number of loci.
In reality, we are interested in discovering the joint action
of as many genes as possible [Wang et al., 2010]. By not
limiting the search to two-way joint action, we could have
a better chance of identifying important high-order interac-
tions. Moreover, strong interactions may exist among risk
loci with low to intermediate marginal effects [Cordell, 2009;
Wan et al., 2010; Yung et al., 2011]. Evaluating joint gene ac-
tion among only previously recognized genetic variants can
limit the discovery process with respect to finding interac-
tions among loci. Therefore, for the purpose of discovering
novel findings, it would be better to look beyond existing
knowledge and conduct a genome-wide study by searching
for joint action among all available genetic variants [Cordell,
2009].

It could be statistically complicated and computationally
time consuming to evaluate the joint gene action among
500K or 1 M (single-nucleotide polymorphisms [SNPs]).
Numerous statistical approaches have been developed for a
joint gene action analysis, such as MDR [Ritchie et al., 2001],
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BEAM [Zhang and Liu, 2007], PLINK [Purcell et al., 2007],
Random Jungle [Schwarz et al., 2010], BOOST [Wan et al.,
2010], and Kernel Machine [Wu et al., 2010]. Only BOOST,
PLINK, and Random Jungle have been shown to have the
capacity to perform genome-wide analysis. BOOST evalu-
ates all pair-wise gene-gene interactions across the genome
via a regression-based approach, and is more computa-
tionally efficient than PLINK. However, similar to other
pair-wise analysis tools such as PLINK, BOOST has re-
duced power when high-order interactions are present. Per-
forming a large number of tests on the genome-wide scale
raises a serious multiple testing issue, requiring a very strin-
gent threshold (e.g., 4 × 10−13) to reach a genome-wide sig-
nificance level [Cordell, 2009]. Pair-wise analysis using a
regression-based approach could also be subject to a mul-
ticollinearity problem [Yung et al., 2011]). Unlike pair-wise
analysis approaches, data-mining approaches such as Ran-
dom Jungle are capable of capturing high-order interactions
without suffering from this multicollinearity issue. Random
Jungle, based on random forests [Breiman, 1996], builds an
ensemble of decision trees for the purpose of classification.
It runs much faster than the original random forest pack-
ages, making it more appealing for genome-wide analysis.
However, similar to them, it was designed for the purpose of
classification and lacks an asymptotic test statistic to assess
the significance level of any particular joint gene action.

Targeting these issues, we propose a likelihood ratio (LR)
based Mann-Whitney (LRMW) test to find genome-wide
joint gene action. It extends the traditional univariate Mann-
Whitney test [Mann and Whitney, 1947; Wilcoxon, 1945] to
deal with multiple genetic variables, which facilitates a gen-
eral multilocus association test that allows for high-order
interactions. It conducts one overall significance test for the
entire genome-wide analysis, and thus has the advantage
of not being subject to any multiple testing issue. Moreover,
the approach adopts a computationally efficient algorithm
that makes it feasible to perform on a genome-wide scale,
without being subject to any multicollinearity issue. We per-
formed a simulation study to validate the method and then
applied it to candidate SNPs in the Wellcome Trust (WT)
and Nurses’ Health Study/Health Professionals Follow-Up
(NHS/HPFS) type 2 diabetes (T2D) GWAS data, replicating
the same four-locus model. Finally, we conducted a genome-
wide search in the WT data, with approximately 386K SNPs
[Wellcome Trust Case Control Consortium, 2007]. Using a
Dell workstation equipped with two 2.5 GHz quad-core
processors and a 4GB memory, the genome-wide analysis
took approximately 55 hr to identify the most parsimonious
model and estimate its nominal significance level. This find-
ing was then replicated using data from the NHS/HPFS
[Cornelis et al., 2009].

METHODS

Current GWAS for common complex diseases involve up
to a million or more SNPs. Searching such high-dimensional
data requires a powerful and computationally efficient sta-
tistical tool. We introduce here a LRMW method to test
the joint action of multiple loci allowing for high-order in-
teraction, incorporating a forward selection algorithm into
the method to efficiently search the entire genome. Both a
permutation and a kernel density method [Parzen, 1962;
Rosenblatt, 1956] (the latter in much less time) can be ap-

plied to assess the empirical P-value of the identified model,
adjusting for any inflated Type I error due to model selec-
tion.

LRMW TEST
Suppose we are interested in evaluating the joint action of

p disease-susceptibility loci, comprising M possible p-locus
genotypes. If we knew the underlying mode of inheritance,
we could cluster all the M p-locus genotypes into R risk
groups (R ≤ M). We define a risk group as a cluster of p-
locus genotypes that all have the same risk predisposing
to disease. For instance, if the ith locus follows a dominant
model, we could cluster the p-locus genotypes containing
either one or two copies of the risk alleles at locus i and the
same genotypes at the remaining p−1 loci into one group.
Similarly, we could group the p-locus genotypes according
to a particular statistical interaction model. For example, if
two of p loci follow what was first called the action of ei-
ther of two dominant genes [Elston, 1981; Tiwari and Elston,
1998], but more recently the “threshold” model [Marchini
et al., 2005], we would cluster into one group the p-locus
genotypes having at least one of the disease-susceptibility
alleles at each of the two loci, but the same genotype at the
remaining p−2 loci, and into another group those contain-
ing no risk allele at the two loci, but the same genotype at
the rest of the loci. By clustering the p-locus genotypes into
different risk groups according to this underlying model
and evaluating their difference in risk, we take the known
mode of inheritance into account.

Given R genomically defined risk groups, we rank them
according to their LR. The LR is defined as L R(G) = P(G|D)

P(G|D̄) ),
where G denotes a particular risk group, D represents cases,
and D̄ represents controls. The LRMW statistic can then be
estimated as

UL RMW =
R∑

i=1

R∑
j=1

nD
Gi

nD̄
G j

� [L R(Gi ), L R(G j )], (1)

where nD
Gi

(nD̄
G j

) denotes the number of persons carrying risk
group Gi (G j ) in cases (controls), and � is a kernel function.
When the kernel function has the following form,

� [L R(Gi ), L R(G j )] =
⎧⎨
⎩

1 if L R(G j ) < L R(Gi )
0.5 if L R(G j ) = L R(Gi )
0 if L R(G j ) > L R(Gi )

, (2)

UL RMW is equivalent to a Mann-Whitney statistic compar-
ing the difference in LR risk scores between cases and con-
trols. This link provides us with a simple way to test for the
joint action of p loci, because we can then apply the known
properties of the univariate Mann-Whitney test [Mann and
Whitney, 1947; Wilcoxon, 1945]. Note that a variety of link
functions (e.g., a logit link) can be used to map the p-locus
genotypes into a one-dimensional risk score. However, as
we have shown elsewhere, among all the link functions, the
LR has optimal properties [Lu and Elston, 2008].

Under the null hypothesis that there is no association be-
tween case-control status and the genotypes carried, UL RMW
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equals ND ND̄
2 , and so we can form the test statistic

Z = (UL RMW − ND ND̄

2
)/

√
Var(UL RMW), (3)

where ND and ND̄ are, respectively, the total numbers of
cases and controls. For a large sample size and under the
null, Z follows a standard normal distribution. The variance
of UL RMW can be estimated using the result of Delong et al.
[1988],

Var(U) = SD + SD̄, (4)

where

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

SD =
R∑

i=1
nD

Gi

{
R∑

j=1
nD̄

G j
�

[
L R(Gi ), L R(G j )

]− UL RMW
ND

}2

SD̄ =
R∑

j=1
nD̄

G j

{
R∑

i=1
nD

Gi
�

[
L R(Gi ), L R(G j )

]− UL RMW
ND̄

}2 ,

where nD
Gi

, nD
G j

, nD̄
Gi

, and nD̄
G j

are the numbers of individuals,
respectively, in risk groups Gi and G j among cases and
controls.

By comparing all p-locus risk groups, the above test statis-
tic assesses the overall significance of all p loci associated
with the disease, taking into account their interactions. If the
test is significant, we might be further interested in evalu-
ating the difference between any two risk groups. The odds
ratio comparing two risk groups is commonly used for such
a purpose, and can be easily obtained using the LR values:

ORi j = L R(Gi )
L R(G j )

, (5)

where L R(Gi ) and L R(G j ) are the LR values of risk groups
Gi and G j , respectively. A (1 − �) confidence interval (CI)
for the Odds Ratio (OR) can be estimated based on Woolf’s
method [Woolf, 1955],

ORi j · e
±z1−�/2·

√
1

nD
Gi

+ 1
nD

G j

+ 1
nD̄

Gi

+ 1
nD̄

G j , (6)

where z1−�/2 is the 1 − �/2 fractile of the standard normal
distribution.

MANN-WHITNEY-BASED FORWARD
SELECTION ALGORITHM

In a genetic study of a common complex disease, the
genetic model is usually not known and most of the ge-
netic markers studied are probably not disease related,
which makes it difficult to determine the underlying risk
groups. Simply clustering all the individuals into just two
risk groups could lead to low power of the approach, while
treating each p-locus genotype as a separate risk group will
lead to inflated Type 1 error [Lu et al., 2010]. Based on the
idea of forward selection [Li et al., 2011; Ye et al., 2011], we
introduce a computationally feasible and efficient forward
selection algorithm to cluster individuals into an optimal
number of risk groups, i.e., the number that best represents
the underlying risks. We assume diallelic loci, though in
principle (but not with the same ease of computation), the
method can be extended to any number of alleles. In the
first step of the algorithm, we select a single locus and di-
vide all individuals into two risk groups according to their

genotypes at that locus. For instance, if the ith locus, which
we call locus A, has genotypes AA, Aa, and aa, we consider
three possible models to divide the individuals into two
groups: (i) individuals carrying the AA or Aa genotype vs.
individuals carrying the aa genotype (i.e., {AA/Aa}, {aa}),
(ii) individuals carrying the Aa or aa genotype vs. individu-
als carrying the AA genotype (i.e., {Aa/aa}, {AA}), and (iii)
individuals carrying the AA or aa genotype vs. individu-
als carrying the Aa genotype (i.e., {AA/aa}, {Aa}). For each
case, we estimate the UL RMW statistic using Equation 1. The
process is repeated for each locus in turn and the model
with the highest UL RMW statistic is chosen as the best model
at step one. Once we have found the best two risk groups at
step one, for step two, we further divide these two specific
risk groups. Given locus j has three genotypes {BB, Bb, bb},
we divide the two risk groups already found into four risk
groups by again considering three possibilities. Suppose, for
example, model (i) ({AA/Aa}, {aa}) was chosen as the best
model in step one; then the three new possibilities would
be:

(1) {AA/Aa, BB/Bb}; {AA/Aa, bb}; {aa, BB/Bb}; {aa, bb}

(2) {AA/Aa, BB/bb}; {AA/Aa, Bb}; {aa, BB/bb}; {aa, Bb}, and

(3) {AA/Aa, Bb/bb}; {AA/Aa, BB}; {aa, Bb/bb}; {aa, BB}.

We estimate the UL RMW statistic for each of these three sit-
uations (or analogous situations had we chosen model (ii)
or (iii) at step one), and repeat the process for all the p − 1
loci other than locus A. Similarly, we choose the model with
the highest UL RMW statistic as the best model at step two.
Since the step-two model is obtained by further dividing
the risk groups found in the step-one model, it is easy to
show that the UL RMW statistic obtained at step two is greater
than the one at step one. We continue dividing the individ-
uals in further steps and, in principle, we could continue
until a full model is reached (i.e., the samples cannot be fur-
ther split). As we divide the samples, the value of UL RMW
increases, as well as the model complexity as measured by
the number of risk groups. However, after a certain number
of steps, the number of risk groups starts to over-represent
the underlying true number of risk groups and the model
tends to over-fit the data. To identify the point at which this
occurs, and hence the best model with an optimal number
of risk groups, K-fold cross-validation is used. The data are
first randomly divided into K subsets. Then the selection
algorithm is performed on K − 1 of the subsets, used as the
training dataset, to obtain a series of models for each step.
Each of these models is then applied on the remaining sub-
set, used as a validation dataset, to calculate UL RMW. This is
done by assigning to the validation dataset the LR values
of the risk groups estimated in the training dataset. We re-
peat this process K times, with each of the K subsets used
exactly once as the validation dataset, then average the K
UL RMW statistics, one from each validation dataset. The final
model with an optimal number of risk groups is chosen to
be the one that leads to the highest average UL RMW statistic
over the validation datasets. Note that we stop as soon as
the highest statistic averaged over the validation datasets
no longer increases.
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PERMUTATION AND KERNEL DENSITY
ESTIMATION PROCEDURES

Given the R risk groups determined by the final model,
we can use Equation (3) to carry out an LRMW test, assess-
ing the joint action of the multiple risk loci on the disease.
However, selecting the model and performing the asymp-
totic test on the same dataset could lead to an inflated Type
1 error. For an association study with a limited number of
loci, we can control the Type 1 error by using a permu-
tation test. We generate a certain number of permutation
replicates (e.g., 1,000), in which the disease status of each
individual has been randomly permuted. On each of the
permutation replicates, we apply the forward selection al-
gorithm to choose the best model and calculate Z. By repeat-
ing this for each permutation replicate, the empirical null
distribution of Z is generated and the empirical P-value for
the association test is obtained by comparing the final ob-
served statistic ZO to this null distribution, so that we have
P-value = P (Z ≤ ZO).

Permutation is a computationally intensive procedure, es-
pecially when it involves complicated modeling such as the
forward selection procedure just described. One thousand
permutation replicates are commonly required to assess the
test’s significance, and even more permutation replicates
would be required if the association is highly significant
(e.g., for a significance level 10−8). This could be time con-
suming and even infeasible for a genome-wide study of
joint gene action. To reduce the computation time and make
it feasible for a genome-wide search, we use a kernel density
estimation (KDE) procedure, which is a nonparametric way
to estimate the probability density function of a distribution
[Parzen, 1962; Rosenblatt, 1956]. We draw a certain number
of permutation replicates and for each we estimate Z. By
treating these values of Z as a random sample drawn from
the null distribution of Z, we can use the KDE procedure to
estimate the null distribution:

f̂ (Z) = 1
N�

N∑
i=1

K�(Z, Zi ), (7)

where Zi is Z calculated from the ith permutation replicate,
K� is a kernel function—the most commonly used form is
the Gaussian Kernel, K�(Z, Zi ) = �(|Z − Zi |/�), where � is
the standard normal density function, N is the number of
permutation replicates, and � is the bandwidth. For our
genome-wide study, we applied the forward selection algo-
rithm to 100 permutation replicate samples to estimate the
distribution of Z, using a Gaussian kernel with the standard
deviation as bandwidth.

RESULTS

PAIR-WISE JOINT ACTION ANALYSIS VS.
MULTILOCUS JOINT ACTION ANALYSIS

Given the underlying disease model, we calculated the
UL RMW statistic and the theoretical power of the test at the
significance level 0.05. In the pair-wise analysis, power was
calculated for the most “important” pair of loci (i.e., the pair
associated with the highest test statistic), while in the mul-
tilocus analysis, power was obtained based on all disease
loci.

Four sets of hypothesized disease models were consid-
ered, varying from simple models including only one two-
way statistical interaction, to more complicated models con-
taining a higher-order statistical interaction. Details of the
settings considered are described in Table I (Settings I). The
first set of models comprised only one two-way statisti-
cal interaction. The interaction in the model was assumed
to follow a multiplicative model (i.e., the odds increases
multiplicatively within and among loci), an interaction-
multiplicative model (i.e., the odds increases multiplica-
tively with the number of disease-susceptibility alleles
given both loci have at least one disease-susceptibility
allele), or a threshold model (i.e., dominant disease-
susceptibility alleles at both loci). As expected, for all three
interaction models, we observed that power increases when
the risk allele frequencies of the interacting loci increase.
Note that, when there is only one two-way interaction in
the disease model, the theoretical power of the pair-wise
analysis is equivalent to that of the multilocus analysis
(Figure 1).

We then considered a scenario where multiple gene inter-
actions exist. For simplicity, we included just two two-way
interactions in the second set of models and assumed the
two interactions were the same. Similarly, we included in a
third set of models a two-way interaction and two indepen-
dent risk loci to evaluate the test performance when both
interaction and independent risk loci are present. In a fourth
set of models, we studied the new approach in the presence
of higher order interactions by introducing a three-way in-
teraction. In these three further sets of models, we also ob-
served that power increased when the risk allele frequency
increases. More importantly, significant power increase was
obtained from the multilocus analysis as compared to the
pair-wise analysis (Figure 1).

PERMUTATION VS. KDE
A small simulation experiment was conducted to com-

pare the performance of the permutation and KDE proce-
dures for the LRMW approach under various scenarios. The
disease model was simulated to contain one two-way inter-
action and two independently acting risk loci. The interac-
tion model was assumed to be a locus-multiplicative model,
multiplicative-interaction model, or a threshold model, and
the effect size was varied in the simulations. The details
of the simulation settings are described in Table I (Settings
II). One thousand permutation replicates were used to es-
timate the significance level by the permutation test. For
the KDE procedure, we fitted the probability density func-
tion of the null distribution on 100 permutation replicates
to estimate the null distribution. Type I error from both pro-
cedures was well controlled at the 0.05 significance level
(Table II). For all three interaction models, we observed
a similar performance of the two procedures, indicating
that KDE based on 100 permutation replicates well approx-
imates the 1,000 replicate permutations. We also evaluated
the permutation and KDE procedures in a disease scenario
where more than one interaction or a high-order interac-
tion is present (Table 1). The results were consistent with
the findings from disease models with only one interaction,
confirming that the two procedures of assessing the null
distribution give similar results (Table II).
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TABLE I. Summary of the simulation settings for four risk loci: A, B, C, and D

Gene-gene interaction Each single locus

Interaction RRa MAFb Risk locus RRc MAF

Settings I Two-way interaction onlyd A×B 1.5 [0.05, 0.5]f

Two two-way interactionsd A×B; C×D 1.5; 1.5 [0.05, 0.5]
Two-way interactionc + two loci e A×B 1.5 [0.05, 0.5] C; D 1.4; 1.3 0.2; 0.3
Three-way interactiond A×B×C 1.5 [0.05, 0.5]

Settings II Two-way interactionc + two locie A×B 1; 1.2; 1.5; 2 0.25 C; D 1.4; 1.3 0.2; 0.3
Two two-way interactionsd A×B; C×D 1.5 0.25
Three-way interaction c + one locus e A×B×C 1.5 0.25 D 1.3 0.3

aRelative risk of a high-risk group(s) (i.e., a multilocus genotype combination) to a low-risk group(s).
bMinor allele frequency.
cRelative risk of a high-risk genotype(s) to a low-risk genotype(s).
dThe interaction was assumed to follow a locus-multiplicative model, a multiplicative-interaction model, or a threshold model.
eRisk loci C and D follow recessive and additive modes of inheritance, respectively.
fMinor allele frequency simulated in the models ranged from 0.05 to 0.5.

Fig. 1. Theoretical power of a two-locus LRMW test vs. a multilocus LRMW test.

APPLICATION TO T2D
T2D is a chronic disease that is believed to be caused

by the interplay of multiple genetic and environmental
risk factors [Frayling, 2007]. PPARG [Altshuler et al., 2000],
KCNJ11 [Gloyn et al., 2003], and TCF7L2 [Grant et al., 2006;
Zeggini et al., 2007] were the first identified and well-
replicated T2D genes. Current extensive genetic research,
in particular the completion of multiple large-scale GWAS
[Saxena et al., 2007; Scott et al., 2007; Sladek et al., 2007;
Steinthorsdottir et al., 2007; Voight et al., 2010; Zeggini et al.,
2007, 2008], has uncovered multiple novel sites associated
with T2D. We used the data from two large-scale GWAS,
the WT GWAS [Wellcome Trust Case Control Consortium,
2007] and the NHS/HPFS GWAS [Cornelis et al., 2009], to
conduct joint analyses. We first applied our approach to 40
previously identified T2D SNPs, to assess their joint asso-

ciation with T2D. Then, to facilitate the discovery of novel
interactions, we extended our analysis to nearly 386K SNPs
to conduct a genome-wide search for joint gene action.

WT GWAS AND NHS/HPFS GWAS
The WT GWAS included 1,924 T2D cases and 2,938 con-

trols that passed the WT quality control criteria [Wellcome
Trust Case Control Consortium 2007]. All individuals were
genotyped by using the Affymetrix 500K chip. Among the
40 T2D SNPs, 22 can be directly found in the WT T2D
GWAS dataset, and the remaining 18 were imputed using
the model-based imputation software IMPUTE [Marchini
et al., 2007]. For the genome-wide analysis, we used the
385,598 SNPs that met WT quality control criteria and had
a missing rate less than 0.01.
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TABLE II. Type I error and power comparison of the permutation procedure with the KDE procedure

Type I error Power

Two two-way Three-way
RR = 1 RR = 1.2 RR = 1.5 RR = 2 interactions interactions

Model PERMa KDEb PERM KDE PERM KDE PERM KDE PERM KDE PERM KDE

Locus-multiplicative 0.045 0.047 0.337 0.349 0.682 0.696 0.996 0.996 0.694 0.714 0.773 0.790
Interaction-multiplicative 0.040 0.032 0.225 0.157 0.649 0.644 0.970 0.970 0.806 0.798 0.804 0.809
Threshold 0.047 0.050 0.308 0.327 0.693 0.690 0.984 0.980 0.847 0.843 0.806 0.808

aCalculated based on 1,000 permutation replicates.
bCalculated using 100 permutation replicates and a Gaussian kernel with one SD bandwidth.

The NHS/HPFS GWAS dataset, genotyped using the
Affymetrix 6.0 platform, served as a replication dataset
and comprised 2,725 cases and 3,120 controls after ex-
cluding low-quality samples using the NHS/HPFS qual-
ity control filter. We directly selected or imputed SNPs
that were significant in the initial joint gene action
analysis to seek confirmation of their association with
T2D.

JOINT GENE ACTION AMONG SNPS KNOWN
TO BE ASSOCIATED WITH T2D

We applied the LRMW approach on 40 T2D susceptibility
SNPs to evaluate their joint gene action. The new method
identified a four-locus model in which the combined ef-
fect of rs4506565 (TCF7L2), rs8050136 (FTO), rs7961581
(TSPAN8/LGR5), and rs7756992 (CDKAL1) on T2D reached
a nominal significance level of 8.91 × 10−28 (Table III). A
permutation test was used to estimate the adjusted signif-
icance level. On the basis of 1,000 permutation replicates,
the P-value for the joint model was less than 0.001, indi-
cating a significant association of the four loci with T2D.
We validated this association finding by applying the se-
lected four-locus model to the NHS/PHFS dataset (i.e., by
ranking the risk groups in the NHS/PHFS dataset based on
their LR values in the WT dataset). The association of the
same four-locus model reached the nominal significance
level 3.03 × 10−11, confirming its association with T2D.

Further analysis of the identified four-locus model sug-
gested that rs8050136 (FTO) and rs7961581 (TSPAN8/LGR5)
are likely independently associated with T2D (i.e., they
follow a multiplicative model), while rs4506565 (TCF7L2)
and rs7756992 (CDKAL1) jointly influence T2D through a
protective double recessive allele model. In Figure 2, we
plot the joint action model between rs4506565 (TCF7L2)
and rs7756992 (CDKAL1) for each genotype combination
of rs8050136 (FTO) and rs7961581 (TSPAN8/LGR5). The joint
action models are consistent across the WT and NHS/PHFS:
the TT-AA risk group in the two-locus model is associated
with lower risk, while the other three risk groups are asso-
ciated with higher risk of T2D. Figure 2 also shows that the
joint action models are similar across all four strata. Analy-
sis using Woolf’s test [Woolf, 1955] confirmed homogeneity
of the joint action model across all four strata in both the WT
study(P-value = 0.16) and the NHS/PHFS (P-value = 0.97)
and suggested that rs4506565 (TCF7L2) and rs7756992 (CD-
KAL1) are associated with T2D independently of rs8050136
(FTO) and rs7961581 (TSPAN8/LGR5).

Additional pair-wise joint gene action analysis using lo-
gistic regression also found an interaction-only effect be-
tween loci rs4506565 (TCF7L2) and rs7756992 (CDKAL1)
(P-value = 0.0089) in the WT study, replicated in the
NHS/PHFS (P-value = 0.0052). To follow up with this
potential interaction, we calculated the odds ratios and
corresponding CIs of the four risk groups identified
(Table IV). Based on the WT data, we found the risk group
TT-AA is associated with a significantly lower risk of T2D
than the other three risk groups, while there is no significant
difference among the other three risk groups. This suggests
that the joint action model follows a double recessive model
for low risk, which is same as the union of two dominantly
acting genes for high risk. Further validation of the model in
the NHS/HPFS found the same double recessive model. We
found that the odds ratios associated with the risk groups
in the NHS/HPFS were slightly lower, but not significantly
different from, those estimated in the WT study.

GENOME-WIDE JOINT GENE ACTION
The above approach takes advantage of previous as-

sociation findings and limits the search to a handful of
known risk SNPs. Thus, it is ideal for detecting the joint
action among SNPs with relatively strong single-locus ef-
fects. However, considering only currently known risk SNPs
limits the discovery of novel findings. In particular, it may
lack power to discover loci with low-to-medium marginal
effects that could be acting jointly with other loci to cause
disease. In order to explore novel joint gene actions, we
conducted a genome-wide search by simultaneously ana-
lyzing all available SNPs in the WT GWAS dataset. This
analysis took about 55 hr on a Dell workstation and iden-
tified a new four-locus model associated with T2D with
a nominal P-value of 8.02 × 10−32(Table V). The first two
SNPs selected into the four-locus model were rs4506565
(TCF7L2) and rs7193144 (FTO), consistent with our previ-
ous finding among the known risk loci. In addition, the
genome-wide analysis identified two new SNPs, rs8092098
and rs12508397. rs8092098 lies in the 18q21-18q23 region,
which is potentially associated with fasting plasma glu-
cose [Li et al., 2004] and diabetes-associated nephropathy
[McDonough et al., 2009]; rs12508397 is located at the 3′

end of the transcribed region of ANK2, which encodes
the adapter protein Ankyrin-B, related to the type 4 QT
syndrome [Mohler et al., 2007]. Moreover, a recent study
found that variants in ANK2 both cause a loss of function
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TABLE III. Stepwise result for joint gene action analysis among the known T2D loci using the LRMW approach

Wellcome Trust study

Steps Selected SNPs Nominal P-valuea Permutation P-valueb NHS/PHFS P-valuea

1 rs4506565 4.77 × 10−11 1.18 × 10−7

2 rs4506565, rs8050136 6.18 × 10−17 1.08 × 10−8

3 rs4506565, rs8050136, rs7961581 5.62 × 10−22 3.58 × 10−8

4 c rs4506565, rs8050136, rs7961581, rs7756992 8.91 × 10−28 > 0.001 3.03 × 10−11

aCalculated by using Equations 3 and 4.
bEstimated based on 1,000 permutation replicates.
cThe most parsimonious model identified by the LRMW approach.

Fig. 2. The joint action between loci rs4506565 (TCF7L2) and rs7756992 (CDKAL1) at each combination of rs8050136 (FTO) and rs7961581
(TSPAN8/LGR5). The clustered genotypes (e.g., CC/CT) were determined by the LRMW approach. Top row: WT; bottom row: NHS/HPFS.

TABLE IV. Joint action between rs4506565 (TCF7L2) and rs7756992 (CDKAL1)

Wellcome Trust study rs4506565 NHS/HPFS rs4506565

TT AT/AA TT AT/AA

Crude ORa rs7756992 AA Reference 1.75c [1.47, 2.08]d rs7756992 AA Reference 1.52 [1.31, 1.75]
AG/GG 1.53 [1.26, 1.86] 1.93 [1.61, 2.30] AG/GG 1.37 [1.17, 1.60] 1.55 [1.33, 1.79]

MH ORb rs7756992 AA Reference 1.76 [1.48, 2.10] rs7756992 AA Reference 1.53 [1.32, 1.77]
AG/GG 1.52 [1.25, 1.85] 1.93 [1.61, 2.31] AG/GG 1.37 [1.17, 1.60] 1.56 [1.34, 1.81]

aCrude odds ratio estimated without adjusting for rs8050136 (FTO) and rs7961581 (TSPAN8/LGR5).
bThe Mantel-Haenszel odds ratio estimated by adjusting for rs8050136 (FTO) and rs7961581 (TSPAN8/LGR5).
cOdds ratio.
d95% confidence interval.

in pancreatic islets and are associated with diabetes [Healy
et al., 2010]. We simulated 100 permutation replicates and
used the kernel density approach, to adjust for possible bias
due to model selection in the same dataset. The adjusted P-
value of the four-locus model was 1.29 × 10−5. We further
evaluated the selected four-locus model in the NHS/PHFS
dataset and found the association reached a significance
level of 4.01 × 10−6.

Analysis showed that the joint action between rs4506565
(TCF7L2) and rs7193144 (FTO) was also associated with
T2D in the NHS/PHFS (Step 2 in Table V). The joint ac-
tion model was consistent across both studies and likely
follows a multiplicative model (Figure 3). We also identified
an interaction between rs8092098 and rs12508397 (P-value =
0.0001) in the WT study. However, this interaction did
not reach the 0.05 significance level in the NHS/PHFS
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TABLE V. Stepwise result for the genome-wide joint gene action analysis using the LRMW approach

Wellcome Trust study

Steps Selected SNPs Nominal P-value Adjusted P-valuea NHS/PHFS P-value

1 rs4506565 4.77 × 10−11 1.18 × 10−7

2 rs4506565, rs7193144 1.29 × 10−16 9.85 × 10−9

3 rs4506565, rs7193144, rs8092098 1.59 × 10−23 3.04 × 10−6

4 b rs4506565, rs7193144, rs8092098, rs12508397 8.02 × 10−32 1.29 × 10−5 4.01 × 10−6

aEstimated based on the kernel density estimation procedure with 100 permutation replicates.
bThe most parsimonious model identified by the LRMW approach.

Fig. 3. The joint action between loci rs4506565 (TCF7L2) and rs7193144 (FTO). The clustered genotypes (e.g., CC/CT) were determined by
the LRMW approach.

(P-value = 0.097). This may explain why the significance
level of the joint association test decreased on including
rs7193144 and rs8092098 in the NHS/PHFS (Table V). The
lack of association of these two SNPs in the NHS/PHFS is
likely due to chance. Further studies will be needed to eval-
uate the role of the two new putative loci in their association
with T2D.

DISCUSSION

Following a genome-wide single SNP screening, a
genome-wide study of joint gene action would be the nat-
ural next step to pursue [Cordell, 2009]. A genome-wide
search is capable of considering all genetic variants simulta-
neously for identifying novel joint gene action. The findings
from such a study are anticipated to lead to not only new
genetic variants that may account for additional “missing
heritability,” but also a better understanding of the genetic
architecture of common complex diseases [Cordell, 2009;
Eichler et al., 2010; Maher, 2008]. To facilitate this kind of re-
search, we propose here an LRMW approach, using a com-
putationally efficient algorithm that allows for exploring
joint gene actions on a genome-wide scale. As the number of
loci increases, the computation time and memory needed for
forward selection increase only linearly, while those for an
exhaustive search (e.g., MDR) increase exponentially. This
materially decreases the computational burden and makes
it feasible for a genome-wide search. The method is non-
parametric and thus does not suffer from the issue of an
increasing number of parameters when modeling interac-
tions statistically, especially high-order interactions, on a
large number of SNPs. It is model-free in that it does not re-
quire specification of a particular mode of inheritance, and

thus provides robust performance for various underlying
disease models. The approach searches over all available
SNPs to find a parsimonious model and conducts only one
overall significance test on the selected model, and thus
does not suffer from any multiple testing issue.

The LRMW test introduced here can be looked upon as an
extension to multiple genetic loci of the traditional Mann-
Whitney test [Mann and Whitney, 1947; Wilcoxon, 1945],
taking into account their possible interactions. It is equiv-
alent to a Mann-Whitney test comparing the LR scores be-
tween cases and controls, where the LR is defined as the
ratio of the risk group’s frequencies in cases vs. controls
and has a range from 0 to +∞. This link allows us easy
access to the established properties of the Mann-Whitney
test and provides a convenient way to test association. In-
stead of using Equation 4, we could also use the variance
formula of the Mann-Whitney test with correction for ties
[Lehmann and D’Abrera, 1975]. Other parameters of inter-
est (e.g., odds ratios) can be easily obtained. The method
is related to several U-statistic-based approaches [Schaid
et al., 2005; Wei et al., 2008], sharing similar advantages—
such as fewer statistical assumptions and more powerful
and robust performance. Schaid et al. [2005] used a weighted
sum kernel, averaging the difference in genotype scores be-
tween cases and controls, while Wei et al. [2008] used a
symmetric kernel measuring a weighted Hamming distance
between two individuals. Both kernels assume additivity
across multiple SNPs, and can be used for a candidate gene
association or pathway analysis. We use a kernel compar-
ing the difference in LR values of risk groups between cases
and controls. Since the LR is based on the joint probabili-
ties of multiple SNPs, it does not assume independence of
SNPs and can be used for assessing the joint action among
multiple SNPs.
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The method can be used to search for joint gene ac-
tion both of candidate genes and on a genome-wide scale.
Through a candidate gene approach, we identified four loci
significantly associated with T2D in the WT study and con-
firmed the association in the NHS/HPFS. Assuming homo-
geneity of the other three genotypes, the disease odds ratio
for the double recessive AATT to other three genotype is
0.57 (95% CI is [0.49, 0.66]) and 0.67 (95% CI is [0.59, 0.76]),
respectively, in the WT study and the NHS/HPFS. Pooling
the results of the two studies, the odds ratio for the double
recessive AATT is 0.63 (95% CI is [0.57, 0.70]).

A candidate gene approach takes advantage of previous
findings, and is powerful for capturing joint action among
loci with strong marginal effects. The limitation of such
an approach is that it could exclude potential statistical
interactions between loci of small and medium-marginal
effect size. A genome-wide analysis evaluates joint gene
action over the entire genome and has more potential to
identify novel interactions. However, it is more subject to
false-positive results because it searches over a larger model
space. In our genome-wide T2D analysis, we successfully
identified two existing T2D loci without relying on any prior
information. Results from the exploratory analysis (Figure
3) suggest the joint action between TCF7L2 and FTO likely
follows a multiplicative model. However, the two newly
identified putative loci were found to be significant at the
0.05 level in the WT study but not in the NHS/HPFS study,
so it may be a chance finding.

Accumulated evidence suggests that genes alone may
play a limited role in T2D, thus a comprehensive investi-
gation of both the genome and environment would be a
natural next step. Note that the proposed approach can also
be used for this purpose by simply coding environmental
factors as categorical variables and evaluating all the com-
binations of genetic and environmental variables.

The proposed LRMW approach is computationally com-
parable to existing genome-wide approaches such as
BOOST. The computational times for the genome-wide
analysis of the WT T2D dataset using LRMW and BOOST
are 55 hr and 60 hr [Wan et al., 2010], respectively. Compared
with our T2D GWAS analysis, the pair-wise interaction anal-
ysis of the WT T2D GWAS dataset using BOOST identified
18 pair-wise statistically significant interactions. However,
as reported by Wan et al., none of these interactions met
the distance criterion (i.e., the distance between two inter-
acting SNPs should be at least 1 MB), which suggests the
significant interactions found are possibly just the result of
linkage disequilibrium [Wan et al., 2010; Yung et al., 2011].
As demonstrated here, pair-wise analysis could be subject
to low power if the underlying disease model is more com-
plex than a simple two-locus model. As tree-based search
algorithms, Random Jungle and the LRMW approach devel-
oped here both address the issue of high-order interactions
and multicollinearity. However, tree-based algorithms re-
quire at least one of the selected loci to have a reasonably
strong marginal effect. In contrast to Random Jungle, the
LRMW approach provides a single test statistic and two
measures of association—an odds ratio and the area under
the receiver operating characteristic curve [DeLong et al.,
1988; Lu and Elston, 2008], i.e., UL RMW/ND ND̄. This facili-
tates testing and quantifying the joint gene action, which is
useful to evaluate both the likelihood of finding replication
in a new study and possible clinical utility. Moreover, joint
gene action models identified from the LRMW approach are
easy to interpret, while models from Random Jungle can be

hard to explain, being built on multiple trees that are each
associated with a different set of SNPs. Since our focus here
is genome-wide joint action analysis, we did not evaluate
in detail approaches (e.g., MDR) that cannot be directly ap-
plied to a genome-wide search. Nevertheless, we carried out
a small-scale simulation and found LRMW attained slightly
more power than MDR. Using the simulation settings in Ta-
ble II (Settings II), we found LRMW attained power of 0.649,
0.806, and 0.804, while MDR obtained power of 0.635, 0.779,
and 0.792, respectively, under a two-way interaction model,
a two two-way interactions model, and a three-way inter-
action model.

Finally, it must be stressed that the magnitude of any in-
teraction found by statistical analysis depends on both the
scale on which risk is measured and on how the marginal
effects are defined [Wang et al., 2010]. Typically, logistic re-
gression estimates marginal effects by using the numbers
of observations in the cells of a multiway table as weights,
leading to interaction terms that are not orthogonal to the
main effects. Furthermore, data from a case-control study
alone do not address the cause of any joint gene action. We
tend to believe that any effect that cannot be explained by
marginal effects is probably due to linkage disequilibrium
if it occurs within a locus (i.e., the location of a gene), but to
some kind of synergistic action between two genes if sites in
different loci are involved. The truth is that in case-control
data alone there is complete confounding between biologi-
cal interaction and disequilibrium—linkage disequilibrium
if the loci involved are linked, gametic phase disequilib-
rium if they are unlinked [Wang et al., 2010]. In the absence
of experimental proof, inferring biological (i.e., physiolog-
ical) interaction requires further analysis and a plausible
causal mechanism. Nevertheless, even if no causal mecha-
nism is involved, genome-wide genotypic associations can
help predict risk to individuals in a population from which
the cases and controls are a representative sample.
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