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Summary: We describe a Bayesian technique to (a) perform a sparse joint selection of significant predictor variables

and significant inverse covariance matrix elements of the response variables in a high-dimensional linear Gaussian

sparse seemingly unrelated regression (SSUR) setting and (b) perform an association analysis between the high-

dimensional sets of predictors and responses in such a setting. To search the high-dimensional model space, where

both the number of predictors and the number of possibly correlated responses can be larger than the sample

size, we demonstrate that a marginalization-based collapsed Gibbs sampler, in combination with spike and slab

type of priors, offers a computationally feasible and efficient solution. As an example, we apply our method to an

expression quantitative trait loci (eQTL) analysis on publicly available single nucleotide polymorphism (SNP) and

gene expression data for humans where the primary interest lies in finding the significant associations between the sets

of SNPs and possibly correlated genetic transcripts. Our method also allows for inference on the sparse interaction

network of the transcripts (response variables) after accounting for the effect of the SNPs (predictor variables).

We exploit properties of Gaussian graphical models to make statements concerning conditional independence of the

responses. Our method compares favorably to existing Bayesian approaches developed for this purpose.
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1. Introduction

The study of expression quantitative trait loci (eQTL) associates genetic variation in pop-

ulations (typically, single nucleotide polymorphisms or SNPs, modeled as categorical pre-

dictors) with variations in gene expression levels (typically, continuous response variables)

in order to identify polymorphic genomic regions affecting gene expression (Kendziorski

et al., 2006; Sillanpää and Noykova, 2008; Chun and Keles, 2009). Using DNA microarray

or deep sequencing it is now possible to measure both genetic variation and gene expression

simultaneously. Hence, theoretically, eQTL analysis essentially allows for the study of the

association of all regions in a genome with the expression of all genes. In that respect, an

eQTL study can be viewed as a generalization of a traditional quantitative trait loci (QTL)

analysis, but with a large number of phenotypes (gene expressions).

The basic statistical modeling framework to analyze eQTL data for understanding the

genetic basis of gene regulation is to (i) treat the high-dimensional set of gene expression as

multiple, possibly correlated, responses and (ii) identify their assoication with the genetic

markers by treating them as covariates. Joint analyses of these high-dimensional data have

been performed using multivariate regression models where the responses are quantitative

measures of gene expression abundances and the predictors encode DNA sequence variation

at a number of loci. Traditional multivariate regression models fail in these situations due to

the high dimensionality of these problems which frequently exceeds the sample size. Existing

Bayesian approaches (Yi and Shriner, 2008) are mainly based on the concept of covariate

selection (Jia and Xu, 2007; Monni and Tadesse, 2009; Richardson et al., 2010; Petretto

et al., 2010) to identify the markers with evidence of enhanced linkage (hot spots).

Gaussian graphical models have been applied to infer the interaction relationship among

genes at the transcriptional level (Schäfer and Strimmer, 2005; Segal et al., 2005; Peng et al.,

2009). Conditional independence arising out of a Gaussian graphical model (i.e., pattern of
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expression for a given gene can be predicted by only a small subset of other genes) induces

sparisity in the inverse covariance matrix which is crucial to analyze such high-dimensional

data. However, gene expression data alone is unable to fully capture the gene activities. We

note that eQTL data also contains essential information about gene regulation and have

been used to infer the interaction network among genes (Zhu et al., 2004; Chen et al., 2007).

Incorporating available covariates such as information on genetic variants from an eQTL

study results in improved estimation of the graphical model (Yin and Li, 2011).

Sparse variable selection has recently received a lot of attention in statistics literature,

especially with the emergence of high-dimensional data in fields like genetics or finance and

several popular approaches, both frequentist, e.g., LASSO of Tibshirani (1996), elastic net of

Zou and Hastie (2005), and Bayesian, e.g., Geweke (1996), stochastic search variable selection

(SSVS) of George and McCulloch (1993) have been developed. Covariance matrix selection,

indicating the selection of the sparse subset of non-zero inverse covariance matrix elements,

for the case of a Gaussian graphical model, also has a long history, going back to Dempster

(1972) and recent work in this field include Meinhausen and Bühlmann (2006) and Carvalho

and Scott (2009). While the two problems (covariate and covariance selections) separately

have a long history in the statistics literature, a joint analysis has, however, been lacking.

Therefore, in this paper, we propose a joint sparse modeling approach for the responses

(gene expressions) as well as covariates (genetic markers). This joint model simultaneously

performs a Bayesian selection of (a) significant covariates and (b) the significant entries in

the adjacency matrix of the correlated responses. Furthermore, our method is well equipped

to work in a high-dimesional framework. In frequentist setting, similar joint modeling has

been recently attempted by Yin and Li (2011) and Cai et al. (2011).

We adopt seemingly unrelated regression (SUR) (Zellner, 1962) framework where multiple

predictors affect multiple responses, just as in the case of a multivariate regression, with the
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additional complication that the response variables exhibit a correlation structure (which is

typically assumed to be the same for all the samples). Bayesian variable selection techniques

have been developed in the SUR context by Holmes et al. (2002) and Smith and Kohn (2000).

In both the papers, a relatively modest dimension of the responses has been considered,

ignoring any sparsity or graphical structure in the error inverse covariance matrix. In our

problem frequently the number of predictors (p) and the number of correlated responses

(q) can be much larger than the sample size (n). Also, we consider SUR models in which

both regression coefficients and the error inverse covariance matrix have many zeroes. Zeroes

in regression coefficients arise when each gene expression only depends on a very small

set of genetic markers. Similarly, zeroes in inverse covariance matrix arise due to sparse

conditional independence structure of the Gaussian gene interaction network. In this setting,

it is necessary to induce sparsity in both the regression coefficients and the elements of the

inverse covariance matrix while performing regression (Rothman et al., 2010; Wang, 2010).

We achieve this via a combination of variable selection and Gaussian graphical modeling

techniques.

Joint variable selection and inverse covariance estimation methods are challenging to

implement, specifically in high dimensions. In a recent example Yin and Li (2011) apply

independent L1 regularized selection of the significant SNPs and the significant entries of

the inverse covariance matrix of the responses, following the approach described by Rothman

et al. (2010). In this approach one estimates jointly the vector of regression coefficients and

the inverse covariance matrix, imposing sparsity in both. However, numerical instability is

often encountered in high-dimensional maximization problems that are inherent in classical

L1 regularization-based techniques. Also, often the interest lies in identifying the non-zero

elements in the vector of regression coefficients and in the inverse covariance matrix, rather

than knowing their exact value. Keeping this in mind, we propose a Bayesian hierarchical
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formulation that allows us to analytically integrate out the nuisance parameters of the actual

regression coefficient and the covariance matrix, leaving in the model the parameters of

interest - a vector of indicators denoting whether a particular predictor (SNP) is important

and an adjacency matrix (equivalently, a graph) of the responses indicating the zeroes in

the inverse covariance matrix of the responses. This marginalization based collapsed Gibbs

sampling plays a key role in the computational efficiency of our method. The quantities

that are integrated out from the model can always be regenerated in the posterior when an

association analysis is desired.

The rest of the manuscript is organized as follows: In section 2, we describe our Bayesian

hierarchical model using the notation of the matrix-variate normal distribution of Dawid

(1981) and outline the MCMC search strategy. In section 3, we use our technique on two

simulated data sets - one where we simulate directly from our proposed hierarchical model of

section 2 and another where we use the related simulated data set of Richardson et al. (2010),

which studies a similar problem but where our model assumptions are violated slightly. We

show that we can successfully infer the significant predictors and the graph, as well as

performing the required association analysis for eQTL mapping. In section 4, we apply the

technique on a real dataset where the SNP information and gene expression data are publicly

available on the International HapMap project and the Sanger Institute websites respectively.

Finally, we conclude by proposing some extensions of the current work in section 5.

2. The model

We consider the following model

Y = XγBγ,G + ε, (1)

where Y is an n × q matrix of standarized gene expression data for n individuals, for the

same q genes; Xγ is an n× pγ is a matrix of predictors encoding of pγ genetic markers; Bγ,G

is a pγ× q matrix of regression coefficients. Let p be the total number of predictors, of which
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only a sparse subset of length pγ is present in the model. Thus we need a vector of indicators

γ = (γ1, . . . , γp). Here γi is 1 if the ith predictor is present in the model and 0 otherwise.

Therefore, pγ =
∑p

i=1 γi.

We further assume that ε follows a zero mean matrix-variate normal distribution (Dawid,

1981), denoted as MNn×q(0, In,ΣG), where 0 is an n × q matrix of zeroes, ΣG is the q × q

covariance matrix of q possibly correlated responses. Here and in the rest of the manuscripts

Ik denotes an identity matrix of size k.

This model is similar to the SUR model, where the goal is to estimate the regression

parameters Bγ,G by borrowing gene expression information among different genes. In eQTL

studies, each row of Bγ,G is assumed to be sparse since early studies in the genetics of gene

expression indicate that the transcripts are expected to have only a few genetic regulators

(Schadt et al., 2003; Brem and Kruglyak, 2005). The inverse covariance matrix Σ−1G is also

expected to be sparse, since typical genetic networks have limited links (Leclerc, 2008). We

allow G to be a symmetric, undirected, decomposable graph and presence of an off-diagonal

edge in G indicate conditional dependence in the corresponding two response variables given

the rest. Maximum possible number of off-diagonal edges in G is q(q−1)/2. The goal is now a

joint sparse estimation of both γ and G - which would respectively tell us the predictors that

are marginally significant (considering all the responses) and the gene interaction network,

after accounting for the effect of the genetic variability (the predictors). In order to perform

an eQTL analysis, conditional on γ and G, one can then sample the matrix Bγ,G, the entries

of which, if away from zero, indicate a non-zero association between the respective SNPs and

the genetic transcripts.

2.1 Baysian Gaussian graphical models

In a Bayesian setting, Gaussian graphical modeling is based on hierarchical specifications

for the covariance matrix (or inverse covariance matrix) using global conjugate priors in the
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space of positive-definite matrices, such as inverse Wishart priors or its equivalents. Dawid

and Lauritzen (1993) introduced an equivalent form as the hyper-inverse Wishart (HIW)

distribution. The construction for decomposable graph enjoys many advantages, such as

computational efficiency due to its conjugate formulation and exact calculation of marginal

likelihoods (Carvalho and Scott, 2009; Jones et al., 2004). Below, we describe some notations

and previously known results which have been used in the rest of the paper.

We specify an undirected graph G = (V,E) where V is a set of vertices and E = (i, j) is a

set of edges for i, j ∈ V . A graph (or, a subgraph) is termed as complete if all its vertices are

connected. Given this set of complete subgraphs, a clique is defined as a complete subgraph

which is not completely a part of another subgraph (Carvalho et al., 2007). A decomposable

graphs is one which can be split into a set of cliques C1, . . . , Ck (Lauritzen, 1996). A clique is

thus a complete maximal subset of a graph. Define Hj−1 = C1∪. . .∪Cj−1 and Sj = Hj−1∩Cj.

Then Sj s are called the separators.

Now, following the notation and Proposition 5.2 of Lauritzen (1996), we have the following

fact about Gaussian graphical models: If Y = (Yν)ν∈V is a random vector in R|V | that follows

a multivariate normal distribution with mean vector ξ and covariance matrix ΣG, then

Yν ⊥ Yµ|YV \{ν,µ} ⇐⇒ ωνµ = 0,

where Σ−1G = {ωνµ}ν,µ∈V is the inverse of the covariance matrix. Thus, the elements of the

adjacency matrix of the graph G have a very specific interpretation, in the sense that they

model conditional independence among the components of the multivariate normal. Presence

of an off-diagonal edge in the graph indicates non-zero partial correlation.

The advantage of having a decomposable graph allows us to split the density of the

multivariate normal into products and ratios over the set of cliques and separators. The

clique finding problem is polynomial time for decomposable graphs but is known to be NP-

complete for a general graph and thus we restrict ourselves to decomposable graphs for this
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article. If the data are denoted by y, then from section 5.3 of Lauritzen (1996),

f(y) =

∏k
j=1 f(yCj)∏k
j=2 f(ySj)

, (2)

where f(·) denotes a generic density. Given this graph G, Dawid and Lauritzen (1993)

derived a conjugate prior distribution for the covariance matrix ΣG, which they termed the

hyper-inverse Wishart (HIW) distribution. Specifically, if q dimensional i.i.d random variables

Yi ∼ N(0,ΣG) for i = 1, . . . , n and ΣG ∼ HIWG(δ,Φ) is the prior law for a positive integer δ

and a positive definite q×q matrix Φ, then the posterior is ΣG|Y ∼ HIWG(δ+n,Φ+Y′Y),

where Y = (Y1, . . . , Yn)
′

is an n× q matrix. This particular distribution plays a key role in

our model in sections 2.2 and 2.5.

2.2 Hierarchical model and MCMC computation

Note that the model in equation (1) is equivalent to

Vec(Y −XγBγ,G)′ ∼ N(0, In ⊗ΣG),

where N(µ,Ψ) denotes a multivariate normal distribution with mean vector µ and covariance

matrix Ψ. Here ⊗ denotes the Kronecker product and A′ denotes the transpose of a matrix

A. The operator Vec(·) forms a column vector by stacking the columns of a matrix on one

another. Note that in this formulation the individuals (n) are uncorrelated in our model,

which is reasonable if the data are not familial, but through the q × q covariance matrix

ΣG, we allow the responses to be correlated within each individual, which is reasonable in

an eQTL analysis where the phenotypic traits (responses) can be correlated. The complete

hierarchical model is now specified as:

(Y −XγBγ,G)|Bγ,G,ΣG ∼ MNn×q(0, In,ΣG), (3)

Bγ,G|γ,ΣG ∼ MNpγ×q(0, cIpγ ,ΣG), (4)

ΣG|G ∼ HIWG(b, dIq), (5)
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γi
i.i.d∼ Bernoulli(wγ) for i = 1, . . . , p, (6)

Gk
i.i.d∼ Bernoulli(wG) for k = 1, . . . , q(q − 1)/2, (7)

wγ, wG ∼ Uniform(0, 1), (8)

where b, c, d are fixed, positive hyper-parameters and wγ and wG are prior weights that

control the sparsity in γ and G respectively. We denote by γi and Gk the indicators for the

ith element for the vector γ and the kth off-diagonal edge in the lower triangular part of

the adjacency matrix of the graph G. The diagonal elements in the adjacency matrix of G

are always restricted to be 1, since a zero on the diagonal violates the positive definiteness

of ΣG.

Equations (4) and (5) specify the prior for the mean and covariance respectively. Priors of

the type of equation (4) is also known as a “spike and slab” prior (George and McCulloch,

1993). With p predictors there is total of 2p possible models, corresponding to the presence

or absence of each individual predictor. The spike and slab type prior allows for the use

of a set of pγ predictors out of a possible p, reducing the number of “active” covariates

during a given MCMC iteration. Note in equation (4) that the matrix Bγ,G is assumed a

priori independent in the direction of the SNPs but not in the direction of the responses.

An alternative will be to use Zellner’s g-prior (Zellner, 1986) with the formulation Bγ,G ∼

MNpγ×q(0, c(XγX
′
γ)−1,ΣG). Now, from equation (4) we have

XγBγ,G|γ,ΣG ∼ MNn×q(0, c(XγX
′
γ),ΣG).

Using this in equation (3) we get

Y|γ,ΣG ∼ MNn×q(0, In + c(XγX
′
γ),ΣG),

which has the effect of integrating out Bγ,G. Now, let A be the Cholesky decomposition of



Joint high-dimensional Bayesian variable and covariance selection with an application to eQTL analysis 9

the matrix {In + c(XγX
′
γ)}−1, i.e.,

AA′ = {In + c(XγX
′
γ)}−1.

The Cholesky decomposition exists for positive values of c. Then, if we define T = AY, we

have

T|γ,ΣG ∼ MNn×q(0, In,ΣG). (9)

Noting the definition of the prior for ΣG from equation (5), integrating out ΣG from

equations (9) and (5) gives rise to the hyper-matrix t distribution of Dawid and Lauritzen

(1993), and we get

T|γ,G ∼ HMTn×q(b, In, dIq), (10)

where HMT(·) denotes the hyper-matrix t distribution. This is a special type of t distribution

which, given the graph, splits into products and ratios over the cliques and separators as in

equation (2). More specifically, given n observations and the graph G, we know the sequence

of cliques C1, . . . , Ck and separators S2, . . . Sk. For any A ⊆ Ci, we choose the nodes in A

and write T nA as the corresponding (n× |A|) matrix where |A| denotes the cardinality of the

set A. Then the hyper-matrix t density on a given clique Cj can be written as

f(tnCj) = π−n/2
Γ|Cj |((b+ n+ |Cj| − 1)/2)

Γ|Cj |((b+ |Cj| − 1)/2)
{det(dI|Cj |)}−n/2

×[det{In + (tnCj)(dI|Cj |)
−1(tnCj)

′}]−(b+n+|Cj |−1)/2,

by equation (45) of Dawid and Lauritzen (1993). The densities on the separators can be

written similarly. The overall density is now given by an application of equation (2) as

f(tn) =

∏k
j=1 f(tnCj)∏k
j=2 f(tnSj)

. (11)

Note that now we have effectively integrated out both Bγ,G and ΣG. Thus the joint search
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for the sparse set of predictors and sparse set of inverse covariance matrix elements can just

cycle between γ and G, provided we can evaluate the HMT density in a computationally

efficient manner. We accomplish this via MCMC using random addition/deletion of variables

(or edges, in the case of the graph) for both γ and G. This collapsed Gibbs sampler works

efficiently in high-dimensional problems.

2.3 MCMC for γ given G and T

We choose to work with a simple addition/deletion of variables for γ. We have p(γ|wγ) ∝∏p
i=1w

γi
γ (1−wγ)(1−γi), where γi is the ith element of the vector γ and from equation (8) we

note wγ ∼ Uniform(0, 1). This gives p(γ) ∝ {(p+1)
(
p
pγ

)
}−1 as the prior law after integrating

out wγ where pγ =
∑p

i=1 γi.

(1) Given the current γ, propose γ∗ by either (a) changing a non-zero entry in γ to zero

with probability (1−αγ) and set q(γ|γ∗)/q(γ∗|γ) = αγ/(1−αγ), or (b) changing a zero

entry in γ to one, with probability αγ and set q(γ|γ∗)/q(γ∗|γ) = (1− αγ)/αγ.

(2) Calculate f(t|γ∗,G) and f(t|γ,G) where f denotes the HMT density of equation (11).

(3) Jump from γ to γ∗ with probability

r(γ,γ∗) = min

{
1,
f(t|γ∗,G)p(γ∗)q(γ|γ∗)
f(t|γ,G)p(γ)q(γ∗|γ)

}
.

2.4 MCMC for G given γ and T

Similar to γ, we add or delete off-diagonal edges at random to G to perform the MCMC. We

have p(G|w) ∝
∏q(q−1)/2

k=1 wGkG (1−wG)(1−Gk), where Gk is the kth off-diagonal element in lower

triangular part of the (symmetric) adjacency matrix of G. The diagonal elements are always

1 to ensure non-zero variance. We again note from equation (8) that wG ∼ Uniform(0, 1) and

therefore, similar, to section 2.3, integrating out wG gives p(G) ∝
[
{q(q + 1)/2}

(
q(q+1)/2

rG

)]−1
,

where rG =
∑q(q−1)/2

k=1 Gk.

(1) Given the current decomposable graph G, propose a decomposable graph G∗ by either
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(a) changing a non-zero off-diagonal entry in the lower triangular part of G to zero with

probability (1 − αG) and set q(G|G∗)/q(G∗|G) = αG/(1 − αG), or (b) changing a zero

off-diagonal entry in the lower triangular part of G to one, with probability αG and

set q(G|G∗)/q(G∗|G) = (1 − αG)/αG. It is understood that the corresponding upper

triangular elements are also changed to maintain the symmetry of the adjacency matrix.

(2) Calculate f(t|G∗,γ) and f(t|G,γ) where f denotes the HMT density of equation (11).

(3) Jump from G to G∗ with probability

r(G,G∗) = min

{
1,
f(t|G∗,γ)p(G∗)q(G|G∗)
f(t|G,γ)p(G)q(G∗|G)

}
.

2.5 Regeneration of Bγ,G in the posterior for association analysis

Since the pγ × q matrix of regression coefficients is integrated out during the analysis,

the recovered predictors with high posterior probabilities are the globally significant ones.

However, this does not provide information on which of the q responses each of these

significant predictors is associated with. In order to perform an association study between

the p predictors and the q responses, we can simulate Bγ,G directly conditional on γ and G

due to its conjugate structure:

• Generate ΣG|Y,Bγ,G,γ,G from HIWG{b+ n, dIq + (Y −XγBγ,G)′(Y −XγBγ,G)} .

• Generate Bγ,G|Y,ΣG,γ,G from MNpγ×q{(X′γXγ+c−1Ipγ )−1X′γY, (X′γXγ+c−1Ipγ )−1,ΣG}.

where the starting values for Bγ,G and ΣG can be chosen from the respective priors.

We may sample Bγ,G and ΣG this way in each iteration of the MCMC for association

analysis. However, it should be noted that while sampling γ in the posterior, the marginalized

sampler in section 2.3 would perform better and conditioning on Bγ,G is to be avoided due

to the hierarchical structure of the model and dependence of Bγ,G on γ. An alternative and

fast way to sample Bγ,G is to generate the quantity conditional on γ̂ and Ĝ, where “hat”

denotes some form of posterior summary statistic. Specifically, for the purpose of this article,
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we determine the entries of γ̂ and Ĝ by controlling the Bayesian false discovery rate (FDR)

on the posterior mean at a certain level, say 5%, using the method of Müller et al. (2007).

2.6 Specification of hyperparameters

The hyperparameters we need to specify in order to perform the MCMC are b, c, d, αγ

and αG. A crucial parameter is c, which essentially is a global shrinkage parameter akin to

ridge penalty in a frequentist analysis. This parameter needs to be chosen in a way so that

the variability in the two series (X and Y) are matched. We suggest taking for c the value

Var(Y)/Var(X), where variance is computed over all the n × q elements for Y and n × p

elements for X. Web Appendix A presents simulation results documenting the stability of

the estimated graph G over a range of choice for c, justifying our guideline.

3. Simulation study

We study two simulation examples, one where we directly simulate from the model described

in section 2 and another simulation example from Richardson et al. (2010), where our model

assumptions are violated slightly, in order to verify the robustness of our method.

3.1 Simulation example 1

Here, we simulate directly from the model in section 2. We choose p = 498, q = 300 and

n = 120. X is a 120 × 498 matrix of ones and zeroes, coding a binary SNP, taken from

Richardson et al. (2010). Clearly this is a large p, large q, small n setting. The true predictors

are {30, 40, 57, 62, 161, 239, 269, 322, 335, 399, 457} and thus true pγ = 11. Figure 1 shows

the true adjacency matrix for the graph G. We choose b = 10, c = 0.32, d = 1.

[Figure 1 about here.]
We perform 100,000 MCMC iterations after a burn-in period of 50,000 and monitor the

likelihood of the model to ascertain that around 100,000 MCMC iterations are enough for a

reasonable search in the high-dimensional model space. In order to ensure good exploration,

we perform independent parallel MCMC searches with initial values chosen at random. The
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search is extremely fast, with about 2000 MCMC iterations/minute (implemented in the

MATLAB programming language and running on an Intel Xeon 2.5 GHz processor) because

(a) we successfully avoid having to sample the high-dimensional Bγ,G and ΣG in the posterior

in our collapsed Gibbs sampler, from a multivariate normal and a hyper inverse Wishart

respectively, having integrated these parameters out of the model and (b) since Bγ,G and

ΣG depend on γ and G, a full Gibbs sampler will suffer from poor mixing - if at all it is

possible to design such a sampler for a high-dimensional problem like the one at hand. The

only computationally intensive step in our search procedure is the evaluation of an HMT

density in the MCMC steps 2.3.2 and 2.4.2. We, however, note that our MCMC procedure

for γ and G in sections 2.3 and 2.4 are extremely simple in principle - in the sense that they

search the model space via simple addition or deletion of variables (or edges) in the model,

i.e, at any given MCMC iteration we only change one variable at a time via a local move of

the Markov chain. We anticipate that, in principle, ideas similar to parallel tempering (Geyer,

1991) or stochastic approximation Monte Carlo (Liang et al., 2007), where the Markov chain

is allowed both local and global moves, will result in an even more efficient search. However,

we will not focus on these more advanced MCMC techniques further in this article, noting

that our simple MCMC appears to work well.

For an element of γ and G, given a threshold on the posterior probability for inclusion in

the model, we first determine the true positives (TP), false positives (FP), true negatives

(TN) and false negatives (FN) in this simulation example. Define the true positive rate

(TPR) and the false positive rate (FPR) as,

TPR =
TP

TP + FN
, FPR =

FP

TN + FP
.

[Figure 2 about here.]

A plot of TPR and FPR as we vary the decision threshold on the posterior probability

of inclusion is called the receiver operating characteristic (ROC). In Figures 2(a) and (b)
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we present the ROC curves corresponding to γ and G respectively. As we noted in the

introduction of this paper, most techniques developed so far for high-dimensional analysis

treat the variable and the covariance selections in a model separately. Therefore, an important

question to address is whether the “joint” selection of variables and covariance structures

offers any advantage over the case where these two were to be estimated separately. In

Figure 2(a), the solid blue line corresponds to the ROC for γ where the joint selection is

performed and the broken line corresponds to the ROC where the responses are assumed

to be independent and hence the adjacency matrix G is a fixed diagonal matrix and is not

updated. With a diagonal matrix for the response graph, the model is identical to section

3.1 of Richardson et al. (2010). Comparing the ROC curves, we note that the joint selection

performs better. Similarly, in Figure 2(b), the solid blue line corresponds to the ROC curve

for G where both γ and G are updated and the broken blue line is the ROC curve for a

zero mean model (i.e. there are no predictors). Covariance selection for a similar, zero mean

model has been considered by Carvalho and Scott (2009). We again see the joint selection is

advantageous in this setting.

The plot of posterior marginal probabilities of inclusion for the predictors (Figure 2(c))

correctly identifies most of the eleven true covariates as having high posterior probabilities

(circled in red). One must note from Figure 1 that the number of true non-zero elements in

the inverse covariance matrix is much higher than the available sample size. This is different

from the true number of predictors, which is much smaller than the sample size. Therefore,

indeed it is a strength of our method that it can recover the true adjacency structure in this

very high-dimensional setting. Figure 2(d) shows the plot of of the posterior probabilities for

G on a gray scale, and the true structure is clearly identifiable as a region of higher posterior

probability at the bottom right corner of the plot.
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3.2 Simulation example 2

We study the simulation examples of Richardson et al. (2010), section 6. The setting for

their first simulation experiment is as follows. There are q = 100 response variables or

genetic transcripts, p = 498 SNPs and n = 120 samples. This is again a large p, large

q, small n setting. Table 1 shows the responses that are affected by a given SNP in the

simulation example entitled “Sim 1” in Richardson et al. (2010). We first select a set of

SNPs p̃ ∈ {1, . . . , p} and a set of responses q̃p ∈ {1, . . . , q} corresponding to each element of

the vector p̃, in order to let a single SNP affect multiple responses in Table 1.

[Table 1 about here.]

Thus, we see there are groups of transcripts that are affected by one or more of the SNPs,

e.g., transcripts 17-20 are affected by SNP 30, 161 and 239 simultaneously. The responses

are now simulated with βp̃,q̃p ∼ N(0, 0.32) for p̃ and q̃p listed in Table 1 and noise terms

are simulated from a N(0, 0.12). The rest of the simulated responses are just N(0, 0.12)

noise terms. The predictor matrix X is the same as section 3.1. A simultaneous analysis

of significant variables and adjacency matrix elements should now identify the groups of

correlated transcripts (those which are afftected by the same SNP) as well as the set of

significant predictors.

Figure 3(a) plots the marginal posterior probabilities for the elements of γ, with SNPs 30,

161 and 239 circled in red. Thus we see the true SNPs again have high marginal posterior

probabilities of inclusion in the model. ROC curve for γ looked very similar to Simulation

example 1. Note that here we do not know the true adjacency matrix since the simulation

setting differs from our model assumptions, but, we will still expect the transcripts that are

affected by the same SNP to be exhibit correlation among themselves. Figure 3(b) shows the

recovered adjacency matrix where the cutoff on the posterior probability for inclusion was

set to 0.4. Comparing Fig 3(b) with Table 1, we see that in this case we are able to recover

the correlation structure among the transcripts as well.
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[Figure 3 about here.]

Similar to section 3.1, our search procedure for both γ and G again proceeds via simply

adding and deleting edges at random. This simple procedure is at a contrast with the

more involved Hierarchical Evolutionary Stochastic Search (HESS) of Richardson et al.

(2010), where an idea similar to simulated tempering is followed. There are multiple Markov

chains with different temperatures (i.e., different state transition probabilities) and there are

swapping between these chains. However, unlike Richardson et al. (2010), our method has

the added benefit of borrowing the conditional dependence information among the responses

through the graph G while searching the model space for γ and vice versa.

For this example, we are now well suited to study if we can recover the pγ × q matrix

of regression coefficients Bγ,G to reflect the association between the predictors and the

responses, since we know these associations (between the SNPs and genetic transcripts) from

Table 1. We take the approach described in section 2.5 and simulate Bγ,G in the posterior

conditional on γ̂ and Ĝ chosen to restrict the FDR on their respective posterior means below

5% (Figures 3(a) and (b)). Basically, the inferred vector γ tells us the predictors that are

globally significant (for one or more responses), however we can make a statement concerning

the association between p SNPs and the q transcripts only through this recovered matrix

Bγ,G.

As an example, Figures 3(c) and (d) show the plots of B161,· and B239,· respectively, i.e., it

shows the association of SNP 161 and 239 with all the 100 transcripts. We see that B161,17−20

in Figure 3(c) and B239,1−20 and B239,71−80 Figure 3(d) to be away from zero, compared to the

rest. Formally, we can compute the mean and standard deviations for the elements of Bγ,G

over posterior samples and then an association is declared significant via a t-test accounting

for multiple testing involved. The dashed horizontal lines in Figures 3(c) and (d) are the mean

and the Bonferroni corrected 95% confidence intervals, giving us upper and lower bounds for

declaring an association significant.
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4. eQTL analysis on publicly available human data

We focus on a human eQTL analysis to demonstrate the effectiveness of the methodology pro-

posed in this article. We consider 60 unrelated individuals of Northern and Western European

ancestry from Utah (CEU), whose genotypes are available from the International Hapmap

project and publicly downloadable via the hapmart interface (http://hapmart.hapmap.org).

The genotype is coded as 0,1 and 2 for homozygous rare, heterozygous and homozygous

common alleles. We focus on the SNPs found in the 5’ UTR (untranslated region) of mRNA

(messenger RNA) with a minor allele frequency of 0.1 or more. The UTR possibly has

an important role in the regulation of gene expression and has previously been subject

to investigation by Chen et al. (2008). In total, there are 3125 SNPs. The gene expres-

sion data of these individuals were analyzed by Stranger et al. (2007). There were four

replicates for each individual. The raw data were background corrected and then quantile

normalized across replicates of a single individual and then median normalized across all

individuals. The gene expression data are again publicly available from the Sanger Institute

website (ftp://ftp.sanger.ac.uk/pub/genevar). Out of the 47293 total available probes

corresponding to different Illumina TargetID, we select the 100 most variable probes -

each corresponding to a different transcript. Supplementary Table 1 provides a list of the

corresponding TargetID for these 100 probes. Thus, here, n = 60, p = 3125 and q = 100.

Controlling for FDR at 5% level on the posterior probabilities of γ yields 8 globally signif-

icant SNPs. These are rs2285635 (1421), rs12026825 (2735), rs757124 (3057), rs

2205912 (3058), rs 929762 (2788), rs 3810711 (2543), rs 708463 (2921), rs 7770751

(2653). These are listed in the order of decreasing posterior probability and the numbers

in the parentheses denote the serial number of the SNP among all the 3125 SNPs listed in

Supplementary Table 2.

Conditional on the inferred γ̂ and Ĝ we simulate Bγ,G in the posterior and determine the
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significant associations via a t-test. Table 2 provides a list of significant associations of the

8 SNPs identified above with the corresponding transcripts.

[Table 2 about here.]

[Figure 4 about here.]

Thus, in Table 2 there is a total of 43 associations detected between the SNPs and the

transcripts. Chen et al. (2008) detected a slightly higher number of associations using a

frequentist p-value thresholding approach and considering both the 3’ and 5’ UTRs simulta-

neously. The inferred graph has a total of 55 edges and is shown in Figure 4. The TargetIDs

correspond to unique gene locations and can be queried in standard bioinformatics databases.

5. Discussion

This paper discusses an approach of joint Bayesian selection of the significant predictor

variables and inverse covariance matrix elements of the response variables in a computation-

ally feasible way. The two problems are separately known in literature as variable selection

and covariance selection. The marginalization-based collapsed Gibbs sampler is shown to

be effective in high dimensions. Association analysis, where the dimensions of both the

predictors and responses are high compared to the sample size, is also discussed in the

context of eQTL analysis. An immediate extension of the current work is to deploy more

advanced MCMC schemes in sections 2.3 and 2.4 to include possibilities of global move of

the Markov chain. This will result in a more thorough search of the model space. Apart

from eQTL analysis, there are numerous problems that arise in finance, econometrics and

biological sciences where sparse SUR can be a useful approach to modeling and therefore,

we expect our inference procedure to be effective. We have only concerned ourselves with a

linear Gaussian model in this article, in order to take advantage of conjugate structures of the

priors. As long as marginalization is feasible, relaxing the linearity assumption is relatively

straightforward. As an example, analytically integrating out the regression coefficients should

still be possible if the covariates enter the model through a spline function and thus the
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current work can be extended to include flexible nonparametric techniques. One should note

that the problem dimension for inferring the covariance graph for a given sample size n

scales as O(q2) where q is the number of correlated traits. Therefore, our approach is useful

if one is interested in inferring the interaction among a modest number of traits. However,

the raw number of traits our method can handle is inherently smaller compared to methods

that assume the traits to be independent (Kendziorski et al., 2006; Bottolo et al., 2011) or

assume a dependence structure through a covariance matrix Σ (but no underlying graph

structure) but then integrate out Σ (Petretto et al., 2010), thus not inferring G. How well

the method performs is also a factor of how sparse the true covariance structure is and it is

natural to expect that for a given sample size n, performance degrades for a denser graph.

6. Supplementary Materials

Web Appendix A: Additional simulation results referenced in section 2.6; Web Table 1: The

100 × 60 matrix of gene expression data for 100 transcripts (with unique Illumina TargetID)

for each of the 60 CEU individuals & Web Table 2: the 3125 5’ UTR SNPs considered for

the 60 CEU individuals listed by their rsID, referenced in section 4, are available with this

paper at the Biometrics website on Wiley Online Library.
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Figure 1. Setting for simulation example 1: The true adjacency matrix of the inverse
covariance graph for the responses. Shaded area indicates the presence of an edge and
otherwise an edge is absent. This figure appears in color in the electronic version of this
article.
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Figure 2. Result for simulation example 1: Plot of TPR v. FPR as the threshold on the
posterior probabilities of inclusion in the model is varied (i.e., ROC curves) for (a) γ, joint
estimation (solid curve) and fixed, diagonal graph (broken curve) and (b) G, joint estimation
(solid curve) and zero mean model (broken curve). The diagonals correspond to the ROC
curves for random guess. (c) The marginal posterior probabilities for γ with the true variables
circled. (d) The marginal posterior probabilities for G on a gray scale. This figure appears
in color in the electronic version of this article.
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Figure 3. Result for simulation example 2: (a) the marginal posterior probabilities for
γ with the true variables circled (b) the recovered adjacency matrix with a cutoff on the
posterior probabilities of edge inclusion set to 0.4 (c) association of SNP 161 with all the
100 transcripts, showing enhanced association for transcripts 17-20 and (d) association of
SNP 239 with all the 100 transcripts, showing enhanced association for transcripts 1-20 and
71-80. The dashed lines in the last two plots are the mean and Bonferroni corrected 95%
intervals. This figure appears in color in the electronic version of this article.
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Figure 4. The inferred graph for the CEU data, showing 55 significant interactions among
the 100 traits considered. Traits that are conditionally independent of all the other traits are
not shown. This figure appears in color in the electronic version of this article.
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Table 1
Simulation setting for the association between significant SNPs and corresponding transcripts in simulation example

2.

SNP (p̃) Transcript (q̃p)

30 1-20, 71-80
161 17-20
239 1-20, 71-80
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Table 2
Association between significant SNPs and corresponding transcripts in the eQTL study identified by a t-test as

significant at 5% level after Bonferroni correction.

SNP Transcript (Illumina Probe ID)

rs2285635 GI 17981706-S, GI 33356162-S, Hs.449602-S, hmm10289-S, GI 20373176-S
rs12026825 GI 41197088-S, GI 41190507-S, GI 18641371-S, Hs.449602-S, GI 23065546-A, GI 24797066-S, GI 18641372-S
rs757124 hmm3574-S, Hs.449602-S, hmm3577-S, GI 21389378-S, GI 24797066-S
rs2205912 GI 18426974-S, GI 37546026-S, Hs.406489-S, hmm3574-S, Hs.449602-S
rs929762 GI 41190507-S, Hs.449605-S, Hs.512137-S, Hs.406489-S, hmm3574-S
rs3810711 GI 18426974-S, GI 41197088-S, Hs.406489-S, hmm3574-S, Hs.449572-S
rs708463 GI 37546026-S,GI 37546969-S,Hs.449609-S, GI 42662536-S, GI 18641372-S
rs7770751 GI 41190507-S, GI 37546026-S, Hs.512137-S, hmm3577-S, hmm10289-S, GI 28416938-S


