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Abstract

Microarray technology has made available large data sets that can provide information on gene
expression when cells are subjected to various treatments. Before proceeding with a formal sta-
tistical analysis, many biological and procedural aspects should be considered. These aspects may
guide the analysis and subsequent statistical inference. Several of these issues are discussed in
connection with the analysis of oligonucleotide and cDNA microarray experiments. The particular
focus in this article is on e(ects caused by the cDNA slide manufacturing process, appropriate
transformations of the data, and on adjustments for background. A prescription for the analysis
of microarray data is proposed and demonstrated using data from a cDNA experiment comparing
the genetic expressions in two mouse cell lines; a candidate set of genes is identi6ed for further
study. The prescription may be modi6ed for oligonucleotide microarray data.
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1. Introduction

Increasing data storage and computational power have led to valuable collaborations
between informatics and statistics, leading to enhanced knowledge in various scienti6c
6elds. Many statistical and computational issues arise in these studies, such as data col-
lection, design, analysis, statistical and practical signi6cance, and numerically eGcient
computational procedures. Biological information science, or bioinformatics, is one area
where these issues arise, particularly in genomics. Microarray technology makes pos-
sible the quantitative analysis of gene expression and variation in thousands of genes
from a single experiment. Some less obvious but potentially important statistical chal-
lenges relate to the biological and statistical signi6cance of gene expression from a
limited number of experimental conditions, transformations of non-normal data, weak
signals amidst possibly high noise, estimation of and correction for background varia-
tion, instrumentation and measurement errors, variation in signal strengths both within
and across experiments, and multiple dependent statistics used for testing signi6cance
of measured gene expression levels. Other important considerations precede formal
hypothesis tests, such as the identi6cation and quanti6cation of errors in the cellular
material, the manufacturing process that produces the slides, and the instrumentation
that provides the measurements. These challenges arise in the analysis of data from
both oligonucleotide microarrays and spotted cDNA microarrays. Both technologies are
used in experiments to identify gene expression levels in the target sample(s), whose
messenger RNA (mRNA) is labeled with a Iuorescent dye. The actual measurements
are Iuorescence intensities as recorded by a laser scanner; higher intensities indicate
higher mRNA concentrations, and thus more binding, or hybridization, and thus pos-
sibly more gene expression. Because genes contain the code for protein production,
these measured intensities are believed to correlate somewhat with the proteins that
the organism manufactures. [More direct measures of protein production are obtained
from proteomics (Nicolls et al., 2003), but the analysis of data from such experiments
is not discussed here.]

Knowledge of the process is essential for understanding the data and hence for an
appropriate analysis from either type of experiment. This article describes some of these
process issues, with particular emphasis on the biological and mechanical processes, on
data transformations, and on valid estimation and adjustment for background intensities.
Experimental design issues are not addressed here, as they have been well presented
in other articles such as Lee et al. (2000), Kerr and Churchill (2001a,b), and Yang
and Speed (2002b). General descriptions of both types of microarrays are available
elsewhere; e.g., for cDNA slides, see articles by Yang et al. (2002a,c), Yang and
Speed (2002b), Amaratunga and Cabrera (2001), Brazma and Vilo (2000), and the web
site for the Speed group, http://www.stat.berkeley.edu/terry/zarray/home/
index.html; for oligonucleotide arrays, see A(ymetrix (2000, 2002), Efron et al.
(2001), Tusher et al. (2001), and Irizarry et al. (2003). In a brief tutorial, Satagopan and
Panageas (2003) explain the underlying science and describe the two types of arrays;
the statistical analysis focuses on methods for clustering genes. Each technology o(ers
advantages and disadvantages, and each yields measurements of mRNA concentration
in a gene at the time that the mRNA was harvested, together with errors from various
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sources that cause bias and uncertainty in these measurements. Brief descriptions of
these two technologies follow in Section 2.

Section 3 describes several sources of error in microarray experiments. The impli-
cations of erroneous background adjustments in assessing statistical signi6cance of a
gene and transformations of the expression levels into a form that is more amenable
to analysis are both discussed in Section 4. Section 5 describes the analysis of data
from an experimental cDNA slide that contains 16,928 mouse genes. Comments and
discussion for further work are presented in Section 6.

2. Brief description of cDNA and oligonucleotide arrays

A cDNA slide contains an array of “spots”, arranged in “blocks” of rows and
columns, where each spot consists of thousands of nominally identical probes. The
process by which the probes, corresponding to speci6c genes, were obtained for these
slides is quite complex and, once completed, yields a gene “library” for a given lab-
oratory, which is then used for thousands of slides. Thus, errors in the gene library
persist throughout all slides manufactured from it. A target sample contains a mix-
ture of two types of cells, control and experimental, whose messenger RNA (mRNA),
which degrades rapidly, is reverse-transcribed into the more stable cDNA (c is for
complementary) and then labeled with two di(erent Iuorophores: the control cells are
often labeled with Cyanine 3, or Cy3 (green dye), and the experimental cells (e.g.,
cells that have subjected to some sort of treatment, such as stress, heat, radiation, or
chemicals) are often labeled with Cyanine 5, or Cy5 (red dye). When mRNA concen-
tration is high in the genes of these cells, their cDNA will bind to their corresponding
probes on the spotted cDNA slide; an optical detector in a laser scanner will mea-
sure the Iuorescence at wavelengths corresponding to the green and red dyes (532
and 635 nm, respectively). Good experimental design will interchange the dyes in a
separate experiment to account for imbalances in the signal intensities from the two
types of Iuorophores and the expected degradation in the cDNA samples between the
6rst scan at 532 nm (green) and second scan at 635 nm (red). The ratio of the relative
abundance of red and green dyes at these two wavelengths on a certain spot indicates
relative mRNA concentration between the experimental and control genes. Thus, the
gene expression levels in the target cells can be compared directly with those from the
control cells.

Oligonucleotide arrays circumvent the possible inaccuracies that can arise in the
preparation of a gene “library” and the control and experimental samples for spotted
array slides, by using 16–20 prede6ned and pre-fabricated sequences of (usually 25)
nucleotides for each gene. Rather than circular-shaped spots, these probes are deposited
onto the chip in square-shaped cells. According to the A(ymetrix? User’s Manual
4.0 (A(ymetrix, 2000), probe cells are 24 × 24 or 50 × 50 micrometers square and
are divided in 8 × 8 pixels; the 28 border pixels are ignored, and the intensity is
reported as the 27th largest of the remaining 36 pixel values (75th percentile). The
oligonucleotide arrays avoid certain problems with the laboratory manufacturing process
and with the use of probes of varying lengths, but these arrays also do not o(er as
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direct a comparison between experimental and control samples. The rough equivalent
of a control for comparison is a “mismatch” probe, or “MM”, which di(ers from the
exact nucleotide sequences for a given gene, or “PM” for perfect match, at only the
middle (13th) nucleotide. This “control” for the “PM” is only rough, since a target
sample with elevated mRNA concentration for a certain gene may hybridize suGciently
to both the PM and MM probes.

Several authors have discussed analysis of gene expression data from various stand-
points; e.g., experimental design of multiple cDNA slides (Kerr and Churchill, 2001a,b;
Yang and Speed, 2002b), data transformations (Rocke and Durbin, 2001; Durbin et al.,
2002), statistical methods (Dudoit et al., 2002), linear mixed-e(ects models (Wol6nger
et al., 2001), mixture models (Pan, 2002), and multiple comparisons using false dis-
covery rate (Reiner et al., 2003; Storey, 2001). Most of these papers assume that
the data have been “pre-processed” with a sensible transformation to address partially
the non-normality of the expression levels, and with normalization and background
correction methods to adjust for di(erent signal intensities across di(erent microarray
experiments and sources of variation arising from the chip manufacturing process and
background intensity levels.

With either technology, the reported intensity level (spot, background, PM, or MM)
is a summary of Iuorescence measurements detected in a series of pixels. Because spot
sizes are much more variable with cDNA slides, GenePix Pro? reports as “foreground”
both the diameter of the spot (typically, about 130–150 �m) and the number of pix-
els where intensities are measured (usually 150–160), as well as the mean, median,
and standard deviation of these pixel intensities. GenePix Pro? also reports the num-
ber of pixels used in the background calculation (typically, about 400–650, depending
upon the location and size of spot for which the background measure is intended
to correspond), along with the mean, median, and standard deviation of these back-
ground pixels. The de6nition of which pixels to include as “background” constitutes
an important issue which strongly a(ects the analysis. Many algorithms to measure
the background intensity for cDNA slides have been proposed. For example, GenePix
Pro? assigns a pixel to the background of a particular target spot if it: (a) lies outside
a two-pixel-wide boundary surrounding the circle of foreground pixels centered on the
spot, (b) lies outside a two-pixel-wide boundary surrounding the circle centered on the
foreground pixels of any one of the immediate neighboring spots (i.e., 8 neighbors for
an interior spot, 5 neighbors for an edge spot, and 3 neighbors for a corner spot),
and (c) lies inside a circle whose radius is three times that of the reported diameter
of the circle centered on the target spot. [See p. 14 of the GenePix Pro? 4.0 User’s
Guide (Axon Instruments, 2001).] The software then reports the mean and median of
these pixel values. Yang et al. (2002a) describe the background calculation (in their
Table 5) from seven such algorithms provided by four gene chip software manufactur-
ers (GenePix Pro?, Scanalyze?, Spot?, Quantarray?) and study the consequences of
these algorithms on real data. They conclude that the S.morph algorithm from Spot?

provides the least variable estimates of background. The image analysis method uses
morphological opening (Soille, 2003), a nonlinear 6ltering operation that 6lters out
the foreground pixels (cDNA spots, nominally circular, but in fact variously shaped),
leaving only a background image, which is sampled near the target spot.
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In contrast, the oligonucleotide array does not have any real “background” on the
chip, so a quantitative assessment of the intensity in the absence of hybridization
must be derived in other ways. The A(ymetrix? User’s Manual 4.0 states that the
software divides the chip into 16 sectors [approximately 16,384 small (24 �m size) or
4096 (50 �m size) probe cells], and reports the average intensity in the 2% smallest
[approximately 328 small or 82 large] probe cells. The user may choose to summarize
pixel values (which tend to be highly skewed) with the biweight instead of the mean.
(The biweight was designed for data from symmetric, not skewed, populations.)

All algorithms to categorize pixels as foreground or background yield summaries of
the pixel intensities. Background pixel summaries can be modeled, providing more sta-
ble estimates that account for spatial variability across the slide, and that are subtracted
from the foreground counts (spot intensities) for further analysis. Thus, this prescription
can be applied to the output of any algorithm for de6ning and summarizing background
pixel intensities. The median is particularly robust to errors in both measurement and
foreground/background assignment. In this article, R and G denote the median of the
pixel values corresponding to “foreground” (spot), and r and g denote the median
“background” pixel values, in the red and green channels, respectively.

3. Measurement and processing variation

Many sources of variation a(ect data from microarray experiments. Knowledge of
these sources leads to better experiments designed to reduce their impact, to better
characterization of the uncertainty in the reported result, and to possible modi6cations
in the manufacturing process.

3.1. Oligonucleotide arrays

The production process for these arrays relies on photolithography, similar to that
used in silicon chip manufacturing. Each probe, either perfect match (PM) or mismatch
(MM) for a gene of interest, consists of 25 nucleotides. The chip is manufactured in
layers with “screens”; four screens for each layer leave openings where one of the four
nucleotides (single-ringed pyrimidines C = cytosine and T = thymine; double-ringed
purines A = adenine and G = guanine) is to be deposited onto the chip. Variability
in the chip production process may arise from screen registration, materials, and chem-
ical impurities. In addition, chips can be scratched or otherwise marred. The purpose
behind the one base change in the MM probe cell was so that it could serve as a control
for the PM probe cell; i.e., if a piece of a gene sequence from a sample successfully
binds to PM, then presumably it would not bind to the MM probe cell. In fact, some
hybridization at the MM probe may well occur for various reasons; e.g., small gene
pieces in the test sample may hybridize to one or both of the 12-base sequences at ei-
ther end of the MM cell; the originally published gene sequence might be incorrect; the
gene chip manufacturing process accidentally placed the correct, as opposed to changed,
base at the 13th location; the MM sequence is a PM for an entirely di(erent gene.
To minimize the impact of any one of these potential errors on the determination of
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the gene (absent, present, or marginal), A(ymetrix? uses 16–20 such (PM,MM) probe
pairs, and reports a binomial statistic (number of pairs for which PM exceeds MM).

In practice, the data values from the MM probe cells probably do contain some
information, but do not provide as direct a control as the control sample does in the
cDNA microarrays. For this reason, analyses have been proposed that use the MM cells
as they are, ignore them altogether, or do something halfway in between, with strategies
being justi6ed on either biological or statistical grounds (Efron et al., 2001). Control
gene probes help to address the problem, but currently the chips are manufactured
with such controls in only one area (despite the potential for spatial variation across
the chip) and with too few of them to adequately characterize their distribution. To
date, no consensus has been reached on the most e(ective use of the MM values.

3.2. cDNA slides

The cDNA technology is more widely available since individual laboratories can
manufacture their own slides more easily using their own constructed gene “libraries.”
Moreover, the sample mixture containing Cy3- and Cy5-labeled mRNA o(ers a direct
control for each gene on each spot. However, these spotted arrays may be subject to
additional sources of variability. Some of these sources a(ect only signal intensities,
some a(ect only background intensities, and some a(ect both.

(1) Gene libraries: The spots on the cDNA array are pieces of speci6c genes that
are manufactured in the laboratory using a complicated process with many steps.
Sample cells are isolated, are placed in solutions that dissolve the nuclear wall
and unravel the DNA, and then are subjected to restriction enzymes which splice
the DNA in predictable locations. These spliced probes are then inserted into a
vector (usually bacterial DNA), transformed back into the host cell, and placed on
agar to grow and multiply the desired sequence. The restriction enzyme process
is reversed to extract from the vectors the desired sequences, which are then
freeze-dried for later use when the slides are prepared. The entire process involves
many production and handling steps, and the 6nal harvested probes will have
di(erent lengths and concentrations. In addition, the organism from which the gene
library cells were harvested may not have been entirely “normal,” or the genes
may be altered after isolation from the genomic library due to various handling
steps involved in making the slides. These same genes will be used repeatedly
for further cDNA experiments in this laboratory, so any errors in preparing the
library or during the subsequent isolation of the genes will reappear on all slides.
The same set of errors can occur during the analogous process used to prepare the
control (Cy3) and experimental (Cy5) samples which are placed on the slide with
the spots from the gene library. Finally, gene expression may depend upon the
choice of cell line for the control sample, arguing for the use of di(erent cell line
sources as controls to assess the apparent signi6cance of gene expression levels.

(2) Sample preparation: Even in the ideal case of a perfect manufacturing process, the
sample preparation is subject to errors. Ideally, the target sample to be analyzed
contains equal amounts of control and experimental mRNA, labeled with equal
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amounts of Cy3 and Cy5, each Iuorescing to the same degree, and each being
detected by the laser scanner with the same accuracy and precision. In reality,
small departures from the 50–50 ratio in control and experimental mRNA will
exist, some of the Cy3 and Cy5 dyes will wash away instead of bind to sample
mRNA, the number of Cy3-labeled mRNA cells will not equal the number of
Cy5-labeled mRNA cells, and the maximum intensity level in the 532-nm (green)
channel may not equal that in the 635-nm (red) channel. This issue relates to “la-
beling eGciency” and is key to a successful experiment. If the red/green Iuoro-
phores do not bind well to their respective samples, then the measurements of
“signal” will be substantially diminished, making it diGcult to distinguish from
background. Results from experiments to measure this labeling eGciency could
provide information that may be used to adjust values from multiple experiments
so they can be compared and combined with other experiments.

(3) Slide coating: Probes manufactured from the gene library are not placed directly
on the raw glass slide; rather, the slide is treated 6rst with a poly-L lysine coat-
ing to ensure gene probe adhesion. The coating thickness may vary across the
slide and thus may a(ect both the signal intensity values as well as the reported
measurement of background intensity.

(4) Spot placement: Spots are deposited on the glass slide using an inkjet-like tech-
nology. Suppose a production run involves the printing of 100 slides. A template
of pins (e.g., 4 × 4 or 8 × 4) is dipped into wells containing (16 or 32) separate
gene pools and then “spotted” onto the slide. Thus, genes appear on the slide in
(16 or 32) separate “blocks”; the 6rst spot is made in location [1,1], correspond-
ing to the 6rst row and 6rst column, in each block. After all 100 slides have
been spotted at the [1,1] locations in each block, the pins are washed and then
are dipped into another set of (16 or 32) gene pools; these genes are deposited at
location [1,2] in each block, again for all 100 slides. The process continues for a
number of rows and number of columns (usually, 16–24 rows and columns, and
often square). For the data in Section 5, the template was 8 × 4, with 23 rows
and columns, leading to 32 blocks of 529 spots, or 16,928 spots per slide. Broken
pin tips, incomplete washing, misaligned pins or slides, and time trends can all
lead to additional variability. Yang et al. (2002c) describe a method that adjusts
the data for print tip variability.

(5) Probe concentrations and sample placement: Wells containing the probes are not
always uniform and homogeneous; thus probe concentrations in the spots vary
across the array. Spots with high DNA concentrations can “smear” across the
slide. Large air pockets render the slide unusable. For usable slides, the sample
of Cy3- and Cy5-labeled mRNA is inserted between the slide and coverslip in
one corner; capillary action distributes the sample across the slide. The possibly
smeared spots, as well as the non-uniformity in the distribution of the sample
across the slide, argue for replication and studies of process variability. For ex-
ample, the samples may be inserted at di(erent places for di(erent replications,
to assess the degree to which the insertion location a(ects the results.

(6) Approximate hybridization: Both cDNA and oligonucleotide arrays are subject to
the phenomenon where some of the sample genes may settle on a spot whose
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cDNA is a rough though imperfect match, creating the illusion of signi6cant gene
expression of unimportant genes and insigni6cant expression of important genes.

(7) Instrumentation errors: The optical device used to measure Iuorescence typically
scans and digitizes the slide or chip, and scales the result to utilize the entire
range (e.g., for a 16-bit scanner, 65,536 gray levels). Thus, errors in scanning
and digitization may occur and a(ect “detection eGciency.” Some scanners focus
automatically, based on perceived average depth of the slide; others expect the
user to set it manually. Since target sample depth depends on the slide thickness,
the poly-L lysine coating thickness, and the size of the spot, the scanner may not
focus equally well on all parts of the slide. In addition, the biological samples on
the slide degrade rapidly, so the second pass through the scanner (i.e., scanning at
532 nm followed by scanning at 635 nm) will lead to less precise measurements,
and possible biases, in the second measurements (arguing again for dye-swapping).

(8) Image processing: The laser scanner records the intensity of reIected light at each
pixel on the slide. An image processing algorithm designates pixels as either fore-
ground, background, or neither (e.g., pixels that lie in a “bu(er zone” surrounding
the apparent spot). The 6nal reported value is usually the mean or median pixel
intensity from foreground, minus the mean or median background pixel intensity.
While less eGcient than other measures of location, the median is highly ro-
bust to both measurement errors and assignment errors (e.g., a pixel being called
background when it should have been foreground, and vice versa). The data in
Section 5 illustrate that background intensity can vary substantially across the
slide, which can be modeled for purposes of data analysis, and ultimately suggest
aspects of the process that might bene6t from tighter control.

Knight (2001), Illouz (2002), and Finkelstein et al. (2002) discuss other cDNA slide
e(ects.

4. Analyzing data: transformations and background

In addition to process variation, appropriate normalization of arrays for comparing
results from di(erent experiments, and multiple hypothesis testing, data transformations
and proper adjustment for background intensities have important consequences when
drawing inferences from a microarray experiment. This section discusses these two
issues. Transformations are discussed 6rst, to determine whether they should be applied
to both the foreground and background intensities.

4.1. Transformations

Gene expression values exhibit an extremely wide range of gene expression lev-
els. For example, in one experiment (Section 5), median foreground (spot) inten-
sity ranged from 18 to 27,667 for Cy5-labeled mRNA and from 289 to 43,869 for
Cy3-labeled mRNA. (A 16-bit scanner o(ers 65,536 possible values.) Moreover, the
noise (measurement error, etc.) is usually related to the expression level. Thus,
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measurements are often transformed via logarithms; e.g., log PM−logMM for oligonu-
cleotide arrays, or logR− logG for cDNA arrays. There seems to be little use for raw
di(erences (e.g., PM − MM or R − G), despite their calculation in various software
routines supplied by the manufacturer, except perhaps for purposes of understanding
the measurement error.

Measurements of Iuoresence share many of the same characteristics that Rocke and
Lorenzato (1995) observed with measurements of chemical concentrations. In the latter
article, the authors transformed large measurements via the logarithm, leaving small
measurements unchanged. Durbin et al. (2002) note that the variance of gene expression
values is a quadratic function of the mean; i.e., Var(X ) ≡ �2

x =
+�(�x−�)2, where X
is R (red foreground), G (green foreground), PM (perfect match), or MM (mismatch),
and �x denotes its mean value. By binning the expression levels, the parameters of
this quadratic function can be estimated from the data. The data to be described in
Section 5 also exhibit this phenomenon in both the red and green channels; Fig. 1
shows a subset of this data set in the red channel for one experiment only. Of 16,928
foreground values, 529 were sorted and divided into 23 bins whose bin means and
variances are plotted in Fig. 1. Note that “value” is really a reported foreground median
pixel intensity from the laser scanner, with higher numbers indicating higher intensities
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Fig. 1. Mean–variance plots for one set of 529 foreground counts in red channel of Block 8 (see Section 5
for description of the data). The 529 values were sorted and binned into 23 categories of 23 values each;
the left panel plots the sample variance versus the sample mean for all 23 categories. The right panel shows
the points from only those categories whose sample means lie between 550 and 800. The 6tted quadratic
is: variance = 15 + 0:005358(mean − 648)2.
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(and hence possibly higher mRNA concentrations when the mRNA was harvested).
The left panel shows some very inIuential extreme mean-variance pairs among the
23 pairs, so the right panel focuses on only those mean–variance pairs whose means
fall between 550 and 800. The 6tted quadratic to these data is: variance ≈ 15 +
0:005358 (mean − 648)2. A similar plot for the background counts in the red channel
does not show this structure. Another plot shows little relationship between a spot’s
reported foreground median and its background median. Both plots, omitted for reasons
of space, suggest that reported background medians need not be transformed.

Curtiss (1943) noted many years ago that a variance-stabilizing transfor-
mation can be obtained by using a 6rst-order Taylor series expansion for the
approximation

Var(f(X )) ≈ [f′(�x)]2�2
x ; (1)

(see also Ku, 1966) which, when �2
x = 
 + �(�x − �)2, leads to

f(x) ≡ f(x; 
; �; �) ≡ x∗ = log((x − �) +
√


=� + (x − �)2): (2)

(A referee noted that Curtiss did not derive this approximation but only formalized
its use in transformations. The use of Eq. (1) probably appeared in the 19th century.)
Durbin et al. (2002) follow this strategy and recommend this transformation.

In this formulation, 
=�¿ 0 (
 represents the smallest 6tted variance, and �, as half
the second derivative of the convex variance function �2

x , will be positive), so the
argument of the logarithm in (2) cannot be negative, whether x is R, G, PM , or MM ,
thus avoiding problems when (foreground–background) is negative. Expanding f(x) in
a Taylor series around x = � shows that f(x) ≈ log c + (x − �)=c where c =

√

=�,

a linear function of x, and but when |x − �| is large, f(x) ≈ log(x). (Tukey used
to put two transformations together and call the result a “hybrid re-expression.” The
particular variance function for these data achieves this hybrid in a natural way.) This
transformation to constant variance facilitates the comparison between the transformed
values of R and G in a cDNA experiment, or between PM and MM in an oligonu-
cleotide experiment. The constancy of the variance can be easily checked by calculating
a robust estimate of the variance [e.g., (1:5 ×MAD)2, where MAD = median absolute
deviation from the median, or the Winsorized variance; cf. Horn and Kafadar, 2002] on
the transformed values. Another bene6t of this transformation is the reduced skewness
in the distribution of the measurements.

A similar transformation having somewhat more interpretable parameters arises from
Tukey’s g-family of distributions (Hoaglin, 1985):

(X − a)=b = (egZ − 1)=g; (3)

Z = z(X ) ≡ z(X ; g; a; b) ≡ g−1 log[g(X − a)=b + 1]; (4)

where Z is a standard Gaussian random variable, g is the skewness parameter (g = 0
corresponds to the Gaussian, g¿ 0 yields a lognormal distribution, and increasing
values of g lead to increasingly skewed distributions), and (a; b) represent location and
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Comparing transformations
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x (laser intensity count)

Fig. 2. Comparing two transformations for the data illustrated in Fig. 1. The solid line is the function f(x)
given by Eq. (2), where 
 = 15, � = 0:005358, and � = 648. The dotted line is the function z(x) given by
Eq. (4), where g = 0:58, a = 510, and b = 218. The two transformations are matched to coincide at x = 500.

scale parameters, respectively. In practice, these three parameters are 6t robustly, so
that the majority of the transformed values look roughly Gaussian with mean 0 and
variance 1. A connection between these two transformations is shown in Fig. 2, which
plots the function f(·) in (2) and z(·) in (4). Also, since

[z′(�x)]2 = [b(g(�x − a)=b + 1)]−2 = [g(�x − a) + b]−2 (5)

it follows, again from (1), that

1 = Var(Z) = Var(z(X )) ≈ [z′(�x)]2�2
x ⇒ �2

x ≈ [g(�x − a) + b]2 (6)

which also is a quadratic. [This approximation can be derived directly without resorting
to (1), since the density of Y = gX + (b− ga) is lognormal with parameters ln(b) and
g2: �y ≡ E(Y ) = beg

2=2 = g�x + (b− ga) and Var(Y ) = b2eg
2
(eg

2 − 1) ≈ b2eg
2
g2 = �2

yg
2

since 6tted values of g are small, so Var(X ) = g−2 Var(Y ) = (b=g)2eg
2
(eg

2 − 1) ≈
b2eg

2
= �2

y = [g�x + (b− ga)]2, as in (6).] For values of (
; �; �) in (2) and (g; a; b) in
(4) estimated from the same set of data, these two transformations are often similar;
see Fig. 2. The di(erence between these two approaches is part philosophical and



324 K. Kafadar, T. Phang / Computational Statistics & Data Analysis 44 (2003) 313–338

· ····
·········································································

······················································································································
····················································································

···························································································
······································································

·····························
·················
·····················

·········
·

Log+sqrt transformation

S
or

te
d 

tr
an

sf
or

m
ed

 c
ou

nt
s

-3 -2 -1 0 1 2 3

-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3

-2

0

2

4

-2

-1

0

1

2

· ·······································
······································································································································································

···························································································································································
·····································································

·····························
·············
·················

···········
····

·

inverse g-transformation

-3 -2 -1 0 1 2 3

-2

0

2

4

6

-2

-1

0

1

2

· · ···· ··························
···························

·······················
··································

·········································
··································

·························
···························
····················
·································

························
···························

··································
···························

······················
···············

···········
··············

·······
·········· · · ·

Log+sqrt transformation, central values only

S
or

te
d 

tr
an

sf
or

m
ed

 c
ou

nt
s

· ··············
·····························

··································································
················································································································

·······················································································
··········································································

··········································
·····················
··················

············
· ·

inverse g-transformation,central values only

Fig. 3. Quantile–quantile plots (Wilk and Gnanadesikan, 1968) of transformed data values in Fig. 1 via
f(x) [Eq. (2)], where 
 = 15, � = 0:005358, and � = 648, denoted as “Log+sqrt transformation”, and gy(x)
[Eq. (4)], where g = 0:58, a = 510, b = 218, denoted as “inverse-g transformation”. The top row shows
the result applied to all 529 values; the bottom row shows the result in only those 486 values whose
g-transformed value lies between −2:5 and 2.5. The inverse g transformation results in a distribution that
appears roughly Gaussian with a long right tail, which may indicate genes with signi6cantly high expression
(see Section 5).

part interpretive. Transformation (2) follows by assuming that the mean–variance rela-
tionship really is quadratic, and then one 6nds the transformation so that the variance
approximation (1) holds exactly. The g-transformation (4) assumes that the data can be
represented precisely as a location-and-scale transformation of the standard Gaussian Z ,
whose variance is approximately a quadratic function of the mean. Neither assumption
(“the variance is exactly quadratic” versus “location-and-scaled X is exactly a trans-
formed Gaussian”) is likely to hold precisely. However, the z(·) transformation o(ers
convenient interpretations for the three parameters g, a, b (skewness, location, scale).
A further bene6t is shown in Fig. 3, where 486 of the 529 resulting transformed val-
ues do indeed appear more Gaussian than those from the transformation in (1). This
approach is related to the “soft thresholding” method in Finkelstein et al. (2002), who
select a constant which, when added to the foreground values, results in a distribution
that appears as lognormal as possible; (4) involves three parameters.

Many possibilities exist for the treatment of negative values that arise when the
background intensity exceeds the spot intensity in cDNA arrays, or when the value of
MM exceeds PM in oligonucleotide arrays. When they are few in number, they can
be replaced by a small positive value, trusting the robustness of the overall analysis to
give them little weight. Alternatively, one could 6ll in a value using an EM algorithm
based on a model for the transformed data. (Under the assumption that the transformed
data are Gaussian, this value is likely to be 1, so that its logarithm is 0.) Negative
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values provide opportunities for identifying potential sources of errors in the biology,
manufacturing, or measurement process. This situation actually occurred for two of the
529 values shown in Fig. 1; they are described further in Section 6.

4.2. Background estimation

Yang et al. (2002a) investigate in detail various methods for estimating background,
which arises when Iuoresence is detected at locations on the array where no spot or
probe occurred. The importance of a correct adjustment for background intensity can
be seen as follows.

Transformations (2) and (4) both resemble the logarithm for large values of x, so,
for this purpose, consider the quantity log(red) − log(green) [or log(PM) − log(MM)
for oligonucleotide arrays]. The red and green counts comprise three signal intensities:
spot intensities R and G, background intensities r and g, and errors in these background
adjustments, x and y (assumed optimistically to be independent of each other). The
e(ect of these errors can be seen easily using a Taylor series expansion around (x; y)=
(0; 0) (Ku, 1966, p. 269; Vardeman, 1994, p. 257):

log[(R + r + x)=(G + g + y)] ≈ log[(R + r)=(G + g)]

+[x=(R + r)][1 − 0:5x=(R + r)]

−[y=(G + g)][1 − 0:5y=(G + g)]:

When the errors are equal in the two channels (x = y) and the correct values r and g
are subtracted, the comparison between red and green is unbiased. For any other case,
however, and particularly when x and y are large in magnitude, the comparison will
be biased. An error in (R + r) and (G + g) of e% renders an error of slightly over
2e% in the comparison of two equally expressed genes.

Reported background intensities may exhibit considerable structure, due to process-
ing and material variation. Both the glass on which the array is printed and the poly-L
lysine coating to which the spots adhere may have non-uniform thickness across the
slide. The laser scanner that measures intensity levels operates using 6lters tuned to the
appropriate wavelengths (532 nm and 635 nm) and by moving the slide so that eventu-
ally all pixels fall directly under the laser beam. Consequently, accuracy and precision
may vary across the slide. Finally, both the Iuorophores and the cDNA degrade rapidly
(Cy5 faster than Cy3), and this degradation will a(ect the measurements made on the
second scan (632 nm) more than the 6rst (535 nm). To estimate the e(ects within a
block of this process variation, we propose in the next section to 6t the background
count using median polish (a robust form of two-way analysis of variance that relies
on medians instead of on means; see Tukey, 1977), and subtract the 6tted value from
the foreground count which is then transformed.

5. Illustration

A cDNA experiment comparing the mast cells in two mouse cell lines, UCOZ-22
(immature) and MC9 (mature), was conducted at the University of Colorado Health
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Table 1

Stripe number

1 2 3 4

Layer 1 1 2 3 4
Layer 2 5 6 7 8
...
Layer 7 25 26 27 28
Layer 8 29 30 31 32

Sciences Center. Mast cells are derived from bone marrow stem cells which are present
in a variety of tissues, especially in skin and the gastrointestinal tract. They play an
important role in the immune system, speci6cally in allergic inIammation (they contain
large amounts of histamine and heparin, which trigger the inIammation response, thus
leading to the allergic reaction). While it is known that mast cells are regulated by
the Stem Cell Factor (SCF), the di(erentiation from immature (precursor) mast cell
to its mature stage is poorly understood. In vitro experimentation between these two
stages is diGcult under the establishment of these two stable cell lines, UCOZ-22 and
MC9. UCOZ-22 is a mast cell precursor which requires stem cell factor (SCF) plus
interleukin-3 (IL-3) for growth and proliferation, whereas MC9 responds to either SCF
or IL-3 alone. The purpose of the cDNA microarray experiment is to determine the
gene expression levels between these two stages. Such knowledge will help elucidate
mast cell maturation mechanisms.

As indicated in Section 3, slides are printed in blocks, corresponding to the tem-
plate of pins used by the particular laboratory. The template used at the University
of Colorado Health Sciences Center has 32 pins, arranged in 8 layers of 4 pins in
each layer. Genes are printed onto the slide by placing the pin template at a particular
location, which prints 32 spots at one time, for all slides. Then the template is washed,
the pins are dipped into the next set of 32 gene wells, and 32 more spots are printed
successively on the slide alongside the 6rst set of spots. Denoting the spots printed by
one single pin as a “block”, the slide contains 32 blocks, with spots within each block
printed row by row. Thus, if the time between successive prints on adjacent slides is
$, and 100 slides are printed, then the time between the printing of spots in [row,
column] locations [1; 1] and [1; 2] of each block is 100$ time units. The blocks are
formatted on the slide in 8 “layers” of 4 “stripes” as shown in Table 1.

The analysis here will be illustrated mostly on measurements in Block 8, which
occurs in the second layer of blocks near the right-most edge of the glass slide.

The e(ects of these time trends, as well as variations in the glass and slide coating,
appear in the signal intensities, as can be seen from a simple two-way additive 6t to the
background intensities in the red and green channels. [All analyses here were conducted
using S-Plus, Version 6.0.1 Release 1 for Linux 2.2.12 from Insightful (2001).] The
red and green background intensity of row i, column j, and block k, namely rijk and
gijk (the subscripts i and j depend upon block number k), can be 6t by a two-way



K. Kafadar, T. Phang / Computational Statistics & Data Analysis 44 (2003) 313–338 327

·

· · · ·
·

· · · · · ·
· ·

· · · · ·
·

· ·
·

Red Background

Row number

R
ow

 e
ffe

ct

5 10 15 20

Column number
5 10 15 20

Column number
5 10 15 20

Row number
5 10 15 20

-10

0

10

20

20

0

-40

40

60

80

R
ow

 e
ffe

ct

-10

-5

0

5

C
ol

um
n 

ef
fe

ct
-10

0

10

20

30

-

- - - -
-

- - - -- -
- -

- - - - -
-

- -
-

-

- - - -
-

- - - -- -
- -

- - - - -
- - -

-

·

·
·

·
· ·

·
·

· ·
·

· · · ·
· · · ·

·
· ·

·

Green Background

-

-
-

-
- -

-
-

- -
-

- -- -
- - - -

-
- -

-

-

-
-

-
- -

-
-

- -
-

- - - -
- - - -

-

- -

-

· · · · · · · · · · · ·
·

·
·

·
·

· · · · ·
·

C
ol

um
n 

ef
fe

ct

- - - -- - - - - - - - -
-

-
-

-
- - - - -

-

-

· · · · · · ··
· · · ·

·
·

· · ·

·
·

·
·

·
·

- -- - - -- -
- - - -

-
-

- - -

-
-

-
-

-
-

Fig. 4. Results of applying median polish to the background counts in the red and green channels. The top
(respectively, bottom) plots show the e(ect of the row (respectively, column) number (red on left and green
on right); i.e., the estimated number of laser scanning units of light intensity above or below the overall
term m8r = 223 (respectively, m8g = 337). Limits of 1 standard error based on 200 bootstrap replications of
the residuals are shown.

additive model via median polish (Tukey, 1977):

rijk = mkr + rowikr + coljkr + resijkr ;

gijk = mkg + rowikg + coljkg + resijkg;

where all e(ects (m, row, col, res) include an additional subscript, r or g, to denote red
or green channel. For block 8, m8r = 223 (se = 1:9) and m8g = 337 (se = 1:8); standard
errors (se) have been estimated using 200 bootstrap replications of the residuals. (A
non-parametric bootstrap was used: the 529 residuals were sampled with replacement,
added to the overall, row, and column e(ects, re-6t by median polish, and repeated
200 times. Standard errors were obtained by calculating standard deviations in the usual
way from the 200 sets of estimates.) The row and column e(ects for this block, with
limits of one bootstrap-estimated standard error, are shown in Fig. 4. Clear patterns
exist: variation is greater across the block (columns) than down (rows), reIecting
perhaps the e(ects of the coverslip on background accuracy of the laser scanner or
varying thickness of the glass slide or poly-L Lysine coating on the slide. In the
vertical direction, background counts in row 1 tend to be considerably lower than those
in successive rows in both channels. An estimate of the residual standard deviation
(1:5 × MAD) is about 5 (se = 1) in both channels; the standard errors of the column
e(ects (bottom panel plots in Fig. 4) look smaller simply because the range of the
column e(ects is about twice that for the row e(ects.
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Fig. 5. Layer and stripe e(ects resulting from a median polish of the overall terms, mkr and mkg, where
k = 1; 2; 3; 4 refers to the blocks in the 6rst layer, and k = 29; 30; 31; 32 refers to the blocks in the eighth
layer, and k = 4; 8; 12; : : : ; 32 refers to the fourth (rightmost) stripe on the slide. Limits of 1 standard error
based on 200 bootstrap replications of the residuals are shown.

In addition, the 32 values of mkr and mkg from the 32 median polish 6ts in each
channel can be arranged as a matrix of 8 layers and 4 stripes, corresponding to the
block locations on the slide, and then 6t with layer and stripe e(ects:

mkr = Mr + layerlr + stripesr + reslsr ;

mkg = Mg + layerlg + stripesg + reslsg;

where l = �(k − 1)=4 + 1	 and s = mod (k; 4). These e(ects are plotted in Fig. 5, as a
function of the block row (layer) number and the block column (stripe) number. The
6tted common terms Mr and Mg are 144 and 330, respectively. (Standard errors are
again estimated via 200 bootstrap replications of the residuals.) In both the red and
the green channels, layer and stripe e(ects are evident; for example, values in the last
stripe of blocks numbered 4; 8; : : : ; 32 (bottom panels) tend to be higher than the others.
Estimates of the residual standard deviation in these two 6ts (again as 1:5 × MAD)
tend to be around 4. These sorts of trends appear in other blocks on this slide also.
The print tip adjustment via loess in Dudoit et al. (2002) may be viewed as a block
adjustment, since di(erent blocks are spotted with di(erent pins.

Finally, consider the residuals from the simple additive 6t exhibits structure.
Fig. 6 shows a coded plot of the magnitude of the red residuals in the 23 rows and
23 columns of block 8. The radii of the circles are proportional to the magnitudes of
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Fig. 6. Coded residuals from the median polish 6t to the 529 red background values in Block 8. Radii of
circles are proportional to magnitudes of negative residuals; sides of squares are proportional to magnitudes
of positive residuals. Structure in residuals indicates need for an additional term in the additive 6t.

the negative residuals, and the sides of the squares are proportional to the magnitudes
of the positive residuals. The plot shows clear structure in these residuals and the in-
adequacy of the simple additive 6t described above. (For some reason, many of the
eight blocks in this region (blocks 4; 8; 12; : : : ; 32) showed spatial patterns, while the
residuals in most of the other 24 blocks showed little structure.) A better 6t for this
block is

rijk = mkr + rowikr + coljkr + T rowikr coljkr + resijkr ; (7)

also known as Tukey’s “plus-one 6t”, the “one” referring to one degree of freedom
(T ) for non-additivity (Tukey, 1949; Tukey, 1977; Emerson and Hoaglin, 1983), here
estimated as T = 0:0224. The 6nal coded residual plot (Fig. 7) indicates much less
structure.

The median polish 6ts to blocks can be useful in two ways. First, the time trends
across rows, columns, and blocks (pin tips) can be communicated to the production
facility, and those aspects of the process that inIuence these patterns can be identi-
6ed and modi6ed. Second, the present data can be adjusted by a ;tted value of the
background intensity, rather than by the median background intensity value that is re-
ported by the software. For example, rather than subtracting the unadjusted background
counts in the red and green channels, rijk and gijk , from the reported foreground counts
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Fig. 7. Coded residuals from the median polish 6t plus one degree of freedom for non-additivity [Eq. (7)]
to the 529 red background values in Block 8. Radii of circles are proportional to magnitudes of negative
residuals; sides of squares are proportional to magnitudes of positive residuals. Residuals range in size from
–23 to +35; lack of structure in the plot indicates success of the “plus-one 6t.”

(spot intensities) Rijk and Gijk , one subtracts instead

r̂ijk = mkr + rowikr + coljkr ;

ĝijk = mkg + rowikg + coljkg

or, if the additional nonlinear term is needed to achieve patternless residuals,

r̂ijk = mkr + rowikr + coljkr + Tkrrowikrcoljkr ;

ĝijk = mkg + rowikg + coljkg + Tkgrowikgcoljkg:

For more stable estimates, one might further smooth (e.g., via loess or running medians)
the row and column e(ects as a function of row (i) and column (j) before using them
in the 6t (but this was not done here). The value of these 6ts is shown by comparing
two measures of the residuals: for the un6tted background counts in the red channel,
1:5 MAD(residuals) and [mean(residuals2)]1=2 are 54 and 243.8; for the residuals from
the additive 6t, 9 and 12.9; for the residuals from the additive-plus-one 6t, 6.7 and 9.2.
Thus the 6t accounts for a substantial portion of the variation in background counts
associated with their locations on the slide, and these 6tted values can be used to more
reliably estimate the background intensities a(ecting the spot signal intensities.
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Fig. 8. Coded plot of ZR and ZG in blocks 7 and 8, obtained via transforming the foreground values for
6tted background in the red and green channels. Radii of circles are proportional to magnitudes of negative
Z-values; length of side squares are proportional to magnitudes of positive Z-values. Lack of structure
indicates success of the model for background in removing spatial structure.

Statistical analysis can now proceed on the transformed and adjusted signal intensi-
ties, ZR ≡ zR(R∗

ijk) and ZG ≡ zG(G∗
ijk), where R∗

ijk = Rijk − r̂ijk and G∗
ijk = Gijk − ĝijk ,

and zR and zG denote the two transformations de6ned in (4) using values of (g, a,
b) speci6c to channel and block. The procedure for estimating these parameters is de-
scribed in detail by Hoaglin (1985, pp. 468–471). For block 8 in the red channel, the
parameters are g = 0:58; a = 510; b = 218; in the green channel, the parameters are
g = 0:60; a= 763; b= 276. (Maximum likelihood estimates of g; a; b could be derived
but would be very sensitive to extremely high values, some of which may represent
signi6cant gene expressions.) The success in the removal of the spatial e(ects in the
background values is evident from the plot in Fig. 8, which shows no patterns in the
magnitudes of ZR and ZG in blocks 7 and 8 by row and column.

One motivation for these transformations is to obtain values whose distribution is
roughly Gaussian, so that data in all slides can be “normalized” and therefore combined,
and standard cut-o( values can be used to assess signi6cance. That is, this procedure
can be conducted on all duplicates of this experiment, and the average and standard de-
viation after di(erences ZR−ZG corresponding to speci6c gene can be calculated. Note
that ZR and ZG are very highly correlated; in the left panel of Fig. 9, a plot of ZG versus
ZR indicates very high correlation (Pearson correlation coeGcient is 0.94; a robust cor-
relation coeGcient (see Section 6) is 0.94; both least squares and robust regression lines
from which these correlations were estimated are shown on the plot). The right panel
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Fig. 9. Left panel: Plot of ZG versus ZR (labeled on the plot as Zg and Zr), the transformed and
background-adjusted spot intensities in block 8. Estimated correlation coeGcient is 0.97 (Pearson) and 0.94
(robust); lines from which they are estimated are shown (but barely distinguishable) on the plot. Right
panel: Plot of ZR −ZG versus ZR +ZG , to remove visual e(ect of extreme correlation. Limits of 3 estimated
standard deviations based on the two correlation estimates are shown (solid=Pearson; dashed=robust).

is rotated by 45◦ to clarify the structure, ZR−ZG versus ZR+ZG (Tukey sum-di(erence
plot; cf. Cleveland, 1985, pp. 118–123). Using the formula Var(ZR − ZG) =Var(ZR) +
Var(ZG)−2Cov(ZR; ZG) ≈ 1+1−2(0:97), an estimated standard deviation of the di(er-
ences between the background-adjusted and transformed intensities in the two channels
is 0.24. A conservative limit of three standard deviations is indicated on the right panel
in Fig. 9, based on the Pearson correlation (dashed line) and on the robust correlation
(solid line). (However, the uncertainties in the parameter estimates have not been taken
into account when estimating the variance of the di(erence, so these limits may not
be overly conservative.) Alternatively, one can compute 0−1((ZR−ZG)=0:24) as a sort
of “p-value” for each gene, rank them, and select those that appear signi6cant on the
basis of the false discovery rate (FDR) criterion (Benjamini and Hochberg, 1995).

This analysis was repeated on all 32 blocks:

(1) Apply median polish separately to background medians in each block and each
channel (possibly with smoothing of the 6tted row and column e(ects, and possi-
bly with the extra term for non-additivity), yielding 32 sets of 6tted background
counts r̂ijk and ĝijk (i=1; : : : ; 23, j=1; : : : ; 23, k =1; : : : ; 8) for both red and green
channels.

(2) Adjust foreground medians Rijk , Gijk by subtracting 6tted background counts in
Step 1 from foreground medians, yielding R∗

ijk = Rijk − r̂ijk , G∗
ijk = Gijk − ĝijk .



K. Kafadar, T. Phang / Computational Statistics & Data Analysis 44 (2003) 313–338 333

(3) Estimate for each block the parameters in the g transformation (4) to the adjusted
foreground counts obtained in Step 2, yielding (gkr; akr ; bkr) and (gkg; akg; bkg).

(4) Transform the adjusted foreground counts via Eq. (4) to obtain approximate Gaus-
sian distributed quantities

ZR ≡ ZR; ijk = g−1
kr log[gkr(R∗

ijk − akr)=bkr + 1];

ZG ≡ ZG;ijk = g−1
kg log[gkg(G∗

ijk − akg)=bkg + 1]:

(5) Estimate the correlation 1̂k between ZR and ZG in each block.
(6) Calculate an approximate standard error for the di(erence ZR−ZG as [2(1−1̂k)]1=2.

Combine values of ZR − ZG for the same gene on di(erent slides (experiment)
via (weighted) averages, and

(7) Denote as “signi6cant” those di(erences that either exceed a set number of stan-
dard deviations, or achieve signi6cance via FDR.

For Block 8, the false discovery rate criterion on 529 genes using an FDR of 0.0015
(= 0.05/32) identi6es 10 signi6cant genes, with p-values ranging from 8.0×10−8 to
0.0001. (An eleventh gene just barely missed “signi6cance”, with a p-value of 0.00149,
just over the maximum allowed by the FDR procedure, 0.0015(1–519/529) = 0.00147.)
Coincidentally, this turns out to be the same number of genes identi6ed by using a

Fig. 10. Plots of ZR − ZG versus ZR + ZG in Blocks 1–16. Limits of 3 estimated standard deviations based
on the two correlation estimates are shown (dashed=Pearson; solid=robust).
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Fig. 11. Plots of ZR − ZG versus ZR + ZG in Blocks 17–32. Limits of 3 estimated standard deviations based
on the two correlation estimates are shown (solid = Pearson; dashed = robust).

3-standard deviation limit on ZR − ZG. Plots of ZR − ZG versus ZR + ZG, with limits of
3 standard deviations for reference, are shown for all 32 blocks in Figs. 10 and 11.

In total, 168 genes out of the 32 × 529 = 16; 928 genes were identi6ed
as “signi6cant”, and were communicated to the biologists who conducted the ex-
periments. These results are very tentative, and need to be con6rmed with other
experiments.

6. Conclusions and further issues

This article suggests a strategy for analyzing microarray data, with particular attention
to estimation of background variation and appropriate transformations to approximate
Gaussian variables so that familiar inference procedures can be applied. Other issues
can a(ect the analysis as well.

(1) Negative values: While transformation (2) successfully handles negative values
(because (
=�+y2)1=2 ¿y when 
=�¿ 0, even when y ¡ 0), transformation (4)
may be unde6ned if the adjusted value is less than a−b=g. Two such values arose
in blocks: one in [row; column] = [7; 22] and one in [23; 23]. The foreground and
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background values around these two locations are shown below:

Red foreground and background values around row 7, column 22
Foreground Background

20 21 22 23 20 21 22 23
5 677 684 600 676 273 267 263 250
6 658 1302 1149 869 276 267 258 250
7 557 630 255 786 278 272 260 249
8 660 774 1840 676 283 269 264 258
9 653 661 626 575 273 267 263 263

Red foreground and background values around row 23, column 23
Foreground Background

20 21 22 23 20 21 22 23
20 694 705 696 669 345 344 328 301
21 547 828 844 848 347 344 327 297
22 695 784 609 767 361 344 319 293
23 872 858 654 277 357 339 311 283

In both instances, the foreground counts (255, 277) are substantially lower
than the surrounding values, and in fact are lower than some of the surrounding
background values. One suspects that spots at these locations failed to be deposited
at all. For this analysis, both values were replaced by a, which transforms to a
value of 0. The robustness of the procedures used in the analysis renders the
results insensitive to these two replacements.

(2) Fitting g transformations simultaneously: An argument could be made for using
the same skewness parameter g and scale parameter b in both the red and green
adjusted foreground counts. (A common location parameter a would not be wise,
for reasons mentioned earlier, concerning the laser scanner electronics and the
possible degradation of cDNA between times of the two scans.) In fact, one
might consider 6tting a common g for all blocks. In this analysis, separate g
values were 6tted for each channel in each block (i.e., 64 separate g parameter
estimates). A plot of the g-values 6tted to the green channel data versus those
6tted to the red channel data indicated a near linear relationship between them,
with the green g being just slightly smaller than the red g (the regression slope
coeGcient is 0.95 with a standard error of 0.01). Alternatively, a bivariate version
of (4) (i.e., where Z is bivariate Gaussian) might be possible to derive.

(3) Correlation estimates: Because ZR and ZG are so highly correlated, robust esti-
mates of the correlation coeGcient were also calculated, in addition to the usual
Pearson correlation coeGcient. Mosteller and Tukey (1977, p. 211) propose a
robust estimate of the correlation cob(x; y) = sgn(slope) [1 + s2

bi(y − slope x)=
(slope2 s2

bi(x))]−1=2 where slope is a robust estimate of the slope in the regres-
sion of y on x, and s2

bi is a robust estimate of the variance (of either the data x or
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the residuals y− slope x) based on the  -function for the biweight. The eGciency
of such an estimate has not been studied, particularly for such highly correlated
variables, so Pearson’s correlation coeGcient was used except those where one or
two outliers clearly a(ected the estimates. Usually the di(erence between the two
estimates was less than 3%, with the Pearson estimate typically being larger than
the robust estimate.

(4) Automation: The 7-step prescription for this analysis was developed only after
intensive scrutiny of the data in one of the 32 blocks. Subsequent analysis on
the remaining 31 blocks was quick and required little intervention. However, the
coded residual plot from the median polish 6ts did require individual inspection
(although presumably one could apply tests for spatial randomness to Iag the
existence of patterns in the residuals), as did the choice between the robust and
the Pearson correlation coeGcient.

(5) Oligonucleotide arrays: Many of these same principles could be applied, with
modi6cation, to the data from oligonucleotide arrays, with “foreground” and “back-
ground” being replaced by “PM” and “MM”. Finkelstein et al. (2002) note the
inadequacy of a single parameter 6t for oligonucleotide probe pairs, so the three-
parameter 6t in (4) might work well. A procedure for such arrays is currently
being investigated.

Many other issues surrounding e(ects of process and material variation, spatial and
time trends, and common 6tting of data transformations will likely lead to a more sen-
sitive analysis. As with any exploratory analysis, the “statistical signi6cance” of these
results must be con6rmed with replication, before claiming “biologically signi6cance.”
These experiments have been replicated; a complete analysis of all of the data that
attempts to account for the issues raised above will be explored in further work.
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