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SUMMARY

The rise of systems biology implied a growing
demand for highly sensitive techniques for the fast
and consistent detection and quantification of target
sets of proteins across multiple samples. This is
only partly achieved by classical mass spectrometry
or affinity-based methods. We applied a targeted
proteomics approach based on selected reaction
monitoring (SRM) to detect and quantify proteins
expressed to a concentration below 50 copies/cell
in total S. cerevisiae digests. The detection range
can be extended to single-digit copies/cell and to
proteins undetected by classical methods. We illus-
trate the power of the technique by the consistent
and fast measurement of a network of proteins
spanning the entire abundance range over a growth
time course of S. cerevisiae transiting through a
series of metabolic phases. We therefore demon-
strate the potential of SRM-based proteomics to
provide assays for the measurement of any set of
proteins of interest in yeast at high-throughput and
quantitative accuracy.

INTRODUCTION

The ability to reliably identify and accurately quantify any protein

or set of proteins of interest in a proteome is an essential task in

life science research. This has been attempted by two general

experimental approaches. The first is based on the generation

of affinity reagents exemplified by highly specific antibodies

and the development of an array of methods to deploy them

for detecting and quantifying specific proteins in complex

samples. The second is mass spectrometry (MS)-based quanti-

tative proteomics that attempts to identify and quantify all

proteins contained in a sample.

Multiple versions of affinity reagent-based methods (e.g., the

broadly used western blot or ELISA approaches) have been

implemented. They differ in the type of affinity reagent and detec-
tion system used (Uhlen, 2008). The methods with the highest

sensitivity have the potential to detect, in principle, low-abun-

dance proteins, with zeptomole detection limits already demon-

strated (Pawlak et al., 2002). However, the development of sets of

reagents of suitable specificity and affinity to support the conclu-

sive detection and quantification of target protein(s) remains

challenging, expensive, and arduous, and coordinated efforts

to develop validated affinity reagents are just getting underway

(Taussig et al., 2007; Uhlen and Hober, 2009). The methods

based on affinity reagents are therefore limited by slow assay

development and, usually, also by the inability to significantly

multiplex detection of proteins in the same sample.

Similarly to affinity-based methods, a wide range of MS-based

proteomic methods have been developed. The most successful

of these, in terms of number of proteins identified, use a shotgun

strategy in which a subset of peptides present in a tryptic digest

of a proteome is selected in an intensity-dependent manner for

collision-induced dissociation by a tandem mass spectrometer

(Aebersold and Mann, 2003). The resulting fragment ion

(MS/MS) spectra are then assigned to sequences in a peptide

database and the corresponding peptides and proteins are

thus identified. This method provides accurate quantitative

data if suitable stable isotope-labeled references are available

and included in the analysis (Desiderio and Kai, 1983; Gerber

et al., 2003). However, these methods are nontargeted, i.e., in

each measurement they stochastically sample a fraction of the

proteome that is usually biased toward the higher end of the

abundance scale (Domon and Broder, 2004; Picotti et al.,

2007). Each repeat analysis required for comparing a proteome

at different states will sample only a subset of the proteins it

contains and not necessarily the same subset in each repeat,

thus precluding the generation of complete and consistent

data sets (Wolf-Yadlin et al., 2007). More extensive, although still

incomplete and stochastic, proteome coverage can be achieved

in large proteome mapping experiments, whereby the proteome

is extensively fractionated by multiple approaches and the

content of each fraction is sequenced to saturation (Chen

et al., 2006; de Godoy et al., 2006, 2008). Such studies carry

a significant experimental and computational overhead and are

therefore time/labor consuming and can be performed only in

highly specialized laboratories. In addition, they mostly retain
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Figure 1. Cellular Concentrations of the Set of Measured Proteins

Protein abundances are derived from Ghaemmaghami et al. (2003). Proteins detected by SRM assays are sorted by abundance to show the even distribution

across the whole range of concentration (blue circles). Proteins for which the absolute abundance was measured using isotopically-labeled standards are

indicated on top of the graph (open circles).
the bias against low-abundance proteins, albeit to a reduced

degree. This makes such approaches impractical in cases that

require the consistent quantification of sets of proteins of all

abundances across a variety of different samples and replicates.

To alleviate these limitations, we demonstrate in this study the

potential of selected reaction monitoring (SRM)-based targeted

MS (Anderson and Hunter, 2006; Lange et al., 2008) to provide

specific assays for the detection and quantification of proteins

over the whole range of cellular concentrations in S. cerevisiae.

We deploy the approach to quantitatively monitor the dynamics

of a protein network containing proteins spanning a broad range

of abundances, across numerous samples and replicates, at

high speed and quantitative accuracy.

RESULTS

Detection of Low-Abundance Proteins in a Total Yeast
Cell Lysate by SRM
We challenged the dynamic range of SRM-based targeted pro-

teomics by applying it to the detection and quantification of yeast

proteins distributed across the whole range of cellular abun-

dance, with the purpose of determining to what concentration

(in copies/cell) yeast proteins can be detected in a tryptic digest
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of a total cell lysate. We selected protein targets based on the list

of absolute protein abundances generated by orthogonal

methods (i.e., by quantitative western blotting against a tandem

affinity purification tag engineered into S. cerevisiae genes

[Ghaemmaghami et al., 2003]). We selected a set of 100 target

proteins evenly distributed across all levels of cellular abun-

dance, from 1.3E6 to 41 copies/cell (Figure 1) in S. cerevisiae.

These proteins were grouped into the copy number classes indi-

cated in Table 1 (groups 1–14). Each class minimally contained

five proteins. The classes with proteins of lower abundance con-

tained a higher number of proteins to increase the significance of

low-copy number protein detection. For each protein, five

proteotypic peptides (unique peptides preferentially detectable

by MS [PTPs] [Brunner et al., 2007; Kuster et al., 2005]) were

selected. PTPs were derived by screening a large yeast proteo-

mic data repository, PeptideAtlas (>36,000 unique peptides

observed in an array of shotgun proteomic experiments [Deutsch

et al., 2008]) for the most frequently observed peptides for each

target protein. For proteins for which fewer than five PTPs could

be extracted from PeptideAtlas, additional peptides with favor-

able MS properties were derived by bioinformatic prediction

using the tool PeptideSieve (Mallick et al., 2007). For each PTP

an SRM assay consisting of three optimal and validated



Table 1. Summary of Proteins Detected and Quantified in Each Group of Cellular Abundance

Abundance

Range (Copies/Cell) Group

Proteins

Measured Protein Namesa Absolute Quantificationb

524,288–1,255,722 1 5 YGL008C, YKL060C, YLR355C, YLR249W, YDR382W YKL060C

262,144–524,288 2 5 YJR104C, YML028W, YMR116C, YCR012W, YER091C YJL136C

131,072–262,144 3 5 YDR050C, YER165W, YGR192C, YER177W, YNL178W YLR249W

65,536–131,072 4 5 YBR127C, YHR183W, YKL182W, YHR208W, YDL126C

32,768–65,536 5 5 YLR058C, YML008C, YIL078W, YAL012W, YGR204W YHR183W, YLR058C,

16,384–32,768 6 5 YBR249C, YJR105W, YNR016C, YLR216C, YGR209C YBR249C

8,192–16,384 7 5 YJL136C, YDR368W, YJL130C, YOR007C, YMR099C YJL026W

4,096–8,192 8 5 YKR048C, YER006W, YML086C, YKR001C, YER003C

2,048–4,096 9 5 YFL014W, YDR129C, YPL235W, YOL140W, YMR170C YEL031W, YHR107C,

YPR118W, YJR051W

1,024–2,048 10 10 YDL021W, YML100W, YKL150W, YEL031W, YGL202W,

YDL017W, YGR080W, YPL049C, YGL248W, YEL011W

YMR170C, YCL017C

512–1,024 11 10 YHR107C, YGL100W, YBR208C, YPR118W, YJL172W,

YBR283C, YCR088W, YGR256W, YJL026W, YCL030C

YOL116W

256–512 12 10 YCL017C, YOL116W, YNL161W, YJR051W, YKL068W,

YHR138C, YGR232W, YMR199W, YOR267C, YJR134C

YGL248W

128–256 13 10 YKL141W, YHR074W, YLR330W, YDR436W, YKL129C,

YOR020C, YBR117C, YBR125C, YKL073W, YOL022C

YIL084C, YML109W

<128 14 15 YLL040C, YNL014W, YML109W, YIL092W, YIL084C,

YKL145W, YKL075C, YIL002C, YHR015W,YPL008W,

YGL006W, YKR031C, YLR035C, YNR067C, YOR093C

YGL006W, YNR067C,

YKR031C

No expression

detecteda

15 15 YDR381W, YNL208W, YHR020W, YNL160W, YEL024W,

YJL008C, YJL111W, YFL037W, YDR023W, YJR123W,

YLR340W, YJR077C, YDR321W, YCL018W, YER055C

Below QOD

(<50 copies/cell)a
16 6 YBR006W, YCL043C, YDR150W, YOR120W, YJL167W,

YBR006W

Western blot band

not quantifiablea

17 6 YHR029C, YNL055C, YJL080C, YDL140C, YIR006C,

YGR284C

Never observed

in publicly accessible

proteomics data setsc

18 10 YDL017W, YOL116W, YBR117C, YIL092W, YKL075C,

YIL002C, YHR015W, YPL026C, YLR035C, YOR093C

a Abundances and categorization according to Ghaemmaghami et al. (2003).
b Abundances are as derived from SRM measurements.
c As derived from the absence of the protein in PeptideAtlas.
precursor ion to fragment ion transitions wasdeveloped on a triple

quadrupole mass spectrometer (see the Experimental Proce-

dures). For low-abundance proteins, critical MS parameters

were specifically optimized to maximize the sensitivity of the cor-

responding assay. For each protein the SRM assays associated

with the two best responding PTPs were used in final measure-

ments. The resulting assays were then applied to detect and/or

quantify the target proteins in unfractionated trypsinized extracts

of S. cerevisiae cells, grown under the conditions described by

Ghaemmaghami et al. (2003). Data were acquired in time-sched-

uled SRM mode to maximize throughput and sensitivity (Stahl-

Zeng et al., 2007). The results indicate that proteins spanning

a range of literature abundance values from over a million down

to 41 copies/cell could be unambiguously detected. Approxi-

mately 10% of the targeted proteins could not be detected. A

list of these proteins and a rationale for the inability to detect

them is presented in Table S1 (available online). Both the cellular

abundances (1.3E6 to 41 copies/cell) of the set of proteins de-
tected in an unfractionated yeast digest and the associated

SRM signal intensities covered a range of �4.5 orders of magni-

tude. The linear correlation between the abundance of proteins

and the SRM signal intensity of the respective most intense

PTPs (log scale) is shown in Figure S3. These results demonstrate

that SRM-based proteomics has the power to reliably detect

proteins expressed in the whole range of documented cellular

abundance, down to a concentration of <50 protein copies/cell

in S. cerevisiae total cell digests without the need of sample frac-

tionation or enrichment.

Absolute Quantification of Proteins in a Total Cell Lysate
To confirm that the abundance range of the detected proteins

truly reflected the literature values described by Ghaemmaghami

et al. (2003), we used stable isotope-labeled reference peptides

to absolutely quantify 21 selected proteins distributed across

all levels of cellular abundances (Table 2). In most cases the

measured absolute protein abundances closely matched the
Cell 138, 795–806, August 21, 2009 ª2009 Elsevier Inc. 797



published values. For 17 of these proteins the two measured

abundance values deviated by less than a factor of three, with

the closest values deviating by less than 10%. Four proteins

deviated more than 5-fold from the published values. The protein

with the lowest abundance was measured at �40 copies/cell

and the highest at over 1E6 copies/cell. These results confirm

the quality of the reference list (Ghaemmaghami et al., 2003)

and demonstrate that proteins expressed to a concentration of

<50 copies/cell could be detected and quantified by SRM in total

yeast lysates.

Increase of Sensitivity and Dynamic Range by a Simple
Sample Fractionation Step
We next asked whether the addition of a single sample fraction-

ation step would further increase the detection sensitivity of the

method, due to reduction of sample complexity, to single-digit

copy/cell numbers.We therefore fractionated peptides ina tryptic

yeast digest by isoelectric focusing (Malmstrom et al., 2006)

using an off-gel electrofocusing (OGE) system, with 24 fractions

collected, spanning a 3–10 pI range. Peptides in each fraction

were analyzed via scheduled SRM, using the previously validated

SRM assays. Overall, 260 peptides were monitored across the

24 OGE fractions and for each peptide the fraction associated

with the highest SRM signal and the corresponding signal inten-

sity were derived. Figure 2 shows for every peptide the maximum

Table 2. Absolute Quantification of Proteins Spanning the Whole

Range of Abundances Using Heavy Peptide Standards

Protein

Measured

Abundance

(Copies/Cell)a
Literature Value

(Copies/Cell)b

Standard Deviation

of Measured

Abundance

YKL060C 996,503 1,018,216 51,818

YLR249W 189,235 870,578 30,864

YHR183W 48,926 101,441 7,354

YLR058C 98,940 67,559 15,860

YBR249C 19,459 26,272 5,083

YJL136C 370,314 15,300 41,142

YMR170C 1,114 2,072 217

YEL031W 3,125 1,873 472

YGL248W 501 1,404 68

YHR107C 2,317 1,169 144

YPR118W 2,631 922 477

YJL026W 13,871 538 1,144

YCL017C 1,508 504 229

YOL116W 614 491 154

YJR051W 3,912 432 911

YIL084C 162 105 31

YML109W 215 105 39

YKL145W 2,114 105 234

YGL006W 90 99 19

YNR067C 103 64 14

YKR031C 39 49 9
a Data are expressed as mean values.
b As derived from Ghaemmaghami et al. (2003).
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signal intensity gain achieved by OGE fractionation compared to

the signal obtained for the same peptide in the unfractionated

peptide mixture. Overall the average signal gain obtained by

peptide fractionation was �10-fold. The highest signal gain was

realized in the fractions corresponding to low pI peptides (frac-

tions 1–5, pI < 5), with a maximum in the first fraction (average

�25-fold increase and up to �80-fold) (see the Supplemental

Data for a discussion of the underlying reasons). The signal

gain showed no correlation with the protein abundance or the

retention time of the peptide (data not shown). These results

show that pI-based enrichment of the targeted PTPs by OGE

realized a maximal signal gain of more than 50-fold and an

average gain of about 10-fold compared to the signal recorded

from an unfractionated sample. This demonstrates that proteins

expressed at a single-digit number of copies/cell can be detected

by SRM coupled to a simple, fast, and predictable sample frac-

tionation step.

Detection of Previously Undetected S. cerevisiae

Proteins
Given the analytical depth achieved by the SRM-based

approach we asked whether the method has the potential to

detect proteins that have been undetectable by other tech-

niques. We assembled a set of proteins (Table 1) that were not

detected before, either by the affinity-based technique (Ghaem-

maghami et al., 2003) (Table 1, groups 15–17) or by in-depth

shotgun proteomics (Table 1, group 18), as determined by their

absence in the largest publicly accessible proteomic database

PeptideAtlas. To target proteins that had not been detected by

the affinity-based method we followed the approach described
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Figure 2. Analysis of the SRM Signal Gain Obtained by Peptide Frac-

tionation

Peptide fractionation was achieved by OGE of a total yeast digest in 24 wells,

using 3–10 pI strips. For each peptide the signal gain compared to the unfrac-

tionated peptide mixture resulting from the highest SRM transition and the

highest concentration fraction is reported using a logarithmic scale (left

axis). Vertical bars show the mean signal gain in each fraction. The peptide

pI associated to each fraction is also reported (right axis) as mean ± standard

deviation, as derived from large-scale shotgun proteomic experiments in

which more than 55,000 yeast peptides were identified across the 24 OGE

fractions (data not shown).



above. To target proteins never observed in proteomics experi-

ments we used unpurified synthetic peptides to generate SRM

assays for peptides from each of the targeted proteins. For

each protein five PTPs likely to be observed by MS were pre-

dicted with PeptideSieve and synthesized on a microscale using

the SPOT synthesis (Hilpert et al., 2007; Wenschuh et al., 2000).

The peptides were used as a reference for deriving the final

optimal coordinates of the SRM assays and for validating the

assays. The assays developed were then applied to detect the

proteins in a total yeast cell lysate by scheduled SRM. Overall,

of the 45 targeted proteins 37 could be unambiguously detected

in the unfractionated yeast digest (Table 1, and see also

Table S1). The observed SRM signal intensities covered a range

of approximately two orders of magnitude. The highest signals

were related to proteins that did not express in a tagged format

(Ghaemmaghami et al., 2003). The lowest signal intensities were

from proteins not previously detected by proteomics techniques

or from those below the detection/quantification limits in the

reference method (Ghaemmaghami et al., 2003) (Table 1). These

results demonstrate that SRM-based proteomics is capable of

measuring proteins that have been undetectable by other

methods and therefore of detecting and quantifying previously

unknown segments of the yeast proteome. Cumulatively, these

results demonstrate the potential of SRM-based proteomics to

map out the whole MS-observable yeast proteome and provide

assays for the detection/quantification of proteins expressed at

a concentration above single-digit copies/cell in S. cerevisiae.

Application to a Biological Protein Network
In order to demonstrate the power of the technique when applied

to the analysis of a biological system, we targeted a network of

45 proteins in the central carbon metabolism of S. cerevisiae

(Figure 3A). This pathway is an ideal example to demonstrate

the dynamic range of the technique since it contains proteins

that range from extremely high concentrations (ALF/YKL060C,

1.0E6 copies/cell, third most abundant protein in S. cerevisiae,

based on Ghaemmaghami et al. [2003]) to very low (ADH4/

YGL256W, <128 copies/cell) and also contains proteins whose

abundance could not be measured by the tandem affinity purifi-

cation tagging approach (e.g., LSC2/YGR244C) (Figures 3A and

3B) (Ghaemmaghami et al., 2003). For each protein in the set we

developed SRM assays as described above and applied them to

measure the proteins in an unfractionated yeast digest, using

scheduled SRM (Figure 3C). The protein network composed of

proteins at all abundance levels could be measured using a single

30 min chromatographic gradient, corresponding to <1 hr total

MS analysis time. In most cases proteins could be measured

via two peptides/protein, each peptide was monitored via three

SRM transitions and each SRM-chromatographic peak con-

tained at least eight data points, which ensured reliable quantifi-

cation of the eluting peptide. The SRM assays used in this study

are available in Tables S5 and S6 or via the MRMAtlas interface

(http://www.mrmatlas.org) (Picotti et al., 2008).

We next applied the validated SRM transitions for the whole

protein network described above to generate complete quantita-

tive profiles for each protein over a time course of the dynamic

growth of S. cerevisiae, covering a series of different growth

phases and a metabolic shift. We sampled the cultures at ten
time points in biological triplicate while they transited from expo-

nential growth in a glucose-rich medium, through the diauxic

shift and consequent fermentative growth on ethanol, to the

entrance in the stationary phase (Figures 4A and 4B). The

temporal boundaries of the growth phases were established

by monitoring the cell density in the medium as a measure of

the growth rate, the consumption of extracellular glucose, and

the accumulation of ethanol in the medium (Figures 4A and

4B). The total 30 samples were subjected to scheduled SRM

analysis and the resulting data were compiled to derive the quan-

titative profile, normalized to the first time point (6.5 hr), for each

protein over the dynamic growth profile. Average values are

shown out of the three biological replicates in Figure 4C. Proteins

were grouped by unsupervised clustering on the basis of their

expression profiles into three clusters. Cluster 1 (Figures 4C

and 4D) predominantly contained enzymes in the glyoxylate

cycle and enzymes responsible for the catalysis of the backward

or shortcut reactions required to revert flux directions upon the

shift (DeRisi et al., 1997). These proteins showed a marked

induction (up to 380-fold, average cluster 210-fold) upon the

diauxic shift and their levels remained constant or showed only

slight reduction during the respiratory growth and at the entrance

of the stationary phase. Cluster 2 (Figures 4C and 4E) mostly

contained enzymes involved in the tricarboxylic acid (TCA) cycle

that were coordinately induced upon the diauxic shift by up to

22-fold (cluster average induction 8-fold) and then showed a

slow decrease in abundance during the slow respiratory growth

and the beginning of the stationary phase. Cluster 3 (Figures 4C

and 4F) predominantly contained glycolytic enzymes that did not

show pronounced abundance changes throughout the whole

series of different metabolic phases. The postdiauxic induction

was statistically significant (p < 0.05 and fold change >2;

see Table S4) for all proteins in clusters 1 and 2, except for

pyk2 (p = 0.063). The coefficient of variation (CV%) of the

measurements was on average �15% and the data required in

total <2 days of MS time. These data demonstrate the capacity

of SRM-based proteomics to comprehensively and reproducibly

measure sets of biologically related proteins spanning the whole

range of abundances in a single MS run at high-throughput and

quantitative accuracy.

We next correlated the protein profiles generated in this study

with corresponding transcript profiles to detect potential post-

transcriptional regulation during the metabolic shift. We com-

pared the protein abundance profiles to a reference microarray

data set for the diauxic shift in S. cerevisiae (DeRisi et al., 1997).

The two data sets were acquired under closely similar experi-

mental conditions and the time course profiles were realigned,

normalized, and compared in the growth region associated to

the shift (time points 1–6). We detected four general correlation

patterns between protein and transcript abundance changes

(Figure 5A). The first pattern (Figure 5A, region 1) showed cases

where protein and mRNA abundances were both increasing. In

the second pattern (Figure 5A, region 2) both types of molecules

decreased abundances. The third pattern showed cases where

protein abundance increased and mRNA abundance decreased

and the fourth pattern showed cases where protein abundance

decreased and mRNA abundance increased. Most of the

measurements populated group 1 or 2, indicating that
Cell 138, 795–806, August 21, 2009 ª2009 Elsevier Inc. 799
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Figure 3. SRM Analysis of a Biological Protein Network

(A) Schematic representation of a core protein network (glycolysis/gluconeogenesis/TCA cycle/glyoxylate cycle) in the central carbon metabolism of

S. cerevisiae. Proteins are colored according to their absolute abundances as measured by Ghaemmaghami et al. (2003).

(B) Distribution of the cellular abundances of the 45 proteins composing the network. For each protein, an SRM assay was developed and applied to detect the

protein in an unfractionated yeast digest, using scheduled SRM, in a single MS analysis.

(C) LC-SRM chromatogram comprising the whole set of SRM assays for proteins in the network. Each peak represents an SRM assay that detects a tryptic

peptide of one of the target proteins in the total yeast digest.
800 Cell 138, 795–806, August 21, 2009 ª2009 Elsevier Inc.



Figure 4. Time Course Analysis of the Central Carbon Metabolism Protein Network along the Dynamic Growth Profile of S. cerevisiae in

a Glucose-Rich Medium
(A) Growth profile, as followed by monitoring the optical density at 600 nm (OD600) of the culture, and the extracellular glucose and ethanol concentrations.

(B) Different growth phases occurring during S. cerevisiae growth in a glucose-rich medium. The growth profile is plotted using a log10 scale to better highlight the

transition regions. Protein sampling time points are represented as open squares in (A) and (B) (T1, 6.5 hr; T2, 7.6 hr; T3, 8.7 hr; T4, 9.6 hr; T5, 10.6 hr; T6, 11.7 hr;

T7, 19.8 hr; T8, 25.0 hr; T9, 33.7 hr; T10, 43.2 hr).

(C) Measured abundance profiles for all the proteins in the protein network under study, along the growth curve. Mean abundance changes out of three biological

replicates with respect to time point 1 (6.5 hr) are plotted using a log10 scale. Profiles of the three clusters deriving from the clustering analysis are shown in color.

A schematic representation of the system under study highlights proteins belonging to each cluster in the corresponding color.

(D–F) Abundance profiles for each protein belonging to cluster 1 (D), 2 (E), and 3 (F). Abundance changes relative to time point 1 are represented as mean (three

biological replicates) ± standard deviation.
Cell 138, 795–806, August 21, 2009 ª2009 Elsevier Inc. 801



Figure 5. Comparison between Targeted Proteomics and Gene Expression Data

(A) Correlation between a protein and the corresponding transcript abundance fold change. Each point represents a given protein at a given time point. Four

regions are highlighted: (1) protein and transcript abundance are both increasing, (2) both decreasing, (3) protein abundance increases while transcript abun-

dance decreases, and (4) protein abundance decreases and transcript abundance increases.

(B–H) Overlay of a protein and the corresponding transcript abundance profiles. Representative examples are selected out of the four regions highlighted in (A).

Protein abundance changes are reported as mean (three biological replicates) ± standard deviation. Transcript abundance changes are from DeRisi et al. (1997)

after the realignment described in the Experimental Procedures.
predominantly the same direction of regulation is observed for

a protein and its corresponding transcript. Representative exam-

ples for each pattern are shown in Figures 5B–5H, as overlaid

time course profiles for a protein and the corresponding tran-

script. The availability of full protein and transcript time course

data also allowed us to compare the magnitude and time depen-

dency of the two data sets. In several cases we observed

a striking synchronism and closely similar abundance fold

changes (e.g., sdh3 and cit1 from group 1 or eno2 from group

2). In other cases, we observed a delayed response at the protein

level (e.g., fum1, group 1). Further, in several cases at the decay-

ing tail of an induction curve the transcript and protein profiles

diverged, the protein levels persisting while the transcripts de-

cayed (e.g., hxk2, group 2). Finally, for some proteins the direc-

tion of the abundance change was fully unanticipated by the

gene expression data (e.g., lsc1, group 3; ald6, group 4). The

time course proteomic data set and comparisons of the tran-

scripts and protein profiles for each gene are available in the

Supplemental Data (Figure S4 and Table S3).

DISCUSSION

A common requirement in molecular and cellular biology

research is the ability to detect and quantify target proteins in bio-

logical samples, a need that became even more apparent with the
802 Cell 138, 795–806, August 21, 2009 ª2009 Elsevier Inc.
rise of systems biology. For the generation of mathematical

models of protein networks (e.g., metabolic or signaling

networks), in the context of systems biology research, it is crucial

to measure all the elements that constitute the network under

a set of different perturbing conditions. Frequently, such sets of

proteins cover a wide range of physicochemical properties and

cellular abundances that complicate their detection and quantifi-

cation. Comprehensive proteomic measurements to face such

challenge still suffer substantial limitations. This is optimally

illustrated with the relatively simple eukaryotic organism

S. cerevisiae, the species with the best characterized proteome

to date. In spite of the considerable efforts worldwide, applying

a range of experimental approaches, about 20% of the predicted

yeast proteome has never been detected and, more generally, to

date no proteome has been fully mapped yet. A main reason for

this is the difficulty in detecting low-abundance proteins. How-

ever low-copy number proteins (<1000 copies/cell) are extremely

attractive targets in systems biology research, since they often

play a crucial role, e.g., as signal transducers, isoenzymes, or

regulators of cellular processes. In the literature there are anec-

dotal reports claiming the detection of low-abundance proteins.

However, these results were generally achieved in targeted

studies in which a specific protein was studied, e.g., after affinity

enrichment (Ghaemmaghami et al., 2003) or by large-scale pro-

teomic studies whereby with intensive efforts the proteome



was extensively fractionated via multiple separation/enrichment

steps prior to shotgun MS, resulting in identification of thousands

of proteins (Chen et al., 2006; de Godoy et al., 2006, 2008).

Although powerful, the latter studies require weeks of data acqui-

sition and instrumental analysis per each single sample and are

thus not practical when multiple samples and replicates have to

be consistently analyzed, as is the case in dosage series or

time course experiments required for systems biology.

Here we demonstrate that SRM-based proteomics has the

power to detect and quantify yeast proteins expressed in the

whole range of cellular abundance, down to less than 50 protein

molecules/cell. Proteins could be detected in total yeast cell

digests, without the need for sample fractionation or enrichment,

making the use of the technique fast and practical. The tech-

nique is also highly multiplexed, supporting the detection and

quantification of more than 100 different proteins, deliberately

chosen and spanning all levels of abundance, in a single anal-

ysis. This allows to comprehensively monitor entire protein

networks in a 1 hr MS run and thus to analyze in a reasonable

time the effects on the system under study of different perturbing

conditions and replicates. This satisfies in an ideal way the

growing demand of systems biology for consistent, complete,

and quantitative data sets from cells in differentially perturbed

states. We illustrate the performance of targeted proteomics

and the utility of the data by analyzing the dynamics of the

proteins in the central carbon metabolism of S. cerevisiae over

a complete growth time course, including a series of growth

phases and a metabolic shift. This is, to date, the most complete

quantitative data set describing the responses of each protein in

the network to the series of events occurring during S. cerevisiae

growth, at high temporal resolution. The whole SRM analysis

required <2 days, and 30 samples were analyzed at the speed

of 1 sample/hour, resulting in total 1350 protein abundance

measurements. Previous attempts to capture by proteomics

the events occurring upon glucose consumption during

S. cerevisiae growth resulted in low coverage of the system under

study (Futcher et al., 1999; Haurie et al., 2004) (13 and 15 out of

the 45 proteins composing the system detected, respectively,

with a clear bias toward the most abundant components). It is

likely that the application of advanced shotgun proteomic

methods involving extensive sample fractionation (de Godoy

et al., 2008) would increase the coverage achieved by these

studies, albeit at a significant cost in time, material, and labor.

Due to the lack of comprehensive, quantitative proteomic data

sets, thus far the closest description of enzyme abundance

changes upon glucose exhaustion in S. cerevisiae was derived

from microarray studies (Brauer et al., 2005; DeRisi et al., 1997;

Gasch et al., 2000; Radonjic et al., 2005). The strong induction

observed in our study of all TCA and glyoxylate cycle enzymes

and of fba1 and adh2 agrees with what previously extrapolated

from transcriptomics data sets (although with different timing

and regulation extent) and biochemical analyses. Thus, our

data confirm the current view of a metabolic remodelling that

redirects carbon fluxes from fermentative to respiratory path-

ways upon glucose exhaustion and thus release from glucose

repression (Brauer et al., 2005; DeRisi et al., 1997; Polakis and

Bartley, 1965). Specifically, this entails (1) the activation of the

anaplerotic glyoxylate cycle to regenerate TCA intermediates,
(2) the reversion of glycolysis with consequent induction of key

enzymes such as fbp1 that switch irreversible glycolytic steps,

and (3) the activation of respiratory enzyme isoforms (e.g.,

adh2) (Brauer et al., 2005; DeRisi et al., 1997; Gasch and

Werner-Washburne, 2002). Most of the protein expression differ-

ences persist through the postdiauxic phase until entrance to the

stationary phase (this study; Radonjic et al., 2005). In addition,

based on transcriptomic analyses it has been assumed that

glycolytic enzymes and enzymes that control flow of metabolites

to ethanol during fermentation (pdc1–6) undergo a decrease in

abundance upon glucose exhaustion (Brauer et al., 2005; DeRisi

et al., 1997; Gasch et al., 2000). This is in agreement with the

reported lower glycolytic and pdc activity during respiratory

growth (Entian and Zimmermann, 1980). Our data show that

this extrapolation from transcriptomic data is not correct. Instead

the abundance of glycolytic and pdc enzymes is not significantly

changing throughout the whole growth profile, even though

the corresponding transcripts decrease (see pdc1–6, fba1,

pyk1, gpm1, gpm3, pgk1, pgi1, adh1, and pfk1, Figure S3). This

suggests that potential posttrascriptional regulation of glycolysis

and pdc activity occurs upon the diauxic shift in S. cerevisiae, in

analogy to what was recently proposed for the metabolic adapta-

tion of yeast to benzoic acid treatment and oxygen deprivation

(Daran-Lapujade et al., 2007). Therefore our data set confirms

previous knowledge but also carries a significant amount of

new information, in terms of timing and regulation extent, for the

protein network upon the metabolic shift that was not apparent

from transcriptomic analyses alone, thus highlighting points of

potential posttranscriptional regulation. This shows that accurate

proteomic data sets such as the one generated in this study are

required to provide a detailed picture of how protein networks

adapt to changing conditions. The data set in particular provides

an ideal framework for the improvement of mathematical

models of metabolic reprogramming in S. cerevisiae. This overall

confirms that the SRM approach provides a simple, economical,

and fast way to explore the dynamics of cellular pathways, which

will find broad applications in systems biology, but also in medical

and pharmaceutical research (e.g., drug screening).

The results of the study also show that SRM detects proteins

that have not been detectable before either by MS or quantitative

western blotting, indicating that the number of proteins

expressed in S. cerevisiae cells in log-phase growth is higher

than previously reported (Ghaemmaghami et al., 2003). The

data also suggest that it will now be possible to map out previ-

ously unknown segments of the yeast proteome, an advance

that will also have significant implications for genome annotation.

The SRM technology showed a high success rate (�90%) in

detecting proteins expressed in yeast cells. Examples of failed

detection include highly modified proteins, cell wall or

membrane proteins, or low-abundance proteins that lack PTPs

with good MS properties (see Table S1). Variations of the tech-

nology applied here, e.g., the use of proteases different from

trypsin, testing a higher number of PTPs in the case of highly

modified proteins, or adapting the protein extraction procedure

to detect membrane/cell wall proteins, will further increase the

success in detecting previously undetected proteins.

The addition of a single step of peptide fractionation, per-

formed by the well-established and fast technique of OGE,
Cell 138, 795–806, August 21, 2009 ª2009 Elsevier Inc. 803



further increased the sensitivity by on average one order of

magnitude, thereby allowing the detection of proteins expressed

at single-digit copies/cell concentration. The additional sensi-

tivity provided by OGE might be exploited to detect difficult,

low-abundence proteins that do not contain PTPs with good

MS response or to follow the downregulation of proteins of low

abundance. Targeting PTPs with pIs in the range 3–4.5, which

showed the strongest signal gain in OGE fractions, can signifi-

cantly increase the sensitivity of the SRM assay by up to 80 times

(compared to the unfractionated samples).

When developing the SRM assays used in this work, a bottle-

neck step, in particular for low-abundance proteins, was the vali-

dation of the SRM transitions that constitute the definitive mass

spectrometric assay in the type of mass spectrometer used for

the measurements. This is typically achieved by acquiring a full

fragment ion spectrum of the targeted peptides. For low intensity

peptides, high quality fragment ion spectra are difficult to

generate from full yeast digests due to the interference of the

high level background. In such cases, validation required acqui-

sition of the fragment ion spectra for the peptide in lower

complexity sample (e.g., using OGE fractions). To facilitate the

process we used unpurified synthetic peptides to develop and

validate SRM assays for proteins that proved undetectable by

other techniques. The use of such artificial proteomes strongly

increased the confidence of the assay validation and increased

the throughput in generating SRM assays. It is also particularly

advantageous for targeting previously undetected proteins and

therefore represents a significant advance in achieving complete

proteome coverage by MS.

The final coordinates of SRM assays become universally

useful and exportable. To this purpose, we developed a central-

ized web-based resource (Picotti et al., 2008) to store and allow

the fast diffusion and usage of the SRM assays across different

laboratories. The resource currently contains SRM assays for

>1500 yeast proteins, including complete cellular pathways,

such as the one shown in Figure 3.

In conclusion, this study demonstrates the potential of SRM-

based proteomics to map out the whole observable yeast pro-

teome by using assays to detect and quantify virtually any protein

expressed at a concentration above single-digit copies/cell. It

shows that quantitative assays for complete protein networks

of interest can be developed and deployed to monitoring the

dynamics of any network under study, across a high number of

samples and replicates, at unprecedented speed, and with

high quantitative accuracy. The described development of highly

specific assays is generally applicable to any protein and proteo-

mics project. These advances open a new avenue in the quanti-

tative and qualitative analysis of proteins in the context of

systems biology research and make the fast quantitative analysis

of any protein in a proteome a concrete possibility.

EXPERIMENTAL PROCEDURES

Sample Preparation

Yeast cells were grown in two biological replicates to log phase at conditions

closely matching those of Ghaemmaghami et al. (2003). Before lysis, aliquots

of the cell suspension were subjected to cell counting in a Neubauer chamber

and averaged results were expressed as cells/ml. Pelleted cells were disrup-

ted by glass bead beating and proteins were precipitated by cold acetone,
804 Cell 138, 795–806, August 21, 2009 ª2009 Elsevier Inc.
reduced with 12 mM dithiotreitol, alkylated with 40 mM iodoacetamide, and

digested with sequencing grade trypsin (Promega). Peptide samples were

cleaned by Sep-Pak tC18 cartridges (Waters). The peptide mixtures were

either directly destined to MS analysis or first separated by OGE using a

pH 3–10 IPG strip (Amersham Biosciences) and a 3100 OFFGEL Fractionator

(Agilent Technologies) with collection in 24 wells. Peptides collected in each

well were cleaned as previously described and all peptide samples were evap-

orated to dryness and resolubilized in 0.1% formic acid for MS analysis.

In the time course experiments, yeast cells were grown in yeast extract

peptone dextrose (20 g/L glucose) medium in triplicate. Cells sampled at

each time point (from inoculation: 6.5, 7.6, 8.7, 9.6, 19.6, 11.7, 19.8, 25.0,

33.7, and 43.2 hr) were subjected to protein extraction and digestion. The

optical density at 600 nm of the yeast cultures was measured regularly.

Aliquots of the culture broth were analyzed with an HPLC system (Agilent

HP1100) equipped with a refractive index detector and a UV/Vis detector

(DAD) to determine the extracellular concentration of glucose and ethanol,

using calibration curves constructed with external standards.

Design of SRM Assays

A set of S. cerevisiae proteins was selected containing proteins evenly distrib-

uted across the full range of cellular concentrations (Ghaemmaghami et al.,

2003). Proteins that could not be detected by previous proteomic (Deutsch

et al., 2008) or affinity-based (Ghaemmaghami et al., 2003) techniques were

added to the list. For the network analysis a set of 45 proteins composing

the core of carbon metabolism in S. cerevisiae was assembled. For each

protein three to five PTPs were selected based on previous evidence (http://

www.peptideatlas.org) (Deutsch et al., 2008) or by bioinformatic prediction

using PeptideSieve (Mallick et al., 2007). For each peptide three to eight tran-

sitions for each of the two main charge states were calculated, corresponding

to y series fragment ions. The transitions were used to detect the peptides in

whole yeast protein digests or in OGE peptide fractions by SRM and to trigger

acquisition of an MS/MS spectrum for each peptide. For proteins not observed

in PeptideAtlas the five predicted PTPs were synthesized in an unpurified

format, via the SPOT synthesis (JPT Peptide Technology), and used as a refer-

ence to develop the corresponding SRM assays.

MS Analysis

MS analyses were performed on a hybrid triple quadrupole/ion trap mass

spectrometer (4000QTrap; ABI/MDS-Sciex). Chromatographic separations

of peptides were performed on a Tempo nano LC system (Applied Biosystems)

coupled to a 16 cm fused silica emitter, 75 mm diameter, packed with a Magic

C18 AQ 5 mm resin (Michrom BioResources). Peptides (up to 3.5 mg of total

protein digest) were separated with a linear gradient from 5% to 30% acetoni-

trile in 30 or 60 min, at a flow rate of 300 nl/min. In the SRM assays validation

phase the mass spectrometer was operated in MRM mode, triggering acqui-

sition of a full MS/MS spectrum upon detection of an SRM trace. Each SRM

assay was validated by acquiring a full MS/MS spectrum for the peptide. For

detailed information on the MS operating conditions see the Supplemental

Experimental Procedures. Upon validation, the SRM assays were used to

detect and/or quantify the proteins in total cell lysates and in each of the

24 OGE fractions, using scheduled SRM mode (retention time window, 180 s;

target scan time, 3.5 s). Blank runs were performed regularly, in which the

same set of transitions was monitored as in the following (sample) run. Blank

runs were performed until no signal was detected for all transition traces, in

particular prior to any measurement of low-abundance proteins. Where

synthetic peptides were available, validation of peptide identities in yeast

samples was based on the analogy of chromatographic and fragmentation

properties to those of the standard. For low-abundance proteins the relative

intensities of SRM traces were confirmed to match those of the corresponding

fragment ions in the MS/MS spectrum of the peptide.

Database Search and Extraction of Optimal SRM Transitions

MS/MS spectra were assigned to peptide sequences by a target-decoy

sequence database searching strategy using the tool Sequest. The search

results were validated and assigned probabilities using the PeptideProphet

program (Deutsch et al., 2008) with decoy-assisted semiparametric model

and filtered as in Picotti et al. (2008). For each peptide, the three fragment

http://www.peptideatlas.org
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ions resulting in the highest signals were extracted from the triple quadrupole

MS2 spectra (Picotti et al., 2008). The selected transitions were reanalyzed in

scheduled SRM mode and the two peptides resulting in the maximal intensities

were selected as final SRM assay for each protein. To accept validation of a set

of SRM traces we checked that the retention time at which the MS2 spectrum

was acquired matched that of the SRM peaks for the target peptide and we

confirmed ‘‘coelution’’ of all SRM traces for the peptide. The SRM assay

data set was uploaded to the MRMAtlas (http://www.mrmatlas.org) (Picotti

et al., 2008) and is available in Tables S5 and S6.

Quantitative Analyses

For absolute quantification, isotopically labeled synthetic versions of the

selected PTPs (see the Supplemental Experimental Procedures) were

purchased from Thermo Fisher Scientific. The synthetic peptides were

used for collision energy and declustering potential optimization. A known

amount of heavy peptides was added prior to trypsinization to the protein

mixtures. For relative quantification in the time course analyses each protein

sample was mixed prior to trypsinization to an equal amount of yeast proteins

extracted from 15N-completely labeled yeast cells, used as an internal refer-

ence (see the Supplemental Experimental Procedures). The SRM assays

were used to measure the peptides in the heavy and light versions using

scheduled SRM.

Peak height for the transitions associated to the heavy and light peptides

were quantified using the software MultiQuant v. 1.1 Beta (Applied Biosys-

tems). Each transition for a given peptide was treated as an independent abun-

dance measurement. Absolute quantification was obtained from the ratio

between the light and heavy SRM peak height, multiplied by the known amount

of the standard. Results were related to the number of cells processed and

expressed in protein copies/cell as mean out of the different transitions,

peptides, and the two biological replicates, ± the standard deviation. The

potential contamination of the heavy peptide preparations with the corre-

sponding unlabelled peptides was tested by injecting the heavy peptides alone

and monitoring the transitions for both the heavy and light peptide forms. At the

concentration used for quantitative measurements no signal was detectable in

the ‘‘light’’ transitions.

For relative quantification of each protein across the growth time course the

ratio between the light and heavy SRM peaks height was calculated and

normalized to that obtained at the growth time point 1 (6.5. hr). Results

were expressed as mean out of the different transitions/peptide, peptides/

protein, and the three replicate cultures, ± the standard deviation and plotted

using SigmaPlot (Systat Software). Outlier transitions (e.g., shouldered transi-

tion traces or noisy transitions with S/N < 3) were not considered in the calcu-

lations.

Time Course Data Analysis

Protein time course profiles were compared to transcript data (DeRisi et al.,

1997). The data sets were realigned using the transition midpoints and the

glucose consumption curves and overlaid (Figures 5B–5H). A comparison of

the protein and transcript fold changes was performed in the growth time

frame covered by both data sets, normalizing transcript fold changes to the

first common sampling point. When sampling was performed at different

time intervals, transcript fold changes at matching points was linearly extrap-

olated from the two closest measured time points.

The log10 transformed profiles of the mean protein fold changes were sub-

jected toK-means clustering (Macqueen,1967) (four initial clusters).A Student’s

paired t test was performed to determine statistically significant changes in

protein abundances upon the metabolic shift. The threshold for statistical signif-

icance was p < 0.05 and an abundance change >2-fold (Table S4).

SUPPLEMENTAL DATA

Supplemental Data include Supplemental Discussion, Supplemental

Experimental Procedures, four figures, and six tables and can be found

with this article online at http://www.cell.com/supplemental/S0092-8674(09)

00715-6.
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