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a b s t r a c t

Measurement error occurs in many biomedical fields. The challenges arise when errors are
heteroscedastic sincewe literally have only one observation for each error distribution. This
paper concerns the estimation of smoothdistribution functionwhendata are contaminated
with heteroscedastic errors. We study two types of methods to recover the unknown
distribution function: a Fourier-type deconvolutionmethod and a simulation extrapolation
(SIMEX) method. The asymptotics of the two estimators are explored and the asymptotic
pointwise confidence bands of the SIMEX estimator are obtained. The finite sample
performances of the two estimators are evaluated through a simulation study. Finally, we
illustrate the methods with medical rehabilitation data from a neuro-muscular electrical
stimulation experiment.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Many practical problems involve estimation of distribution functions or density functions from indirect observations. For
example, in low level microarray data from either the complementary DNA (cDNA) microarray or the Affymetrix GeneChip
system, each observation is an original signal coupled with a background noise. To obtain an expression measure, the goals
often include developing better statistical tools or enhancing algorithms for background correction so that the disease
genes can be detected accurately and efficiently. In medical image analysis, observable outputs are often blurred images.
In astronomy, due to great astronomical distances and atmospheric noise, most data are subject to measurement errors.
Statistical analyses that ignoremeasurement errors could bemisleading.Measurement errormodel is an active, rich research
field in statistics. There is an enormous literature on this topic in linear regression, as summarized by Fuller (1987) and
in nonlinear models, as summarized by Carroll et al. (2006). In this paper, we investigate estimation methods of smooth
distribution function from data contaminated with heteroscedastic measurement errors.

Nonparametric kernel-type methods have been widely used in estimating density functions and their derivatives or
in regression. Kernel smoothing is also an important tool for distribution function estimation. The kernel estimate of a
distribution function, first introduced by Nadaraya (1964), has been investigated by many authors (Azzalini, 1981; Reiss,
1981; Sarda, 1993; Bowman et al., 1998). The kernel smooth estimator, which has good statistical properties, can be
expressed as

F̂X (x) = 1
n

n�

j=1

L
�
x − Xj

hn

�
, (1)
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where X1, X2, . . . , Xn are independent random variables with the common distribution function FX and the density function
fX . The function L is defined from a kernel K as L(x) =

� x
−∞ K(t)dt , where K(·) is some bounded density function with

K(t) = K(−t) for all t ∈ R and hn > 0 is the smoothing parameter with hn → 0 and nhn → ∞ as n → ∞. The
conventional empirical distribution function (EDF) can be obtained by letting hn → 0, when L(·) is replaced by an indictor
function I(Xi ≤ x). It is noted that F̂ in (1) can be written as

F̂X (x) =
� x

−∞
f̂X (t)dt,

where f̂ is the well-known kernel density estimator.
In real data applications, there are many examples where observable data are contaminated with measurement errors

and it is not realistic to assume that the errors are homoscedastic. Themeasurement process might be subjective and differs
among all individuals. Fuller (1987) had an early consideration of this problem. Cheng and Riu (2006) discussed the point
estimation of the parameters in a linear measurement error (heteroscedastic errors-in-variables) model. Kulathinal et al.
(2002) considered estimation problem of an errors-in-variables regression model when the variances of the measurement
errors vary between observations in the analysis of aggregate data in epidemiology. Sun et al. (2002) studied ameasurement
errormodelwith application to astronomical data that camewith information on their heteroscedastic errors. In the research
of density estimation with measurement errors, the literature is vast; see for example, Fan (1991); Zhang (1990); Stefanski
and Carroll (1990); Carroll andHall (1989); Delaigle and Gijbels (2004). They focused on the study of the deconvoluting kernel
density estimation through an inverse Fourier transform with the case of homoscedastic errors. Until very recently, Delaigle
andMeister (2008) studied the deconvoluting kernel estimator under the heteroscedastic setting. Staudenmayer et al. (2008)
addressed a different type of model, where the observable data with heteroscedastic measurement errors were assumed
normally distributed. A Monte Carlo Markov chain and a random-walk Metropolis-Hastings algorithm were proposed to
estimate the unknown density.

Estimating cumulative distribution functions with measurement errors was also of interest. The sample cumulative
distribution function is a nonlinear function of data and is biased when it is estimated ignoring measurement errors.
Stefanski and Bay (1996) studied the estimation of a discrete population cumulative distribution function when data were
contaminated with measurement errors. Using the method of simulation extrapolation (SIMEX) (Cook and Stefanski, 1994;
Stefanski and Cook, 1995), they proposed a bias-adjusted estimator that reduced much of the bias. Later, Cordy and Thomas
(1996) considered an expectation-maximization algorithm for estimating a distribution function when data were from a
mixture of a finite number of known distribution. Nusser et al. (1996) presented a method for estimating distributions with
additive normal errorswith application to a study of daily dietary intakes. Their approach differed from the kernel estimators
in that they assumed that a transformation existed such that both the original observations and the measurement errors
were normally distributed. Most recently, Hall and Lahiri (2008) studied Fourier-type estimation of distributions, moments,
and quantiles with homoscedastic errors.

Challenges of estimation problems arisewhen errors are heteroscedasticwherewe literally have only one observation for
each error distribution. In this paper, we study two types of methods to recover the unknown smooth distribution function:
a Fourier-type deconvolution method and a SIMEX method, when data are contaminated with heteroscedastic errors. In
Section 2, we first extend Hall and Lahiri’s (2008) Fourier-type estimator to the case of heteroscedastic errors and then
generalize the work of Stefanski and Bay (1996) to estimate the smooth distribution function with heteroscedastic errors
using SIMEX. The asymptotics of the two estimators are studied and the asymptotic pointwise confidence bands of the SIMEX
estimator are obtained. In Section 3, we conduct a simulation study to compare the finite sample performances of the two
estimators. In Section 4, we apply our proposed method to real data in a medical rehabilitation study. In Section 5, we close
this paper with a discussion.

2. Estimation methods

To investigate the estimation of the smooth distribution function for data contaminated with heteroscedastic errors, we
first consider a general heteroscedastic measurement error model. Let Y1, . . . , Yn be an observed random sample such that

Yj = Xj + Uj, (2)

with the measurement error Uj independent of Xj. Each Uj has its own density fUj , j = 1, . . . , n, where fU1 , . . . , fUn are
from a same distributional family, but the measurement error distribution’s parameters vary with the observation index. If
fU1 = · · · = fUn = fU , the errors are said to be homoscedastic; otherwise, the errors are heteroscedastic. One is to recover
the unknown distribution function FX (x) =

� x
−∞ fX (t)dt of the unobserved continuous random variable X , where fX is the

density function of X .

2.1. Fourier-type deconvolution

Denote the characteristic functions of X and Uj by φX and φUj (j = 1, . . . , n), respectively. Through an inverse Fourier
transform, Delaigle andMeister’s (2008) deconvolution estimator for the density with heteroscedastic errors can be written



Author's personal copy

X.-F. Wang et al. / Computational Statistics and Data Analysis 54 (2010) 25–36 27

as a form of a kernel-type density estimator,

f̂X,Fourier(x) = 1
nhn

n�

j=1

K̃j

�
x − Yj

hn

�
, (3)

where

K̃j(z) = 1
2π

�
e−itz φK (t)

ψUj(t/hn)
dt, ψUj(t) =

1
n

n�
k=1

|φUk(t)|2

φUj(−t)
,

and φK is the characteristic function of a symmetric probability kernel, K(·), with a finite variance. It is noted that f̂X,Fourier
in (3) becomes the conventional deconvoluting kernel estimator (Stefanski and Carroll, 1990) for homoscedastic errorswhen
fU1 = · · · = fUn = fU .

Similarly to Hall and Lahiri (2008), our distribution estimator F̂X,Fourier in the case of heteroscedastic errors is defined as
simply the integral of f̂X,Fourier over (−∞, x]. Let

L̃j(z) = 1
2

+ 1
2π

� ∞

−∞

sin(tz) · φK (hnt)
t · ψUj(t)

dt, j = 1, . . . , n.

By integrating f̂X,Fourier in (3), we have

F̂X,Fourier(x) =
� x

−∞
f̂X,Fourier(t)dt = 1

n

n�

j=1

L̃j(x − Yj). (4)

Wenow study asymptotic properties of our estimator. Due to the nature of the deconvolution kernel estimation, similarly
as defined in Fan (1991), we consider a slightly different definition of the distribution function estimator as in the following
form to derive the asymptotics. For a sequence of positive numbersMn → ∞ as n → ∞,

F̂n,Fourier(x) =
� x

−Mn

f̂X,Fourier(t)dt.

Here we included the terms about Mn in the uniform bound. Conventionally, Mn can be selected to be proportional to h−1
n ,

similar to that discussed in Fan (1991). Note that the bandwidth hn depends on nwhen studying the asymptotics.We assume
the following conditions:

(1) For an integerm ≥ 0, 0 < α ≤ 1,

|f (m)(x) − f (m)(y)| ≤ C · |x − y|α;
(2) K(x) < D · |x|−m−2 for all x;
(3) φK (t) has support [−1, 1];
(4) Condition C of Delaigle and Meister (2008).

The asymptotic behavior of the estimator is described in the next theorem.

Theorem 1. Assume Conditions (1)–(4). Then, for x0 ∈ Rwith specifically chosen sequence of numbersMn → ∞ and bandwidth
hn → 0, we have

sup
−∞<x0<∞

E[F̂n,Fourier(x0) − F(x0)]2 ≤ O(h2(m+α+1)
n ) + O(F 2(−Mn(1 − hn))) + O(M−2m−2

n )

+O



Mn

�

hn

n�

k=1

|φUk(1/hn)|2
�−1



 .

Remark 1. The last term of the upper bound reflects the effect of the heteroscedastic measurement errors to the estimation
of the unknown distribution function. The smoothness of the measurement error distributions influence the convergence
rate of the distribution function estimation, as discussed in Fan (1991). In the above theorem, we present a general
asymptotic result of our estimator. The specific convergence rate could be obtained similar as in Hall and Lahiri (2008),
where they classified the distribution functions of the unobservable random variable and themeasurement errors into eight
classes.
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2.2. SIMEX

SIMEX is a ‘‘jackknife’’-type bias-adjusted method that has been widely applied in regression problems with measure-
ment errors. Stefanski and Cook (1995) applied the SIMEX algorithm to parametric regression problems. Staudenmayer and
Ruppert (2004); Carroll et al. (1999) discussed the nonparametric regression in the presence of measurement errors using
SIMEX method. Stefanski and Bay (1996) studied SIMEX estimation of a finite population cumulative distribution function
when sample units aremeasuredwith errors. Nowwe generalize Stefanski and Bay’s (1996)method to estimate the smooth
distribution function with heteroscedastic Gaussian errors.

Under the model setting (2), we further assume Uj ∼ N(0, σ 2
j ), for j = 1, . . . , n. Typically, σj can be obtained from

auxiliary data. By the general SIMEX algorithm, estimators are re-computed from a large number B of measurement error-
inflated pseudo-datasets, {Yjb(λ)}nj=1, b = 1, . . . , B, with

Yjb(λ) = Yj + λ1/2Ujb = Yj + σjλ
1/2Zjb, j = 1, . . . , n, b = 1, . . . , B,

where Zjb are independent, standard normal pseudo-random variables, and λ � 0 is a constant controlling the amount of
added errors.

The smooth distribution function estimator from the bth variance-inflated data {Yjb(λ)}nj=1 is

Ĝb(x) = 1
n

n�

j=1

L
�
x − Yjb

h

�
,

where L(·) is defined from a kernel K(·) as L(x) =
� x
−∞ K(t)dt and K(·) is a symmetric kernel with a finite variance such

that
�
K(t)dt = 1,

�
tK(t)dt = 0, and

�
t2K(t)dt < ∞.

In the general SIMEXalgorithm, the simulation and estimation steps are repeated a large number of times, and the average
value of the estimators for each level of contamination is calculated by,

Ĝ(x) = 1
B

B�

b=1

Ĝb(x) = 1
B

B�

b=1

�
1
n

n�

j=1

L
�
x − Yjb

h

��

. (5)

However, it is noted that Ujb = σjZjb, where Zjb are independent, standard normal random variables. With a fixed j
(j = 1, . . . , n), let h̃j = h/(σjλ

1/2), we have

1
B

B�

b=1

L
�
x − Yjb

h

�
= 1

B

B�

b=1

L
�
x − Yj − λ1/2Ujb

h

�
= 1

B

B�

b=1

L




x−Yj

σjλ1/2
− Zjb

h̃j



 .

Notice that the smooth distribution estimator is asymptotically unbiased and has the same variance as the EDF.
It uniformly converges to the true distribution function with probability one (Nadaraya, 1964). Hence, with a fixed j,
conditional on Yj,

1
B

B�

b=1

L
�
x − Yjb

h

�
D−→ Φ

�
x − Yj

σjλ1/2

�
,

where Φ(·) denotes the distribution function of the standard normal distribution.
Therefore, the simulation step can be bypassed in the SIMEX algorithm for the distribution estimation. We use Ĝ∗ in (6)

to replace Ĝ in (5) for our estimation,

Ĝ∗(x, λ) �
1
n

n�

j=1

Φ

�
x − Yj

σjλ1/2

�
. (6)

The above equation has some similarity with Eq. (3) in Stefanski and Bay (1996). We further calculate the quantity in (6)
for a pre-determined sequence of λ, i.e. 0 ≤ λ1 < λ2 < · · · < λl. The success of SIMEX technique depends on the fact
that the expectation of Ĝ∗ is well approximated by a nonlinear function of λ (Carroll et al., 2006). Here we consider the
conventional quadratic function of λ, i.e.

E(Ĝ∗(x, λ)) ≈ β0 + β1λ + β2λ
2.

It is indeed a good approximation when max{σ 2
j } is not very large. The SIMEX estimator for the unknown distribution

function FX without measurement error can be obtained by the extrapolation step, i.e. letting λ → −1,

F̂X,SIMEX(x) = β̂0 − β̂1 + β̂2. (7)

The following proposition shows that, in the case of heteroscedastic Gaussian errors, our estimator (7) is an asymptotically
unbiased estimator for the unknown distribution function FX , if the extrapolant is exact.
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Proposition 1. Assume (a) the polynomial extrapolant is exact, (b) the distribution function FX (x) of unobserved X1, . . . , Xn has
continuous fourth derivative, and (c) σ 2

j < C0 for all j and C0 < ∞. Then, the estimator (7) is an asymptotically unbiased
estimator of FX (x). The corresponding asymptotic variance is FX (x)(1 − FX (x))/n, which can be consistently estimated by
F̂X,SIMEX(x)(1 − F̂X,SIMEX(x))/n.

Remark 2. Under realistic applications, the assumption (a) in Proposition 1will only be approximately true. See for instance
Carroll et al. (1999), Staudenmayer and Ruppert (2004). As we show in the Eq. (8) in Appendix, the expectation of Ĝ∗(x, λ)
is a quadratic function of λ at a given x plus the approximation error term, o

� 1
n

�n
j=1 σ 4

j
�
. The success of the SIMEXmethod

in practice depends on the fact that E[Ĝ∗(x, λ)] can well approximated by a quadratic function of λ.

From Proposition 1, the estimated asymptotic pointwise confidence bands when data are contaminated with
heteroscedastic Gaussian errors have the form

I(x) =
�
F̂X,SIMEX(x) − c

�
F̂X,SIMEX(x)(1 − F̂X,SIMEX(x))/n, F̂X,SIMEX(x) + c

�
F̂X,SIMEX(x)(1 − F̂X,SIMEX(x))/n

�
,

where c is chosen as the (1 − α/2) quantile of the standard normal distribution.

Remark 3. Due to the heterogeneity of measurement errors, the variance estimation method in Stefanski and Bay (1996)
cannot be applied to our proposed estimator F̂X,SIMEX(x). However, the variance of F̂X,SIMEX(x) can be well approximated by
the variance of Ĝ∗(x, λ) as λ → −1. The latter can then be approximately consistently estimated. The naive confidence
bands therefore can be constructed. The confidence bands based on the aforementioned variance estimation are simulated.
It almost coincides the nonparametric bootstrap confidence band. This variance estimation of the distribution function can
also be applied to the case of homoscedastic measurement errors.

Remark 4. In the SIMEX distribution estimation, it is possible that the estimated values are out of [0, 1] in tail regions. This
situation is similar tomany classes of kernel methods, such as wavelet density estimators, sinc kernel estimators, and spline
estimators. The disadvantage will not affect the global performance of our estimation. A simple correction version of our
SIMEX estimator in practice is

F̂∗
X,SIMEX(x) =






0 : F̂X,SIMEX(x) < 0
F̂X,SIMEX(x) : 0 ≤ F̂X,SIMEX(x) ≤ 1.
1 : 1 < F̂X,SIMEX(t)

3. Numerical study

3.1. Empirical choice of smoothing parameters

In the Fourier-typemethod,we consider amodified ‘‘plug-in’’ approach to select the bandwidth hn. Fan (1992) proposed a
plug-in asymptotical bandwidth for the density estimationwith homoscedastic errors. Delaigle andGijbels (2004) suggested
a ‘‘normal reference’’ approach andHall and Lahiri (2008) discussed it for distribution estimationwith homoscedastic errors.
Here we adopt Hall and Lahiri’s (2008) ‘‘normal reference’’ bandwidth approach for the case of heteroscedastic errors.
Specifically, we shall temporarily take fX be a normal N(0, σ 2

X ) density; and calculate an estimator σ̂ 2
X of σ 2

X as the variance
of the data Y minus σ̄ 2

U , where σ̄ 2
U = �n

j=1 σ 2
j /n.

The SIMEX estimator requires specification of λ1, . . . , λl. They are not the smoothing parameters in the sense of the
conventional kernel estimation. They act as ‘‘design points’’ of our estimator, which is similar to the knots in a spline
(Kooperberg and Stone, 1992). So, the choice of λ1, . . . , λl is not as sensitive as the bandwidth in density estimation is.
Based on our extensive simulations, our experience suggests that the number of values, l, is not critical and neither is that
of λl if λ1 is determined. Note that σjλ

1/2 in (6) has some similarity to a bandwidth. Our proposed rule-of-thumb choice of
λ1 can be obtained by solving the equation

σ̄Uλ
1/2
1 = c1ĥrot,Y ,

where ĥrot,Y is the Silverman’s rule-of-thumb bandwidth (Silverman, 1986) based on the observed data Y and c1 =�
σ̂ 2
Y − σ̄ 2

U/σ̂Y is a coefficient to adjust the effect of measurement errors. The sequence λ1, . . . , λl is then taking equally-
spaced values over the interval [λ1, 3 + λ1] with l = 50.
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Table 1
The average ISEs for the case of heteroscedastic Gaussian errors in the simulation study.

Error True dista Sample size ISE
Fourier SIMEX Naive F̂X (x)

σU ∼ U(0.4, 0.6) Normal 50 0.0119 0.0127 0.0151 0.0095
100 0.0056 0.0058 0.0086 0.0045
500 0.0018 0.0016 0.0043 0.0010

Mixture 50 0.0124 0.0119 0.0215 0.0103
100 0.0078 0.0074 0.0171 0.0061
500 0.0032 0.0031 0.0091 0.0014

Gamma 50 0.0184 0.0157 0.0282 0.0112
100 0.0107 0.0090 0.0218 0.0057
500 0.0039 0.0041 0.0158 0.0016

σU ∼ U(0.8, 1) Normal 50 0.0241 0.0228 0.0291 0.0091
100 0.0165 0.0138 0.0257 0.0044
500 0.0073 0.0059 0.0166 0.0011

Mixture 50 0.0252 0.0218 0.0316 0.0102
100 0.0171 0.0147 0.0286 0.0059
500 0.0089 0.0069 0.0197 0.0018

Gamma 50 0.0262 0.0230 0.0395 0.0109
100 0.0193 0.0187 0.0303 0.0062
500 0.0097 0.0072 0.0211 0.0017

a Normal = N(0, 1); Mixture = 0.5N(−3, 1) + 0.5N(3, 1); Gamma = Γ (2, 1).

3.2. Finite sample performance

We now investigate the finite sample performances of the Fourier-type estimator and the SIMEX estimator via a
simulation study. Our study involves three types of target distributions: (1) X ∼ N(0, 1), (2) X ∼ 0.5N(−3, 1)+0.5N(3, 1),
and (3) X ∼ Γ (2, 1). From each of these distributions, 500 samples of size n = 50, 100, and 500 are generated, each
of which is then contaminated by heteroscedastic errors. The measurement errors are generated from N(0, σ 2

j ), where σj
(j = 1, . . . , n) are generated from U(a, b) and (a, b) are chosen to be (0.4, 0.6), (0.8, 1), respectively.

To assess the quality of the smooth distribution function estimators, we use the integrated squared error (ISE) criterion:

ISE(F̂(x)) =
�

{F̂(x) − F(x)}2dx.

We compare four estimators in the study: the Fourier-type estimator; the SIMEX estimator; the naive estimator, i.e. the
smooth distribution estimator of Y where measurement errors are ignored; and the smooth distribution estimator from the
uncontaminated sample X .

Table 1 summarizes the results of the average of the 500 ISEs for different estimators under different simulation
conditions. The simulation results show that both the Fourier-type estimator and the SIMEX estimator performmuch better
than the naive estimator in terms of the ISE criterion. The ISEs for the Fourier-type method and the ISEs for the SIMEX
method become smaller and closer to the ISEs from the uncontaminated sample when sample sizes become larger. We also
note that the ISEs are larger at the case of σU ∼ U(0.8, 1) than those at the case of σU ∼ U(0.4, 0.6) under the same
simulation conditions. This is due to the level of difficulty of deconvolution. Comparing the Fourier method and the SIMEX
method, we find that SIMEX estimator performs better than the Fourier method when the sample sizes are small and error
variances are large. They become very close as sample size is sufficiently large. This is not surprising because the converge
rate is slow for the Fourier method while the SIMEX method is fast when the polynomial extrapolant is accurate.

Fig. 1 allows us to display and compare estimated curves visually. In the upper plot, the true distribution is standard
normal, N(0, 1). The measurement errors are generated from N(0, σ 2

j ) and σj ∼ U(0.4, 0.6), j = 1, . . . , nwith sample size
n = 500. The solid line is the smooth distribution estimator from X; the dashed line is the SIMEX estimator; the dotted line
is the Fourier estimator; and the dot-dashed line is the naive estimator. Both the Fourier estimator and the SIMEX estimator
give very close results. They recover the true distribution accurately from the sample Y , while the naive estimator is far from
the true distribution functions. In the lower plot, the true distribution is a normal mixture 0.5N(−3, 1) + 0.5N(3, 1). The
measurement errors are generated from N(0, σ 2

j ) and θi ∼ U(0.8, 1), j = 1, . . . , nwith sample size n = 500. Despite of the
complexity of the true distribution and measurement errors, we see that both the Fourier method and the SIMEX method
perform well in recovering the true distribution function.

To investigate the performance of the estimated asymptotic confidence bands with the SIMEXmethod derived in the last
section, we compare them with the nonparametric bootstrap confidence bands and the estimated confidence bands from
the uncontaminated sample X . Fig. 2 shows a simulated example of the SIMEX estimate and three different confidence bands
of the distribution function F(x). The true distribution is a normal mixture 0.5N(−3, 1) + 0.5N(3, 1) and the measurement
errors are generated from N(0, σ 2

j ) and σj ∼ U(0.8, 0.9), j = 1, . . . , n with sample size n = 500. The solid lines are the
SIMEX estimate and its 95% associated asymptotic confidence bands from contaminated sample Y . The dashed lines are the
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Fig. 1. Distribution estimation for data contaminated with heteroscedastic errors. In the upper plot, the true distribution is standard normal, N(0, 1). The
measurement errors are from N(0, σ 2

j ) and σj ∼ U(0.4, 0.6), j = 1, . . . , n with sample size n = 500. In the lower plot, the true distribution is a normal
mixture 0.5N(−3, 1) + 0.5N(3, 1). The measurement errors are from N(0, σ 2

j ) and σj ∼ U(0.8, 1), j = 1, . . . , nwith sample size n = 500. Solid line – the
smooth distribution estimator from X; dashed line – the SIMEX estimator; dotted line – the Fourier estimator; dot-dashed line – the naive estimator.
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Fig. 2. The SIMEX estimator and its associated 95% confidence bands of the distribution function; the true distribution is normal mixture 0.5N(−3, 1) +
0.5N(3, 1). The measurement errors are from N(0, σ 2

j ) and σj ∼ U(0.8, 0.9), i = 1, . . . , nwith sample size n = 500. Solid line – the SIMEX estimator and
its associated asymptotic confidence bands; dashed line – the nonparametric bootstrap confidence bands; dotted line – the estimated confidence bands
from uncontaminated sample X .

nonparametric bootstrap confidence bands from Y . The number of bootstrap replicates is 1000. The dotted lines are the
estimated confidence bands from the uncontaminated sample X . The estimated asymptotic confidence bands are nearly
identical with the nonparametric bootstrap confidence bands and are very close to the estimated confidence bands from
uncontaminated sample except in the tail areas. The asymptotic estimates of confidence bands, hence, are recommended
due to their simplicity and computational easiness.
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Fig. 3. An example of pressure intensity data at the seating interface for one subject; each pressure intensity at the seating area corresponds to a color-scale
rectangular segment in the image. The color bar indicates the mapping from intensity values to colors.(For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

4. A real data application

Spinal cord injury (SCI) is damage to the spinal cord often due to traumatic accident, resulting in upper and lower motor
neuron lesions. It typically leads to paralysis and loss of sensation in parts of the body controlled through the spinal
cord below the level where the injury occurred. All individuals with SCI, and particularly those with complete lesions,
are considered to be at high risk of pressure ulcer development throughout their lifetime. Pressure ulcers are areas of
damaged skin and tissue that develop when sustained pressure occurs. Traditionally, techniques to reduce pressure ulcer
incidence have focused on reducing extrinsic risk factors. These techniques include providing cushions to improve pressure
distribution. Another approach is educating individuals on the importance of regular pressure relief procedures. Neuro-
muscular electrical stimulation (NMES) is the application of electrical stimuli to a group of muscles, which is a new clinic tool
for pressure ulcers to produce beneficial changes at the user/support system interface by altering the intrinsic characteristics
of the user’s paralyzed tissue itself (Bogie et al., 2006, 2008).

The primary goal of the NMES study at Cleveland FES center was to investigate the distribution of pressure intensities
for each patient under different clinical conditions such as before and after NMES treatment. Pressure intensity data at
the seating interface for each patient were recorded by using the Tekscan advanced clinseat pressure mapping system
(Tekscan, Inc.). The seating interface was divided as a 48× 42 matrix. The pressure intensity of each element was measured
simultaneously. Fig. 3 displays an example of pressure intensity data in the NMES study. Pressure intensities at the seating
area for one subject correspond to color-scale rectangular segments in the image. The color bar indicates the mapping from
data values to colors. However, the outcomes of pressure intensities are subject tomeasurement errors.Measurementswere
taken at several different times for a patient, resulting in replicatemeasurements of pressure intensitymaps. It is reasonable
to assume that the observable intensities are contaminated with heteroscedastic Gaussian errors at the seating area. From
the replicatemeasurement data, we are able to estimate the heteroscedastic variances ofmeasurement errors for each active
location. Hence, the fundamental statistical question is how to estimate the unobserved distribution of pressure intensities
from the data contaminated with errors. In this example, our pressure data contain total 1518 activated observations. The
pressure intensities with measurement errors have mean 42.99 and standard deviation 16.73. The range of the observed
intensities is from 11.0 to 120.0. The heteroscedastic standard deviations of measurement errors vary from 6.32 to 8.01.

We conduct the analysis using both the Fourier-type and the SIMEX methods for the data from the NMES study. Fig. 4
displays the smooth distribution estimation of pressure intensities in the single case study. The solid line is the estimated
distribution function by the SIMEXmethod and the dotted line is the estimate by the Fourier-typemethod, while the dashed
line is the estimated distribution function by the naive method where measurement errors are ignored. The recovered
function shows asymmetric features. Both the Fourier-type estimator and the SIMEX estimator obtain coincident results
and there is only a slight difference at the left tails. The curve for the naive estimator does not fall within the confidence
region of the SIMEX estimator. The example demonstrates that correcting themeasurement errors is critical in the statistical
analysis. After recovering the distribution function, we will be able to make further statistical inferences, such as comparing
two recovered distribution functions under different clinical treatments.
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Fig. 4. Smooth distribution estimation of pressure intensities in the NMES study. Three estimators are considered here: the SIMEX estimator (solid line);
the Fourier-type estimator (dotted line); the Naive estimator, i.e. ignoring the measurement errors (dashed line). The gray region is the 95% confidence
region of the SIMEX estimator.

5. Discussion

We studied two bias-correction methods to estimate smooth distribution function for the data contaminated with
heteroscedastic errors. The Fourier-typemethodwas generalized from the conventional deconvolution kernel method (Hall
and Lahiri, 2008), which can be applied to any arbitrary error distributions. The SIMEX method, extending the Stefanski
and Bay’s (1996) work, was easy to be implemented and computationally fast due to the fact that the simulation step was
bypassed. As shown in the simulation results, both methods allowed us to recover accurately the true distribution function
from a contaminated sample when the sample size was large. However, the SIMEXmethod worked better than the Fourier-
type method when sample size was small and the variances of measurement errors were large. The asymptotic variance of
the SIMEX estimator was obtained and the simulation showed that the native estimate of the asymptotic confidence bands
performed very well. Thus, applying the SIMEX method in real applications would be attractive.

We addressed in Section 2 that the success of the SIMEX method depended on the fact that the expectation of Ĝ∗(x, λ)
waswell approximated by a quadratic function of λ for a small 1

n

�n
j=1 σ 4

j . How large should the error level be for the SIMEX
method to be feasible? With a moderate sample size, our simulations suggested that max(σj) < 1 could work adequately
well for the three special cases considered here. For other cases, more simulations and study would be needed in order to
answer the above question.

The SIMEX method we discussed only dealt with the case of the Gaussian errors, while the Fourier-type method could
work with a large classes of errors including both super-smoothed errors and ordinary-smoothed errors as defined by Fan
(1991). Indeed, the SIMEX method could also be applied to the case of exponential errors. Sometimes, measurement errors
only could be positive in medical applications. An exponential distribution, as a non-zero mean, skewed distribution, was
a common assumption in those studies (Ballico, 2001; Savin, 2000). We noticed that, however, the SIMEX estimator in the
case of exponential errors was not asymptotically unbiased even if the polynomial extrapolant was exact. A natural ideawas
to apply an extra smoothing step (i.e. smoothing splines) on F̂X,SIMEX(x) to reduce the bias in the estimation. Our extended
simulation study showed that the extra smoothing step made the SIMEX estimator for exponential errors surprisingly well
to recover the true distribution.

As one of reviewers pointed out, it would be interesting to compare the performances of our estimators with
(homoscedastic) estimators that heteroscedastic measurement error variances were replaced by a constant measurement
error variance (the average of heteroscedastic variances). Our preliminary simulation showed that the degree of variation of
heteroscedastic measurement error variances affected the estimators using the constant variance. A more comprehensive
study of the model misspecification problem for both density and distribution estimation could be done in our future
research.

The research of the confidence bands for the Fourier-type method remained as an open problem. Bissantz et al.’s (2007)
nonparametric confidence intervals in deconvolution density estimation was relevant where they only focused on the
homoscedastic and ordinary-smoothed errors.
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Appendix

Proof of Theorem 1. Under the regularity conditions (1)–(4), for x0 ∈ (−∞, ∞) with specifically chosen sequence of
numbersMn → ∞ and bandwidth hn → 0, the bias of F̂n,Fourier(x0) is

Bias[F̂n,Fourier(x0)] = E[F̂n,Fourier(x0)] − F(x0)

=
� x0

−Mn

E[f̂ (x)]dx − f (x0)

=
� x0

−Mn

� ∞

−∞
f (x − y)

1
hn

K
�

y
hn

�
dydx − F(x0)

=
� ∞

−∞

1
hn

[F(x0 − y) − F(−Mn − y)]K
�

y
hn

�
dy − F(x0).

The norm of the bias is then
���Bias[F̂n,Fourier(x0)]

��� ≤
����

� ∞

−∞

1
hn

F(x0 − y)K
�

y
hn

�
dy − F(x0)

���� +
� ∞

−∞
F(−Mn − hny)K(y)dy.

It is uniformly bounded from above by

O(hm+α+1
n ) + O(F(−Mn(1 − hn))) + O(M−m−1

n ).

On the other hand, the variance of F̂n,Fourier(x0) is

Var[F̂n,Fourier(x0)] =
n�

j=1

1
(2π)2

Var
�� x0

−Mn

� ∞

−∞
e−itxφK (t · hn)eitYjψj(t)dtdx

�

≤ (Mn + |x0|)
n�

j=1

1
(2π)2

� ∞

−∞
|φK (t · hn)|2|ψj(t)|2dt

= Mn + |x0|
4π2

� ∞

−∞
|φK (t · hn)|2

� n�

k=1

|φUk(t)|2
�−1

dt

= Mn + |x0|
4π2

� 1/hn

−1/hn
|φK (t · hn)|2

� n�

k=1

|φUk(t)|2
�−1

dt

= Mn + |x0|
2π2

� 1/hn

0
|φK (t · hn)|2

� n�

k=1

|φUk(t)|2
�−1

dt

= Mn + |x0|
2π2

� 1

0
|φK (s)|2

� n�

k=1

|φUk(s/hn)|2
�−1

h−1
n ds,

which is uniformly bounded from above by

O



Mn ·
�

hn

n�

k=1

|φUk(1/hn)|2
�−1



 .

Thus, the conclusion follows.

Proof of Proposition 1. Under the conditions (a)–(c),

E
�
Ĝ∗(x, λ)

�
= 1

n

n�

j=1

E
�
Φ

�
x − Yj

σjλ1/2

��
= 1

n

n�

j=1

E
�
Φ

�
x − Xj − σjZj

σjλ1/2

��

= 1
n

n�

j=1

�� �
Φ

�
x − u − σjz

σjλ1/2

��
f (u)φ(z)dudz

= 1
n

n�

j=1

� �
−

�
Φ(v)dF(x − σjλ

1/2v − σjz)
�

φ(z)dz
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= 1
n

n�

j=1

��
F(x − σjλ

1/2v − σjz)φ(v)φ(z)dvdz

= 1
n

n�

j=1

E
�
F(x − (1 + λ)1/2σjZ)

�

where Z is a standard normal random variable. By Lebesgue dominated convergence theorem, limλ→−1 E
�
Ĝ∗(x, λ)

�
= F(x).

Using Taylor expansion, if max(σ 4
j ) is small, the above expectation can be written as

E
�
Ĝ∗(x, λ)

�
= F(x) + 1

2n
F ��(x)(λ + 1)

n�

j=1

σ 2
j + 3

4!nF
(4)(x)(λ + 1)2

n�

j=1

σ 4
j + o

�
1
n

n�

j=1

σ 4
j

�

. (8)

Hence the expectation of Ĝ∗(x, λ) is well approximated by a quadratic function of λ at a given xwith the approximation
error o

� 1
n

�n
j=1 σ 4

j
�
. i.e. E[Ĝ∗(x, λ)] ≈ β0 + β1λ + β2λ

2.
Therefore,

E
�
F̂(x, λ)

�
= E

�
β̂0 − β̂1 + β̂2

�
= lim

λ→−1
E

�
β̂0 − β̂1λ + β̂2λ

2
�

≈ lim
λ→−1

E
�
Ĝ∗(x, λ)

�
= F(x).

By analogous argument as above, the variance of Ĝ∗(x, λ) is

Var(Ĝ∗(t, λ)) = 1
n2

n�

j=1

Var
�

Φ

�
x − Yj

λ1/2σj

��

= 1
n2

n�

j=1

�
E{2Φ(V )F [x − (1 + λ)1/2σjZ]} − {E[F(x − (1 + λ)1/2σjZ)]}2

�

where V is a standard normal random variable,

Z = V + λ1/2W
(1 + λ)1/2

,

which has standard normal distribution.W is a standard normal random variable, independent of V .
By Lebesgue dominated convergence theorem,

lim
λ→−1

Var
�
Ĝ∗(x, λ)

�
= F(x)(1 − F(x))/n,

thus, it can then be estimated by F̂X,SIMEX(x)(1 − F̂X,SIMEX(x))/n. The proof is complete.
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