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Abstract

Gene regulatory networks refer to the interactions that occur among genes and other cellular
products. The topology of these networks can be inferred from measurements of changes in gene
expression over time. However, because the measurement device (i.e., microarrays) typically
yields information on thousands of genes over few biological replicates, these systems are quite
difficult to elucidate. An approach with proven effectiveness for inferring networks is the Dynamic
Bayesian Network. We have developed an iterative empirical Bayesian procedure with a Kalman
filter that estimates the posterior distributions of network parameters. We compare our method
to similar existing methods on simulated data and real microarray time series data. We find that
the proposed method performs comparably on both model-based and data-based simulations in
considerably less computational time. The R and C code used to implement the proposed method
are publicly available in the R package ebdbNet.
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1 Introduction

A gene regulatory network is loosely defined as a set of gdrasriteract with
one another through other genes, transcription factors, pgotein products.
Because these interactions contribute to the regulatigeé transcription and
translation, the structure of gene regulatory networkggpém important role in
cell behavior and structure. Structurally, these genelatgry networks tend
to have several properties in common. First, most genesgtdated just one
step away from their regulator, and long regulatory cassade rare (Alon,
2007). In addition, feedback loops, also known as selflegg processes, are
common motifs in the network structure (Brandman and Me3@08). Finally,
gene networks tend to be sparse; that is, genes are typaditynfluenced by
a limited number of other genes (Leclerc, 2008).

As microarray technology has become increasingly acdesaiid afford-
able, the goal of inferring gene regulatory networks fromperal gene ex-
pression data has received growing interest in the systesttglp community.
Over the past ten years, a variety of techniques have begoged to infer net-
work structure from microarray data, including Booleanwaeks (D’haeseleer
et al., 2000), mutual information networks (Basso et alQ3)0 ordinary dif-
ferential equations (Cao and Zhao, 2008), Graphical Ganddbdels (Schafer
and Strimmer, 2005), and auto-regressive models (OpgemRimd Strimmer,
2007). In addition to these techniques, the seminal workdwphy and Mian
(1999) and Friedman (2000) have motivated a growing bodyarkwledicated
to using Bayesian networks and dynamic Bayesian networldsidtogical net-
work inference (see Husmeier, 2003; Perrin et al., 2003;atwlConzen, 2005).

Linear Gaussian state space models (SSM), a subclass ahdyBayesian
networks, seem to be particularly well-suited for dealinthwime-series gene
expression data, as they incorporate a number of attrafetatares, including:
a) the ability to handle continuous, noisy data, b) the ghbib model the effect
of hidden variables, such as proteins, transcription factr genes not included
on a particular microarray, and c) the use of Markovian dyicarto describe the
fluctuations in gene expression measurements and hiddebbhes over time.
However, because the number of time points and biologiqdicages in mi-
croarray data are typically much smaller than the numbereokg, the classic
n < p paradigm requires some care in the estimation of model peteasiin the
SSM. In addition, choosing the dimension of the state spamins a difficult
statistical problem with ramifications to the applicalilif state space models
in gene regulatory networks.

Recently, several authors have examined the use of state spadels for
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reverse-engineering gene regulatory networks. Perrin. é2@03) applied a
generalized Expectation-Maximization (EM) algorithm lwa parsimony con-
straint on network connections to penalize the model liiaad, but limited the
choice of the hidden state dimensionto 0, 1, or 2. Wu et aD420sed a factor
analysis and Bayesian Information Criterion (BIC) peratian for model selec-
tion. More recently, Bremer and Doerge (2009) used a SSM hwatteKalman
smoothing and maximum likelihood estimation techniquadé¢atify regulated
genes in time-course gene expression data. Beal et al. \260Sidered a SSM
with feedback in a hierarchical Bayesian framework, usivgaational Bayes
procedure to calculate a bound on the marginal likelihooorder to learn the
network structure and the dimensionality of the hiddenestdie hierarchical
nature of this prior structure is particularly appealing,ita structure allows a
shrinkage of the network parameters towards zero, cornepg to the biolog-
ical assumption of network sparsity.

In this paper, we introduce an empirical Bayes estimatiactgdure for a
feedback state space model in a hierarchical Bayesian ¥varkehat is com-
plementary to the method developed by Beal et al. (2005)h Buoadels rely
on an approximation to a full hierarchical Bayesian analylsase model infer-
ence on the posterior distributions of model parameteseaplicitly model the
feedback of gene expression from one time to another. Hawevthis work
we take advantage of the defined prior structure to implemsibtaightforward
estimation of the hyperparameters using an EM-like algorjtand the singular
value decomposition (SVD) of a block-Hankel matrix to detgre the dimen-
sion of the hidden state priori (Bremer, 2006). This significantly reduces the
computation time required for the algorithm to run, as itn@hates the need to
run the algorithm over a wide range of values for the hiddatestimension (as
is the case in the variational Bayes procedure).

2 System and Methods

2.1 Dynamic Bayesian Networks

Bayesian networks (BN) have become a popular tool used &intierence of
gene regulatory networks, due in part to their flexibilitglantuitive interpreta-
tion. BN are formally defined by a graphical structite= {V, £} made up of a
set of vertices and edges, and a family of conditional proitadistributions F’
parameterized by (see Husmeier et al., 2005, for greater detail). Consetyyent
BN fall in the intersection of graph theory and probabilibeory, as they use
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Figure 1: (Left) A network with three nodes and three edgeduding one feed-
back loop for node 3. Due to the presence of this feedback kg network
does not meet the acyclicity constraint of Bayesian netaiofRight) The same
network, unrolled over time as a Dynamic Bayesian network.dBecting ar-
rows with respect to the flow of time, the network shown on #fedan be fully
represented without violating the acyclicity constradéspite the presence of a
feedback loop (similar image shown in Husmeier et al., 2005)

graphical models to represent the conditional probalulisiationships among
a set of random variables.

In the context of gene networks, however, three properfi&\bhave lim-
ited their applicability. First, data is typically discized for BN analysis, which
incurs a loss of information from continuous gene expressi@asurements.
Second, BN must be Directed Acyclic Graphs (DAG), excludmgpossibility
of representing feedback loops in the graphical structtiferd, the existence
of equivalence classes is possible, implying in some césgs<hanging the di-
rection of an arrow in the graph will yield the same factadtima over the joint
probability.

To deal with these limitations, we use a Dynamic Bayesiamigk (DBN),
which essentially unfolds a Bayesian network over time. IDBN, continu-
ous observations may be used without the need for disctietizaurthermore,
because edges are directed with respect to the flow of tireegdixclicity con-
straint can be met without eliminating feedback loops, andaambiguity in the
direction of the arrows can be resolved (see Figure 1).
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Figure 2: A visual representation of the linear feedbactestpace model, with
the observed expression of a set of genes (light blue noddgha unobserved
expression of a set of hidden states (dark blue nodes) atrveooints, 7" = 1
andT = 2, whereA, B, C, andD correspond to the matrices in Equation (1).
The solid arrows, representing the nonzero element®,oforrespond to the
direct gene-gene interactions that make up the gene regyiaetwork.

2.2 State Space Models

A special case of the DBN is the state space model (SSM), efsored to as
a linear dynamical system (LDS). SSM make use of a set of moatis noisy
measurements of observed variables and continuous uneldseidden states.
Under the SSM framework, a pair of linear equations, knowthasstate and
dynamic equations, is used to relate the expression of gertka set of hidden
states from one time point to the next. In general, thesetmmsacan be time-
variant or nonlinear, but in this work we restrict our attentto the linear, time-
invariant model.

2.2.1 Application to Gene Regulatory Networ ks

Consider time-course gene expression data Withenes,K hidden states]’
time points, andr biological replicates. Lek¢, = {41, ..., Typr } @Ndye =
{Ytr1, .-, yurp} represent the expression of the sets of hidden states aed,gen
respectively, in replicate at timet. The state and dynamic equations for the
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SSM are

Xtr = Athl,r + Bytfl,r + Wiy (1)
Yir = C’Xt,r + DYt—l,r + Zgr

or in matrix notation,

............ — Xir T (2)

wherew, ~ MV N(0, I x5 ), Zte ~ MV N(0,diag(v)™!), vis aP-dimensional
vector of gene precisions] is the (K x K) state dynamics matrix3 is the
(K x P) observation-to-state matrix; is the(P x K') observation matrixD

is the(P x P) observation-to-observation matrix= 1,...,7,andr = 1,..., R
(see Figure 2 for a visual representation of this model).

Note that in general, state space models are unidentifebtbe hidden state
can be re-scaled and the matrices of the state and dynanat@ugiadapted ac-
cordingly. This implies that two models can have equivaignte-gene interac-
tions, but different values for the hidden variables. Hogresince the matrices
D andCB + D are sub-identifiable (see Rangel et al., 2004), inferencen
structure of the network based on these matrices is posdiblidnis work, we
focus our attention on th® matrix, which corresponds to the structure of the
direct gene-to-gene interaction matrix.

3 Algorithm

We describe in detail the Empirical Bayes Dynamic Bayesiatwdrk (EBDBN)
algorithm, which is composed of three principal parts: mi@géection (choice
of K), estimation of hidden states, and calculation of postetistributions.
The method is implemented in an R and C script, which has besteravail-
able in the R packagebdbNet available on CRAN (R Development Core
Team, 2009).

3.1 Mode Selection

The choice of the optimal dimensidg of the hidden states is a difficult prob-
lem, but crucial to the application of state space modelsetwork structure
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recovery. Commonly used criteria for model selection idel@kaike’s Infor-
mation Criterion (AIC) (Akaike, 1969) and the Bayesian imhation Criterion
(BIC) (Schwarz, 1978). Unfortunately, both of these crgdend to perform
poorly for microarray data due to the large number of obserma and model
parameters. Following Bremer (2006) and Aoki and Havenh@91), we apply
a time series method for model selection, based on the argnaaces between
observations. This technique shortens computation tinmsiderably, as the
algorithm does not run over a wide range of valuesior

Specifically, we construct a block-Hankel matrix of autcamaances of the
time series gene expression observations

A

r, Iy - T,
T I . fm

H=|. ' (3)
f‘m f‘erl T f‘mel

wherel'; = T Zt | ytyt+1 is the autocovariance matrix of the observations
y at time lagi, andm represents the maximum relevant biological time lag be-
tween a gene and its regulators. In other wondss the number of forward time
units that a gene is able to influence the expression of otreesy This value
must be pre-specified depending on the data under consateraut in mi-
croarray experiments this value is typically small € 1, 2, or 3) and depends
on the biological process being studied and the time lag é=twonsecutive
measurements.

In the absence of error, the rank Hf equals the number of hidden states
K needed to characterize the time series (Aoki and Haven@@1t,)1However,
microarray data contain both biological and technical sironeaning the rank
of H is not exactly equal té. As such, after taking the singular value decom-
position (SVD) ofH, there will be K singular values of “large” amplitude (as
discussed below), provided the signal-to-noise ratio (5SRlso large (SNR
> 1).

The SVD forH is H = USV’, whereS is a diagonal matrix with diagonal
entries\, ..., \,,p ordered by size, such that > ... > \,,p. We scale these
singular values by the value of the largest singular valuehghatl > ij >
> mP . Note that if there ar& time points in a particular microarray dataset,
only the firstT" — 1 singular values will be non-zero.

When plotting the values of these scaled singular valuesymieally note a
rapidly decreasing value for the first singular values ciottd by a more mod-
erate decrease; intuitively, the SVD redudégo a small set of singular values
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which still contain a large fraction of the original variéity. Choosing the num-
ber of large singular values results in finding the point aicwhhe inclusion of
an additional singular value does not increase the amowexéined variation
enough to justify its inclusion (this is similar to choositige number of com-
ponents in a Principal Components Analysis). This “optimalue of K could
be chosen by finding the “elbow” of a plot of the singular valsimilar to a
scree plot), by using the Eigenvalue-One criterion of Ka{8¢860), or by fix-
ing a cutoff based on percent of total variance explainedbysingular values.
Here, we use the latter criterion based on the somewhatampitutoff of 90%
of total variance explained, as this cutoff was found to aamly identify the
correct hidden state dimensiéhin simulated data.

3.2 Estimation of Hidden States

When A, B, C, D, andv are known, the Kalman filter and smoother (Kalman,
1960) may be used to estimate the values of the hidden sthtegiven di-
mensionk. The Kalman filter and smoother are essentially a set of saeur
calculations, where the former consists of a predictiongrdhte step, and the
latter smooths the filtered estimations using the full dettésee Bremer, 2006,
for additional details about the use of the Kalman filter ambather in the
context of gene expression data). In the filter step,

X, = AXy 1+ Byi_1 (4)
)A(t = 5\(; + K(Yt — C)A(; — Dyt,]_)

wherey; andx; are the observations and hidden state values, respeciately
time ¢, x; represents the filtered estimatexqf at timet, X, represents tha
priori estimate ofk; based on the previous time step, B, C, andD are as in
(1), andK is the Kalman gain matrix. Then, in the smoothing step,

Rt = %¢ + J(R — ARy — Byt) (5)

wherex! represents the smoothed estimatexpfat timet, J is the Kalman
smoothing matrix, angg, y:, A, and B are as before. In its implementation
in the EBDBN algorithm, the posterior mears B, C, and D are used in the
Kalman filter and smoother equations. Both the Kalman gaitrimn&” and
smoothing matrixJ are calculated using the standard formulas (see Kalman,
1960, for more details).

Published by The Berkeley Electronic Press, 2010 7
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3.3 Calculation of Posterior Distributions

For the estimation of the model parameters, we implemerdahee hierarchical
Bayesian structure as Beal et al. (2005). hgt, b(;), c(;), andd; denote
vectors made up of thgh rows of matricesd, B, C, andD, respectively. Then

agjla ~ N(0, diag(a)™) (6)
b(;)|3 ~ N(0,diag(3)™")
e, vi ~ N(0,v; ' diag(y)™")
d;)|6, v; ~ N(O, v; 'diag(6)™1)

wherea = {ay, ....,ax}, B = {01, ., 0}, v = {71, } 0 = {01,...,0p},
v; IS thesth component of vectov, j = 1,..., K andi = 1,..., P. Thus, we
have a set of parametefs= {A, B,C, D,v} and a set of hyperparameters
v =A{a, 3,7, 0} describing the a priori precisions of the parameter set.
Because the SSMis in the exponential family, the EM algaori(eee Demp-
ster et al., 1977; Bilmes, 1997) can be used to find a poimnami@/? of the
hyperparameterg, conditioned on the current estimatesf the hidden states.
The posterior means of, B, C, andD, given the point estimata&6 can subse-
qguently be calculated.

3.3.1 Implementation in EBDBN

In implementing the EBDBN algorithm to estimate we apply the EM algo-
rithm to stabilize the hyperparameter estimates, follolwgdin estimation of
the gene precisiong and a subsequent fine-tuning run of the EM algorithm
(see Figure 3). Because of our unique use of the EM algoriterefer to this
portion of the algorithm as an “EM-like algorithm.” Let theircent values of
the hyperparameters, gene precisions, and hidden state® pe®, andx,
respectively. We proceed as follows:

1. Runthe EM algorithm witlx®), holdingv¥ constant. When convergence
is reached (using stopping criteridyy ), set the hyperparameter estimate
awj(iﬂ)_

2. Calculatet*+1, the innovation precisions:

T
- (L3

r=1 t=1

-1
Yir — CAVXtI'(Z‘) - éytfl,r)2/(RT - 1)) (7)

whereC andD are the posterior means 6fand D, giveny (1) andx®

http://www.bepress.com/sagmb/vol9/iss1/art9 8
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ChooseK, EM Posterior Kalman Verify
initialize algorithm means of filter to global
x andy to updatey A B, C D updatex convergence

.............................................................................

[ Final network based on posterlor distributiorDoﬁ

Figure 3: Visual representation of EBDBN algorithm. Theaaithm starts by
choosingk’, as described in Section 3.1, and initializing hidden statend hy-
perparameterg. Next, the EM-like algorithm described in Section 3.3 isdise
to updatey, with a sub-loob to stabilize gene precisionand convergence cri-
teriaA; andA, as noted in Section 3.3.1. The posterior means of matrces
B, C, and D are then computed given the current estimateandx. Using
these posterior means, the Kalman filter and smoother destcim Section 3.2
are used to update the hidden states, and global convergépegameters is
checked using criterionh;. If convergence is met, the network topology is in-
ferred based on the posterior distribution/of otherwise, the algorithm returns
to the EM-like algorithm step.

3. Run the EM algorithm to fine-tune the hyperparameter egéswithx ¥,
holding ¥(*1) constant. When convergence is reached (using stopping
criterion A,), set the final hyperparameter estimate @t "

3.4 Empirical Bayes Dynamic Bayesian Networ k method

We discuss the importance of different convergence caiteat are used through-
out the EBDBN algorithm (Figure 3), as well as the procedurechoosing
“significant” edges once the algorithm has terminated.

34.1 ConvergenceCriteria

There are three convergence criteria used in the implermentaf the EBDBN
algorithm. The first twoA; and A,, are used to determine convergence of the
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initial and fine-tuning runs of the EM algorithm in the estiioa of ¢/, as noted

in Section 3.3.1. The thirdy)s, is used to determine global convergence of the
EBDBN algorithm. In general, for parameter values at ifieand (i + 1)
iteration, these convergence criteria are a distance cradtthe form

_ 2D — )2
A e \/ S ()2 (8)

corresponding to the maximum of these distances/fer {«, 3,v,d}. That
is, when all of the valueg) change very little from one iteration to the next
(whether within a run of the EM algorithm or in the larger loaithe full algo-
rithm), approximate convergence is declared and estim&ioonsidered to be
complete.

Unfortunately, determining the convergence propertiethefalgorithm is
difficult since simulating plausible data based on a staéeepnodel with arbi-
trary fixed hyperparameter values (i.e., the precisione@btate space matrices
A, B, C, andD) rather than fixed parameter values (i.e., the state spatte ma
ces themselves) is difficult. Consequently, it is uncleav tascertain whether
convergence can always be attained. Preliminary, smsdlgle simulations in-
dicated relatively good convergence behavior, and thitdshdhosen based on
these early simulationg; = 0.15, Ay, = 0.05, andA3 = 0.05) seemed to
perform well in later simulations.

3.4.2 Edge Selection

Since the posterior distributions of the elementdofthe matrix representing
direct gene-to-gene interactions) are Gaussian, we campuenthe standard
z-statistic for normally distributed variables for eaclyedEdges whose distri-
butions lie far above the zero point are interpreted asainins, while those far
below the zero point as inhibitions. Consequently, to deeuthich edges are
present in the network, we can use the standard threshibfits 2.58, 3.30) for
(95,99, 99.9)% confidences, respectively.

4 Simulations

The importance of simulation studies for methods of netviidgrence has been
stressed by several authors, including Husmeier (2003)efoand Girolami
(2005), and Rice et al. (2005). In the following simulatipwe consider a wide

http://www.bepress.com/sagmb/vol9/iss1/art9 10
DOI: 10.2202/1544-6115.1513



Rau et al.: An Empirical Bayesian Method for Estimating Biological Networks

range of comparison criteria, including the Area Under theve (AUC) of

the Receiver Operating Characteristic (ROC) curve (AUCR@ sensitivity,
specificity, and positive predictive value at a given thoddhand the compu-
tational time. Network inference methods that perform vesllone of these
criteria often underperform in others (Wessels et al., 206dnsequently, we
consider a more global perspective on performance in om#rdaroughly un-
derstand the advantages and limitations of each method.

Further, we compare the performance of several similar ogkstton sim-
ulated data. In these simulations, the EBDBN method oudlimeSection 3
is compared to two other pre-established methods developeder gene net-
works from temporal gene expression data: the VariatiorsgleB State Space
Model (VBSSM) of Beal et al. (2005) and the Vector Auto-Resgiee model
(VAR) of Opgen-Rhein and Strimmer (2007). The former in@ygtes hidden
states in a state space model under a Bayesian framewollk, tilatter uses
an auto-regressive model without hidden states. In aduitAee also consider
the EBDBN method where no hidden states are estimated, ettEBDBN(-
); this amounts to a simple auto-regressive model (simdghé VAR) where
D is estimated with the EM-like algorithm of Section 3.3, aralkKalman fil-
ter/smoother step is applied. We refer to the EBDBN methal hidden states
incorporated as EBDBN(x) in general, and EBDBN(= k) for a particular
hidden state dimensidn

For these simulations, let TP denote the number of trueipesijtFP repre-
sent the number of false positives, and FN and TN denote thiauof false
and true negatives, respectively. We define the followingétcriteria as fol-
lows: a) Sensitivity = TP/(TP + FN), b) Specificity = TN/(TN +Pl;, and c)
Positive Predictive Value (Precision) = TP/(TP + FP).

4.1 Mode-Based Smulations

We first simulate gene expression data based on an autesegresodel (which

is the same model for all of the methods under consideratitvijle this model
undoubtedly oversimplifies the dynamics of real microadata, it is a useful
starting point that allows for straightforward simulatieith a known network
structure.

To simulate data, we choode = 53 genes, and vary both the number of

replicatesk and the number of time poinisto be{5, 10, 15}. The P x P matrix

D, representing the direct gene-gene interaction matriginmilated such that
10% of its elements follow either &(—1, —0.2) or U(0.2, 1) distribution and
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90% of its elements equal 0. We initialize the gene expresstues at time =

1 to bey; ~ N(0,0.1) and simulate subsequent times 2, ..., T following an
AR(1) model, such thag; ~ N(Dy¢_1,0.1). We then remove the 3 genes with
the most outward connections, denof{gd, y», y3}, from the dataset. This set
of genes play the role of th& = 3 hidden states. The goal in these simulations
is to infer the remaining structure of the gene netwddk,= D \ {y1,¥2,¥3}
using only the 50 genes in the “observed” dgta=y \ {y1,¥2,¥3}-

First, consider the results for the AUCROC, which can berprited as the
average probability that a randomly chosen edge is coyretthracterized as
present or not, assuming any given edgedgsally likelyto be present or not
(Beal et al., 2005). The simulation results are presentdelgare 4. Several
trends are apparent: first, for small datasets (that is, &plicates and time
points), all methods perform poorly. For the EBDBN(x), EBB®@), and VB-
SSM, increasing eitheR, T', or both improves performance; interestingly, for
the VAR method this is true wheR is increased while the inverse holds for in-
creasingl’. Furthermore, the VBSSM outperforms all methods consdikese,
although the margin of difference decreases considerailyafger datasets.
Comparing the EBDBN(x) and EBDBN(-) methods, the resultbaate that the
latter outperforms the former only for data with few timemisi(’ = 5).

To obtain a more complete perspective on the performan¢eahbdels, we
also consider the sensitivity, specificity, and positivedictive value for given
threshold values for the z-score, as well as the computtibme required,
shown in Figure 5. While the EBDBN(x), EBDBN(-), and VBSSM sg¢em to
be comparable in terms of sensitivity and AUC, the VBSSM aA&R Vnethods
perform bestin terms of specificity and positive predictigie. For the model-
based simulations, the VBSSM and VAR are more stringent geextlection,
resulting in a lower rate ofalse positives (although in the case of the VAR,
this also results in a much lower rate tofie positives). The calculation time
for each method is also worth considering. The VBSSM reguabout 12
minutes for algorithm convergence, while for the EBDBNE&BDBN(-), and
VAR this time was about 5 1/2 minutes, 2 seconds, and 1 secespectively.
All simulations were run on a dual-processor Dell PowerEtgg0 (quad-core
2.8 GHz Intel (R) Xeon (TM)) with 12GB RAM, running Red Hat Enprise
Linux 5.3 Server x864.
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Figure 4: AUC of the ROC curve of model-based simulationsnbgnber of
replicates and number of time points simulated in the da@chEow of the
graphical matrix corresponds to the number of replicates (5, 10, 15) and
each column to the number of time point8 € 5, 10, 15), with 25 datasets
simulated per evaluation. Within each individual plot, thethods represented
(from left to right) are as follows: E(x) = EBDBN method withdden states
(dark blue), E(-) = EBDBN method without hidden states (liglue), VB =
Variational Bayes method (green), and VA = VAR method (y&)lo
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Figure 5: Additional comparison criteria for model-basedidations, for data
with R = 10 replicates and” = 10 time points for all methods, using a cutoff
for the z-scores 0f95,99,99.9}% for the EBDBN(x), EBDBN(-), and VB-
SSM. A cutoff of 80% is used for the local false discovery rat¢he VAR
method, as suggested by Opgen-Rhein and Strimmer (2007).

4.2 Data-Based Simulations

One of the challenges of relying on simulations to compdferdint methods for
network inference is that results based on data simulatddrithe same model
as a particular method (as is the case for all the methods @odsideration in
Section 4.1) are undoubtedly over-optimistic. For thiscem it is also important
to consider “realistic” simulations of well-known systerinased on ordinary
differential equations, which more closely approximatd microarray datasets.
One such set of simulations by Zak et al. (2001, 2003) appednes particularly
promising, as it has already been used for this purpose laralesther authors
(including Husmeier, 2003; Beal et al., 2005).

The Zak et al. (2001, 2003) data include 10 genes that irtevile one
another via a set of transcription factor proteins, bourtdroters, and a ligand
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Figure 6: Median AUC of the ROC curve for the EBDBN(x), EBDBN(@nd

VBSSM, by number of replicateB and time points’. The horizontal dotted

line in each graph represents an AUC of 0.5, correspondigrémdom-guess

classifier.

input, organized into regulatory motifs taken from the bgtal literature. A
set ofin silico simulations in Matlab, carried out by integrating the osdin
differential equations describing the model, yields a skeitaf 55 variables over
500 time points. We follow Beal et al. (2005) and use only theawvations for
the 10 genes for network inference (thus leaving 45 varsdde'hidden states”).
We construct datasets of length = {5, 12, 35,50, 75,120} by subsampling
equally spaced time points, and we artificially create oaphs of sizeR =
{1,2,4,8, 16,32} by adding Gaussian noise at each time point to the log-ratios
of the observed gene expression data. The VAR method is oleidied in the
results below, as the small number of genes (10) in the dadabaot allow for
accurate estimation of the local fdr needed for edge selecti

The results of the median AUCROC for the EBDBN(x), EBDBN(@hd
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VBSSM are shown in Figure 6. In these figures, we see that datdaged with
only 5 time points yield poor performance for all methodsemcbnsideration;
this is alleviated by increasing the number of time pointsoagh the improve-
ment seems to plateau at around 50 or 75 time points. Thikdlyldue to the
artificial nature of the time point subsampling; that is, slaene interval of time
is covered by data sampled with 75 and 120 time points, algiteater detail
in the latter case. The benefits of ever-finer sampling areehantually overrun
by the additional noise incurred by the extra data points.

Unsurprisingly, a similar phenomenon is observed with tinaber of repli-
cates, which were also artificially created by adding Gaumsspise. As with
the subsampled time points, the creation of additiondici replicates tends
to add noise to the data without contributing additionabiniation about the
network dynamics. For data with 4 or more replicates, the SBSappears to
outperform the EBDBN, but only for datasets with less thai®&® points; this
relationship is reversed for a larger number of time poirigally, note that
the AUCROC values observed in Figure 6, on the order of 45%08,7are
much lower than those observed in Figure 4, which were onrither @f 60% to
98%. This is undoubtedly due to the more realistic, and thoernomplicated,
biological relationships simulated here.

We also consider the performance of the EBDBN and VBSSM on-add
tional comparison criteria, shown in Figure 7. Here, the BBIDx), EBDBN(-),
and VBSSM perform comparably in terms of sensitivity andippgspredictive
value, while the EBDBN(x) and EBDBN(-) outperform the VBSSivterms of
specificity and AUC of the ROC curve. There is also a conshlilerdifference
in computational time, as the VBSSM required about 26 mmuate average
to converge, while the EBDBN(x) and EBDBN(-) required onllitde over 1
minute and 1 second, respectively.

5 Application

We compare the results of the EBDBN(x), EBDBN(-), VBSSM, &4k meth-
ods using real microarray data. Although several timeesariicroarray datasets
are publicly available in organisms suchSeccharomyces cerevisiéieee et al.,
2004), few microarray experiments include the necessasl lef replication
and time points to effectively infer network structure. Oswception arises
from a study of T-cell activation, with gene expression nieesd on 58 genes
over 10 time points on 44 replicates (see Rangel et al., 20BBnes were
pre-selected for modulation following the activation, mieg that genes with
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Figure 7: Additional comparison criteria of data-baseduwations, for data
with R = 32 replicates and” = 50 time points, using a cutoff for the z-scores
of {95, 99, 99.9}% for the EBDBN(x), EBDBN(-), and VBSSM.

weak expression or low reproducibility across replicatesememoved from
the dataset. The data were log-transformed and quantitealimed in a pre-
processing step. The expression measurements and gemptiwss may be
found in the R packagéeneNet of Schafer et al. (2006) on CRAN (R Devel-
opment Core Team, 2009).

In previous work, the hidden state dimension was chosen 10 b&® andK
= 14 (Rangel et al., 2004; Beal et al., 2005). Recall that thgimum number
of nonzero singular values taken from the decompositiormeftiock-Hankel
matrixH isT — 1, or in this case, 9. After applying the decompositiohfthe
hidden state dimension is chosen to/Be= 4. We apply the EBDBNEK = 4)
and EBDBN(-) methods for 10 different sets of initial valdes hyperparame-
ters, hidden states, and gene variances. A 99.9% cutofed as a threshold
for the z-scores of the edges, and only edges identified in &08te runs are
retained for the final network structure. For the VBSSM andRwethods,
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Figure 8: Four-way Venn Diagram of total edges identified sy EBDBN(X),
EBDBN(-), VBSSM, and VAR.

Table 1: Positive, negative, and total edges found in Tetaih.
Method  # Positive # Negative Total Edges (%)

EBDBN(x) 435 109 544 (16.2)

EBDBN(-) 338 214 552 (16.4)

VBSSM 233 122 355 (10.6)
VAR 9 6 15 (0.4)

cutoff values of 99.9% for the z-scores and 80% for the lodatbrrection are
used, respectively.

The effect of each gene-gene interaction is determined &\sign of the
significant elements of th® matrix from Equation (1). That is, activatory rela-
tionships are represented by positive element3,aind inhibitory relationships
by negative elements. The number of edges (positive, negaind total) found
by each method is displayed in Table 1. The overlap of sigmtiedges is dis-
played in a four-way Venn diagram in Figure 8. Only 13 edgessatected by
all four methods under consideration, largely due to thellsmenber (15) of
edges identified by the VAR method. There are 93 edges idshtily at least
three of the methods, and 371 by at least two of the methoder&edges are
identified by only a single method; there are 223, 210 and 1185 &entified
edges for the EBDBN{ = 4), EBDBN(-), and VBSSM, respectively.

The sub-network identified by both the EBDBN(= 4) and VBSSM is
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Figure 9: Edges inferred by both the EBDBN (= 4) and VBSSM methods for
the T-cell activation data (Rangel et al., 2004). Nodesasgmt genes, blue solid
lines inhibitory regulations, red solid lines activatoegulations, and black dot-
ted lines edges with ambiguous regulation. Yellow nodeg ffise or more reg-
ulatory interactions with other genes, indicating impoti@genes in the network

topology.
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Table 2: Description of important genes in network topology

Gene # Description
7 CD69 antigen (p60, early T-cell activation antigen)
17 Survival of motor neuron 1, telomeric
21 Cyclin C
28 Early growth response 1
38 Caspase 4, apoptosis-related cysteine protease
41 GATA-binding protein 3
46 Interleukin 2 receptor, gamma (severe combined immuiwelecy)
48 Myeloperoxidase

made up of 120 edges involving 51 genes. Of these edges, B&sesy inhi-

bitions, 84 represent activations, and 10 have an ambigregugatory effect
(i.e., the two methods do not agree with respect to the typetefaction). The
structure of this “consensus network” is visualized usimg software applica-
tion Cytoscape (Shannon et al., 2003), shown in Figure 9htKjgnes (7, 17,
21, 28, 38, 41, 46, 48) have a high degree of connectivity witter genes,
with 5 or more outward-directed edges. These genes appéarkey players
in the network and could potentially be avenues of interesstudture research
(descriptions of these genes can be found in Table 2).

In work by Rangel et al. (2004), the gene FYB (gene 1) is founddcupy
a crucial position in the graph, since it is involved in thghest number of
outward connections. In the consensus network found aladtreugh it does
not figure as prominently, FYB is present and directly coteeto three other
genes (genes 17, 33, and 38). An interleukin receptor gér2RY (gene 7),
is one of the most connected genes, with nine outward coiomscand one
feedback loop with itself.

A portion of the sub-network found by Beal et al. (2005) reerding the
interaction between two proto-oncogenes of the Jun préaenily, Jun-B (gene
54) and Jun-D (gene 11), is also found in this consensus net{see Figure
10). This is of interest, as Jun-B and Jun-D are thought tatnegy regulate
cell growth and inhibit programmed cell death, and thus ar#he center of
mechanisms controlling apoptosis and proliferation. Bsih-networks seem
to support this hypothesis, as Jun-B appears to regulategbpototic gene
Caspase-4 (gene 38), and at least indirectly, Caspasa8 (. Despite their
differences, both sub-networks support a central pathwayhich Jun-B ac-
tivates Caspase-4, which in turn activates Jun-D. Thesdtsesgree with the
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Figure 10: Subnetwork found representing the interactetwben genes in the
Jun protein family and genes involved in programmed celtidgdeft) Subnet-
work proposed in Beal et al. (2005). (Right) Subnetwork pisga by consensus
of VBSSM and EBDBNK = 4).

Caspase—4

current literature, and suggest an important role for Jun-B-cell activation
and tumor promotion (see Gurzov et al., 2008).

6 Discussion

We have presented an algorithm to infer the structure of gegelatory net-
works using an empirical Bayes estimation procedure fohgEerparameters
of a linear feedback state-space model. This work servescashglement to
the VBSSM of Beal et al. (2005), with the advantage of a shioyward, EM-
like estimation procedure and improved computational dp€ehe proposed
method performs comparably to previously published mettedmodel-based
data when a minimum number of replicates 10) and time points~ 10) are
measured.

Inferring the structure of gene regulatory networks is annsically difficult
task, given the complexity of network topology, the smalinier of replicates
and time points available in real data, and the noise intphamicroarray ex-
pression measurements. As a necessary simplification,rdpoged method
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deals solely with first-order linear dynamics in the staté ahservation equa-
tions of the state-space model. Although this is a good aqmation to the
general nature of complicated biological systems, morstegamodels of gene
regulatory interactions would undoubtedly capture compdationships, such
as nonlinear or higher-order interactions, more effettivim addition, the ap-
plicability of state space models to the task of networkrefee remains uncer-
tain, particularly due to the necessity of determining titelan state dimension.
In this work, we used the singular value decomposition oflileek-Hankel
matrix for model selection. We are aware that the proceduaslihoc and are
working on an improvement as a point of future research.

We have stressed the importance of using simulation sttmliesmpare the
performance of different network inference methods, betdrrent work illus-
trates some of the challenges inherent in doing so in thisegbnModel-based
simulations, though an over-simplified version of the caewjties of gene reg-
ulatory networks, offer greater flexibility in the choice étwork parameters
(e.g., number of genes, number of hidden states, percenfagpgges present,
amount of noise, etc.). Although the more realistic datsedasimulations better
represent the dynamics of gene regulatory networks, thesepit much smaller
datasets (only 10 genes and 1 replicate) than would typitalused for net-
work inference. As such, the development of a set of stohdshe-course
benchmark datasets for comparisons among methods is asaeceasidition to
the growing collection of network inference techniques.

It is somewhat surprising that although the EBDBN and VBS®semble
each other quite closely, over 60% of the interactions ifledtby each one
(64% for the former, 68% for the latter) are not identified bg pther in the
real microarray data considered here. This seems to highiige of the major
stumbling blocks for network inference methods: diffener@thods, even those
very similar to one another, often yield very different féstdor the same data.
For this reason, we introduce the concept of a “consenswsgonit, that is,
one in which several different network inference methodsiaragreement on
the significance of a particular edge. Although somewhatthndox from a
frequentist statistical point of view, this type of comprism(also referred to as
“model averaging”) may be more meaningful than applyinggle method for
network inference, at least until microarray data can beilidya collected for
a large number of replicates and time points. The furtheeldgment of such
“consensus networks” is a focus of our current research.
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