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Abstract

Gene regulatory networks refer to the interactions that occur among genes and other cellular
products. The topology of these networks can be inferred from measurements of changes in gene
expression over time. However, because the measurement device (i.e., microarrays) typically
yields information on thousands of genes over few biological replicates, these systems are quite
difficult to elucidate. An approach with proven effectiveness for inferring networks is the Dynamic
Bayesian Network. We have developed an iterative empirical Bayesian procedure with a Kalman
filter that estimates the posterior distributions of network parameters. We compare our method
to similar existing methods on simulated data and real microarray time series data. We find that
the proposed method performs comparably on both model-based and data-based simulations in
considerably less computational time. The R and C code used to implement the proposed method
are publicly available in the R package ebdbNet.
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1 Introduction

A gene regulatory network is loosely defined as a set of genes that interact with
one another through other genes, transcription factors, and protein products.
Because these interactions contribute to the regulation ofgene transcription and
translation, the structure of gene regulatory networks plays an important role in
cell behavior and structure. Structurally, these gene regulatory networks tend
to have several properties in common. First, most genes are regulated just one
step away from their regulator, and long regulatory cascades are rare (Alon,
2007). In addition, feedback loops, also known as self-regulating processes, are
common motifs in the network structure (Brandman and Meyer,2008). Finally,
gene networks tend to be sparse; that is, genes are typicallyonly influenced by
a limited number of other genes (Leclerc, 2008).

As microarray technology has become increasingly accessible and afford-
able, the goal of inferring gene regulatory networks from temporal gene ex-
pression data has received growing interest in the systems biology community.
Over the past ten years, a variety of techniques have been proposed to infer net-
work structure from microarray data, including Boolean networks (D’haeseleer
et al., 2000), mutual information networks (Basso et al., 2005), ordinary dif-
ferential equations (Cao and Zhao, 2008), Graphical Gaussian Models (Schäfer
and Strimmer, 2005), and auto-regressive models (Opgen-Rhein and Strimmer,
2007). In addition to these techniques, the seminal works ofMurphy and Mian
(1999) and Friedman (2000) have motivated a growing body of work dedicated
to using Bayesian networks and dynamic Bayesian networks for biological net-
work inference (see Husmeier, 2003; Perrin et al., 2003; Zouand Conzen, 2005).

Linear Gaussian state space models (SSM), a subclass of dynamic Bayesian
networks, seem to be particularly well-suited for dealing with time-series gene
expression data, as they incorporate a number of attractivefeatures, including:
a) the ability to handle continuous, noisy data, b) the ability to model the effect
of hidden variables, such as proteins, transcription factors, or genes not included
on a particular microarray, and c) the use of Markovian dynamics to describe the
fluctuations in gene expression measurements and hidden variables over time.
However, because the number of time points and biological replicates in mi-
croarray data are typically much smaller than the number of genes, the classic
n� p paradigm requires some care in the estimation of model parameters in the
SSM. In addition, choosing the dimension of the state space remains a difficult
statistical problem with ramifications to the applicability of state space models
in gene regulatory networks.

Recently, several authors have examined the use of state space models for
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reverse-engineering gene regulatory networks. Perrin et al. (2003) applied a
generalized Expectation-Maximization (EM) algorithm with a parsimony con-
straint on network connections to penalize the model likelihood, but limited the
choice of the hidden state dimension to 0, 1, or 2. Wu et al. (2004) used a factor
analysis and Bayesian Information Criterion (BIC) penalization for model selec-
tion. More recently, Bremer and Doerge (2009) used a SSM model with Kalman
smoothing and maximum likelihood estimation techniques toidentify regulated
genes in time-course gene expression data. Beal et al. (2005) considered a SSM
with feedback in a hierarchical Bayesian framework, using aVariational Bayes
procedure to calculate a bound on the marginal likelihood inorder to learn the
network structure and the dimensionality of the hidden state. The hierarchical
nature of this prior structure is particularly appealing, as its structure allows a
shrinkage of the network parameters towards zero, corresponding to the biolog-
ical assumption of network sparsity.

In this paper, we introduce an empirical Bayes estimation procedure for a
feedback state space model in a hierarchical Bayesian framework that is com-
plementary to the method developed by Beal et al. (2005). Both models rely
on an approximation to a full hierarchical Bayesian analysis, base model infer-
ence on the posterior distributions of model parameters, and explicitly model the
feedback of gene expression from one time to another. However, in this work
we take advantage of the defined prior structure to implementa straightforward
estimation of the hyperparameters using an EM-like algorithm, and the singular
value decomposition (SVD) of a block-Hankel matrix to determine the dimen-
sion of the hidden statea priori (Bremer, 2006). This significantly reduces the
computation time required for the algorithm to run, as it eliminates the need to
run the algorithm over a wide range of values for the hidden state dimension (as
is the case in the variational Bayes procedure).

2 System and Methods

2.1 Dynamic Bayesian Networks

Bayesian networks (BN) have become a popular tool used for the inference of
gene regulatory networks, due in part to their flexibility and intuitive interpreta-
tion. BN are formally defined by a graphical structureM = {V,E}made up of a
set of vertices and edges, and a family of conditional probability distributionsF
parameterized byq (see Husmeier et al., 2005, for greater detail). Consequently,
BN fall in the intersection of graph theory and probability theory, as they use
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Figure 1: (Left) A network with three nodes and three edges, including one feed-
back loop for node 3. Due to the presence of this feedback loop, this network
does not meet the acyclicity constraint of Bayesian networks. (Right) The same
network, unrolled over time as a Dynamic Bayesian network. By directing ar-
rows with respect to the flow of time, the network shown on the left can be fully
represented without violating the acyclicity constraint,despite the presence of a
feedback loop (similar image shown in Husmeier et al., 2005).

graphical models to represent the conditional probabilistic relationships among
a set of random variables.

In the context of gene networks, however, three properties of BN have lim-
ited their applicability. First, data is typically discretized for BN analysis, which
incurs a loss of information from continuous gene expression measurements.
Second, BN must be Directed Acyclic Graphs (DAG), excludingthe possibility
of representing feedback loops in the graphical structure.Third, the existence
of equivalence classes is possible, implying in some cases that changing the di-
rection of an arrow in the graph will yield the same factorization over the joint
probability.

To deal with these limitations, we use a Dynamic Bayesian Network (DBN),
which essentially unfolds a Bayesian network over time. In aDBN, continu-
ous observations may be used without the need for discretization. Furthermore,
because edges are directed with respect to the flow of time, the acyclicity con-
straint can be met without eliminating feedback loops, and any ambiguity in the
direction of the arrows can be resolved (see Figure 1).
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Figure 2: A visual representation of the linear feedback state space model, with
the observed expression of a set of genes (light blue nodes) and the unobserved
expression of a set of hidden states (dark blue nodes) at two time points,T = 1
andT = 2, whereA, B, C, andD correspond to the matrices in Equation (1).
The solid arrows, representing the nonzero elements ofD, correspond to the
direct gene-gene interactions that make up the gene regulatory network.

2.2 State Space Models

A special case of the DBN is the state space model (SSM), also referred to as
a linear dynamical system (LDS). SSM make use of a set of continuous noisy
measurements of observed variables and continuous unobserved hidden states.
Under the SSM framework, a pair of linear equations, known asthe state and
dynamic equations, is used to relate the expression of genesand a set of hidden
states from one time point to the next. In general, these equations can be time-
variant or nonlinear, but in this work we restrict our attention to the linear, time-
invariant model.

2.2.1 Application to Gene Regulatory Networks

Consider time-course gene expression data withP genes,K hidden states,T
time points, andR biological replicates. Letxtr = {xtr1, ..., xtrK} andytr =
{ytr1, ..., ytrP} represent the expression of the sets of hidden states and genes,
respectively, in replicater at timet. The state and dynamic equations for the
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SSM are

xtr = Axt−1,r +Byt−1,r + wtr (1)

ytr = Cxt,r +Dyt−1,r + ztr

or in matrix notation,

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(2)

wherewtr ∼ MVN(0, IK×K), ztr ∼ MVN(0, diag(v)−1), v is aP -dimensional
vector of gene precisions,A is the (K × K) state dynamics matrix,B is the
(K × P ) observation-to-state matrix,C is the(P ×K) observation matrix,D
is the(P × P ) observation-to-observation matrix,t = 1, ..., T , andr = 1, ..., R
(see Figure 2 for a visual representation of this model).

Note that in general, state space models are unidentifiable,as the hidden state
can be re-scaled and the matrices of the state and dynamic equations adapted ac-
cordingly. This implies that two models can have equivalentgene-gene interac-
tions, but different values for the hidden variables. However, since the matrices
D andCB + D are sub-identifiable (see Rangel et al., 2004), inference onthe
structure of the network based on these matrices is possible. In this work, we
focus our attention on theD matrix, which corresponds to the structure of the
direct gene-to-gene interaction matrix.

3 Algorithm

We describe in detail the Empirical Bayes Dynamic Bayesian Network (EBDBN)
algorithm, which is composed of three principal parts: model selection (choice
of K), estimation of hidden states, and calculation of posterior distributions.
The method is implemented in an R and C script, which has been made avail-
able in the R packageebdbNet available on CRAN (R Development Core
Team, 2009).

3.1 Model Selection

The choice of the optimal dimensionK of the hidden states is a difficult prob-
lem, but crucial to the application of state space models to network structure
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recovery. Commonly used criteria for model selection include Akaike’s Infor-
mation Criterion (AIC) (Akaike, 1969) and the Bayesian Information Criterion
(BIC) (Schwarz, 1978). Unfortunately, both of these criteria tend to perform
poorly for microarray data due to the large number of observations and model
parameters. Following Bremer (2006) and Aoki and Havenner (1991), we apply
a time series method for model selection, based on the autocovariances between
observations. This technique shortens computation time considerably, as the
algorithm does not run over a wide range of values forK.

Specifically, we construct a block-Hankel matrix of autocovariances of the
time series gene expression observations

H =











Γ̂1 Γ̂2 · · · Γ̂m
Γ̂2 Γ̂3 · · · Γ̂m+1
...

...
. . .

...
Γ̂m Γ̂m+1 · · · Γ̂2m−1











(3)

whereΓ̂i = 1
T

∑T−i
t=1 ytyt+i

′ is the autocovariance matrix of the observations
y at time lagi, andm represents the maximum relevant biological time lag be-
tween a gene and its regulators. In other words,m is the number of forward time
units that a gene is able to influence the expression of other genes. This value
must be pre-specified depending on the data under consideration, but in mi-
croarray experiments this value is typically small (m = 1, 2, or 3) and depends
on the biological process being studied and the time lag between consecutive
measurements.

In the absence of error, the rank ofH equals the number of hidden states
K needed to characterize the time series (Aoki and Havenner, 1991). However,
microarray data contain both biological and technical errors, meaning the rank
of H is not exactly equal toK. As such, after taking the singular value decom-
position (SVD) ofH, there will beK singular values of “large” amplitude (as
discussed below), provided the signal-to-noise ratio (SNR) is also large (SNR
� 1).

The SVD forH is H = USV′, whereS is a diagonal matrix with diagonal
entriesλ1, ..., λmP ordered by size, such thatλ1 > ... > λmP . We scale these
singular values by the value of the largest singular value, such that1 > λ2

λ1

>

... > λmP

λ1

. Note that if there areT time points in a particular microarray dataset,
only the firstT − 1 singular values will be non-zero.

When plotting the values of these scaled singular values, wetypically note a
rapidly decreasing value for the first singular values, followed by a more mod-
erate decrease; intuitively, the SVD reducesH to a small set of singular values
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which still contain a large fraction of the original variability. Choosing the num-
ber of large singular values results in finding the point at which the inclusion of
an additional singular value does not increase the amount ofexplained variation
enough to justify its inclusion (this is similar to choosingthe number of com-
ponents in a Principal Components Analysis). This “optimal” value ofK could
be chosen by finding the “elbow” of a plot of the singular values (similar to a
scree plot), by using the Eigenvalue-One criterion of Kaiser (1960), or by fix-
ing a cutoff based on percent of total variance explained by the singular values.
Here, we use the latter criterion based on the somewhat arbitrary cutoff of 90%
of total variance explained, as this cutoff was found to accurately identify the
correct hidden state dimensionK in simulated data.

3.2 Estimation of Hidden States

WhenA, B, C, D, andv are known, the Kalman filter and smoother (Kalman,
1960) may be used to estimate the values of the hidden states of a given di-
mensionK. The Kalman filter and smoother are essentially a set of recursive
calculations, where the former consists of a prediction andupdate step, and the
latter smooths the filtered estimations using the full dataset (see Bremer, 2006,
for additional details about the use of the Kalman filter and smoother in the
context of gene expression data). In the filter step,

x̂−
t

= Ax̂t−1 +Byt−1 (4)

x̂t = x̂−
t

+K(yt − Cx̂−
t
−Dyt−1)

whereyt andxt are the observations and hidden state values, respectively, at
time t, x̂t represents the filtered estimate ofxt at timet, x̂−

t
represents thea

priori estimate ofxt based on the previous time step,A, B, C, andD are as in
(1), andK is the Kalman gain matrix. Then, in the smoothing step,

x̂T
t

= x̂t + J(x̂T
t+1

−Ax̂t −Byt) (5)

wherex̂T
t

represents the smoothed estimate ofxt at time t, J is the Kalman
smoothing matrix, and̂xt, yt, A, andB are as before. In its implementation
in the EBDBN algorithm, the posterior meanŝA, B̂, Ĉ, andD̂ are used in the
Kalman filter and smoother equations. Both the Kalman gain matrix K and
smoothing matrixJ are calculated using the standard formulas (see Kalman,
1960, for more details).
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3.3 Calculation of Posterior Distributions

For the estimation of the model parameters, we implement thesame hierarchical
Bayesian structure as Beal et al. (2005). Leta(j), b(j), c(j), andd(j) denote
vectors made up of thejth rows of matricesA,B, C, andD, respectively. Then

a(j)|α ∼ N(0, diag(α)−1) (6)

b(j)|β ∼ N(0, diag(β)−1)

c(i)|γ, vi ∼ N(0, v−1
i diag(γ)−1)

d(i)|δ, vi ∼ N(0, v−1
i diag(δ)−1)

whereα = {α1, ..., αK}, β = {β1, ..., βP}, γ = {γ1, ..., γK}, δ = {δ1, ..., δP},
vi is the ith component of vectorv, j = 1, ..., K andi = 1, ..., P . Thus, we
have a set of parametersθ = {A,B,C,D,v} and a set of hyperparameters
ψ = {α, β, γ, δ} describing the a priori precisions of the parameter set.

Because the SSM is in the exponential family, the EM algorithm (see Demp-
ster et al., 1977; Bilmes, 1997) can be used to find a point estimateψ̂ of the
hyperparametersψ, conditioned on the current estimatesx̂ of the hidden states.
The posterior means ofA,B, C, andD, given the point estimateŝψ, can subse-
quently be calculated.

3.3.1 Implementation in EBDBN

In implementing the EBDBN algorithm to estimateψ, we apply the EM algo-
rithm to stabilize the hyperparameter estimates, followedby an estimation of
the gene precisionsv and a subsequent fine-tuning run of the EM algorithm
(see Figure 3). Because of our unique use of the EM algorithm,we refer to this
portion of the algorithm as an “EM-like algorithm.” Let the current values of
the hyperparameters, gene precisions, and hidden states beψ(i), v(i), andx(i),
respectively. We proceed as follows:

1. Run the EM algorithm withx(i), holdingv(i) constant. When convergence
is reached (using stopping criterion∆1), set the hyperparameter estimate
at ψ̃(i+1).

2. Calculatêv(i+1), the innovation precisions:

v̂(i+1) =

(

R
∑

r=1

T
∑

t=1

(ytr − Ĉxtr
(i) − D̂yt−1,r)

2/(RT − 1)

)−1

(7)

whereĈ andD̂ are the posterior means ofC andD, givenψ̃(i+1) andx(i)
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Figure 3: Visual representation of EBDBN algorithm. The algorithm starts by
choosingK, as described in Section 3.1, and initializing hidden statesx and hy-
perparametersψ. Next, the EM-like algorithm described in Section 3.3 is used
to updateψ, with a sub-loob to stabilize gene precisionsv and convergence cri-
teria∆1 and∆2 as noted in Section 3.3.1. The posterior means of matricesA,
B, C, andD are then computed given the current estimatesψ̂ and x̂. Using
these posterior means, the Kalman filter and smoother described in Section 3.2
are used to update the hidden states, and global convergenceof parameters is
checked using criterion∆3. If convergence is met, the network topology is in-
ferred based on the posterior distribution ofD; otherwise, the algorithm returns
to the EM-like algorithm step.

3. Run the EM algorithm to fine-tune the hyperparameter estimates withx(i),
holding v̂(i+1) constant. When convergence is reached (using stopping
criterion∆2), set the final hyperparameter estimate atψ̂(i+1)

3.4 Empirical Bayes Dynamic Bayesian Network method

We discuss the importance of different convergence criteria that are used through-
out the EBDBN algorithm (Figure 3), as well as the procedure for choosing
“significant” edges once the algorithm has terminated.

3.4.1 Convergence Criteria

There are three convergence criteria used in the implementation of the EBDBN
algorithm. The first two,∆1 and∆2, are used to determine convergence of the
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initial and fine-tuning runs of the EM algorithm in the estimation of ψ, as noted
in Section 3.3.1. The third,∆3, is used to determine global convergence of the
EBDBN algorithm. In general, for parameter values at theith and (i + 1)th

iteration, these convergence criteria are a distance metric of the form

D = max
ψ={α,β,γ,δ}

√

∑

(ψ(i+1) − ψ(i))2

∑

(ψ(i))2
(8)

corresponding to the maximum of these distances forψ = {α, β, γ, δ}. That
is, when all of the valuesψ change very little from one iteration to the next
(whether within a run of the EM algorithm or in the larger loopof the full algo-
rithm), approximate convergence is declared and estimation is considered to be
complete.

Unfortunately, determining the convergence properties ofthe algorithm is
difficult since simulating plausible data based on a state space model with arbi-
trary fixed hyperparameter values (i.e., the precisions of the state space matrices
A, B, C, andD) rather than fixed parameter values (i.e., the state space matri-
ces themselves) is difficult. Consequently, it is unclear how to ascertain whether
convergence can always be attained. Preliminary, smaller-scale simulations in-
dicated relatively good convergence behavior, and thresholds chosen based on
these early simulations (∆1 = 0.15, ∆2 = 0.05, and∆3 = 0.05) seemed to
perform well in later simulations.

3.4.2 Edge Selection

Since the posterior distributions of the elements ofD (the matrix representing
direct gene-to-gene interactions) are Gaussian, we can compute the standard
z-statistic for normally distributed variables for each edge. Edges whose distri-
butions lie far above the zero point are interpreted as activations, while those far
below the zero point as inhibitions. Consequently, to decide which edges are
present in the network, we can use the standard thresholds(1.96, 2.58, 3.30) for
(95, 99, 99.9)% confidences, respectively.

4 Simulations

The importance of simulation studies for methods of networkinference has been
stressed by several authors, including Husmeier (2003), Rogers and Girolami
(2005), and Rice et al. (2005). In the following simulations, we consider a wide
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range of comparison criteria, including the Area Under the Curve (AUC) of
the Receiver Operating Characteristic (ROC) curve (AUCROC), the sensitivity,
specificity, and positive predictive value at a given threshold, and the compu-
tational time. Network inference methods that perform wellon one of these
criteria often underperform in others (Wessels et al., 2001); consequently, we
consider a more global perspective on performance in order to thoroughly un-
derstand the advantages and limitations of each method.

Further, we compare the performance of several similar methods on sim-
ulated data. In these simulations, the EBDBN method outlined in Section 3
is compared to two other pre-established methods developedto infer gene net-
works from temporal gene expression data: the Variational Bayes State Space
Model (VBSSM) of Beal et al. (2005) and the Vector Auto-Regressive model
(VAR) of Opgen-Rhein and Strimmer (2007). The former incorporates hidden
states in a state space model under a Bayesian framework, while the latter uses
an auto-regressive model without hidden states. In addition, we also consider
the EBDBN method where no hidden states are estimated, denoted EBDBN(-
); this amounts to a simple auto-regressive model (similar to the VAR) where
D is estimated with the EM-like algorithm of Section 3.3, and no Kalman fil-
ter/smoother step is applied. We refer to the EBDBN method with hidden states
incorporated as EBDBN(x) in general, and EBDBN(K = k) for a particular
hidden state dimensionk.

For these simulations, let TP denote the number of true positives, FP repre-
sent the number of false positives, and FN and TN denote the number of false
and true negatives, respectively. We define the following three criteria as fol-
lows: a) Sensitivity = TP/(TP + FN), b) Specificity = TN/(TN + FP), and c)
Positive Predictive Value (Precision) = TP/(TP + FP).

4.1 Model-Based Simulations

We first simulate gene expression data based on an autoregressive model (which
is the same model for all of the methods under consideration). While this model
undoubtedly oversimplifies the dynamics of real microarraydata, it is a useful
starting point that allows for straightforward simulationwith a known network
structure.

To simulate data, we chooseP = 53 genes, and vary both the number of
replicatesR and the number of time pointsT to be{5, 10, 15}. TheP×P matrix
D, representing the direct gene-gene interaction matrix, issimulated such that
10% of its elements follow either aU(−1,−0.2) or U(0.2, 1) distribution and
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90% of its elements equal 0. We initialize the gene expression values at timet =
1 to beyt ∼ N(0, 0.1) and simulate subsequent timest = 2, ..., T following an
AR(1) model, such thatyt ∼ N(Dyt−1, 0.1). We then remove the 3 genes with
the most outward connections, denoted{ỹ1, ỹ2, ỹ3}, from the dataset. This set
of genes play the role of theK = 3 hidden states. The goal in these simulations
is to infer the remaining structure of the gene network,D? = D \ {ỹ1, ỹ2, ỹ3}
using only the 50 genes in the “observed” datay? = y \ {ỹ1, ỹ2, ỹ3}.

First, consider the results for the AUCROC, which can be interpreted as the
average probability that a randomly chosen edge is correctly characterized as
present or not, assuming any given edge isequally likelyto be present or not
(Beal et al., 2005). The simulation results are presented inFigure 4. Several
trends are apparent: first, for small datasets (that is, few replicates and time
points), all methods perform poorly. For the EBDBN(x), EBDBN(-), and VB-
SSM, increasing eitherR, T , or both improves performance; interestingly, for
the VAR method this is true whenR is increased while the inverse holds for in-
creasingT . Furthermore, the VBSSM outperforms all methods considered here,
although the margin of difference decreases considerably for larger datasets.
Comparing the EBDBN(x) and EBDBN(-) methods, the results indicate that the
latter outperforms the former only for data with few time points (T = 5).

To obtain a more complete perspective on the performance of the models, we
also consider the sensitivity, specificity, and positive predictive value for given
threshold values for the z-score, as well as the computational time required,
shown in Figure 5. While the EBDBN(x), EBDBN(-), and VBSSM all seem to
be comparable in terms of sensitivity and AUC, the VBSSM and VAR methods
perform best in terms of specificity and positive predictivevalue. For the model-
based simulations, the VBSSM and VAR are more stringent in edge selection,
resulting in a lower rate offalsepositives (although in the case of the VAR,
this also results in a much lower rate oftrue positives). The calculation time
for each method is also worth considering. The VBSSM required about 12
minutes for algorithm convergence, while for the EBDBN(x),EBDBN(-), and
VAR this time was about 5 1/2 minutes, 2 seconds, and 1 second,respectively.
All simulations were run on a dual-processor Dell PowerEdge1850 (quad-core
2.8 GHz Intel (R) Xeon (TM)) with 12GB RAM, running Red Hat Enterprise
Linux 5.3 Server x8664.
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Figure 4: AUC of the ROC curve of model-based simulations, bynumber of
replicates and number of time points simulated in the data. Each row of the
graphical matrix corresponds to the number of replicates (R = 5, 10, 15) and
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Figure 5: Additional comparison criteria for model-based simulations, for data
with R = 10 replicates andT = 10 time points for all methods, using a cutoff
for the z-scores of{95, 99, 99.9}% for the EBDBN(x), EBDBN(-), and VB-
SSM. A cutoff of 80% is used for the local false discovery ratein the VAR
method, as suggested by Opgen-Rhein and Strimmer (2007).

4.2 Data-Based Simulations

One of the challenges of relying on simulations to compare different methods for
network inference is that results based on data simulated under the same model
as a particular method (as is the case for all the methods under consideration in
Section 4.1) are undoubtedly over-optimistic. For this reason, it is also important
to consider “realistic” simulations of well-known systemsbased on ordinary
differential equations, which more closely approximate real microarray datasets.
One such set of simulations by Zak et al. (2001, 2003) appearsto be particularly
promising, as it has already been used for this purpose by several other authors
(including Husmeier, 2003; Beal et al., 2005).

The Zak et al. (2001, 2003) data include 10 genes that interact with one
another via a set of transcription factor proteins, bound promoters, and a ligand
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Figure 6: Median AUC of the ROC curve for the EBDBN(x), EBDBN(-), and
VBSSM, by number of replicatesR and time pointsT . The horizontal dotted
line in each graph represents an AUC of 0.5, corresponding toa random-guess
classifier.

input, organized into regulatory motifs taken from the biological literature. A
set of in silico simulations in Matlab, carried out by integrating the ordinary
differential equations describing the model, yields a dataset of 55 variables over
500 time points. We follow Beal et al. (2005) and use only the observations for
the 10 genes for network inference (thus leaving 45 variables as “hidden states”).
We construct datasets of lengthT = {5, 12, 35, 50, 75, 120} by subsampling
equally spaced time points, and we artificially create replicates of sizeR =
{1, 2, 4, 8, 16, 32} by adding Gaussian noise at each time point to the log-ratios
of the observed gene expression data. The VAR method is not included in the
results below, as the small number of genes (10) in the dataset did not allow for
accurate estimation of the local fdr needed for edge selection.

The results of the median AUCROC for the EBDBN(x), EBDBN(-),and
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VBSSM are shown in Figure 6. In these figures, we see that data simulated with
only 5 time points yield poor performance for all methods under consideration;
this is alleviated by increasing the number of time points, although the improve-
ment seems to plateau at around 50 or 75 time points. This is likely due to the
artificial nature of the time point subsampling; that is, thesame interval of time
is covered by data sampled with 75 and 120 time points, albeitin greater detail
in the latter case. The benefits of ever-finer sampling are thus eventually overrun
by the additional noise incurred by the extra data points.

Unsurprisingly, a similar phenomenon is observed with the number of repli-
cates, which were also artificially created by adding Gaussian noise. As with
the subsampled time points, the creation of additional artificial replicates tends
to add noise to the data without contributing additional information about the
network dynamics. For data with 4 or more replicates, the VBSSM appears to
outperform the EBDBN, but only for datasets with less than 35time points; this
relationship is reversed for a larger number of time points.Finally, note that
the AUCROC values observed in Figure 6, on the order of 45% to 70%, are
much lower than those observed in Figure 4, which were on the order of 60% to
98%. This is undoubtedly due to the more realistic, and thus more complicated,
biological relationships simulated here.

We also consider the performance of the EBDBN and VBSSM on addi-
tional comparison criteria, shown in Figure 7. Here, the EBDBN(x), EBDBN(-),
and VBSSM perform comparably in terms of sensitivity and positive predictive
value, while the EBDBN(x) and EBDBN(-) outperform the VBSSMin terms of
specificity and AUC of the ROC curve. There is also a considerable difference
in computational time, as the VBSSM required about 26 minutes on average
to converge, while the EBDBN(x) and EBDBN(-) required only alittle over 1
minute and 1 second, respectively.

5 Application

We compare the results of the EBDBN(x), EBDBN(-), VBSSM, andVAR meth-
ods using real microarray data. Although several time-series microarray datasets
are publicly available in organisms such asSaccharomyces cerevisiae(Lee et al.,
2004), few microarray experiments include the necessary level of replication
and time points to effectively infer network structure. Oneexception arises
from a study of T-cell activation, with gene expression measured on 58 genes
over 10 time points on 44 replicates (see Rangel et al., 2004). Genes were
pre-selected for modulation following the activation, meaning that genes with
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Figure 7: Additional comparison criteria of data-based simulations, for data
with R = 32 replicates andT = 50 time points, using a cutoff for the z-scores
of {95, 99, 99.9}% for the EBDBN(x), EBDBN(-), and VBSSM.

weak expression or low reproducibility across replicates were removed from
the dataset. The data were log-transformed and quantile normalized in a pre-
processing step. The expression measurements and gene descriptions may be
found in the R packageGeneNet of Schäfer et al. (2006) on CRAN (R Devel-
opment Core Team, 2009).

In previous work, the hidden state dimension was chosen to beK = 9 andK
= 14 (Rangel et al., 2004; Beal et al., 2005). Recall that the maximum number
of nonzero singular values taken from the decomposition of the block-Hankel
matrixH isT −1, or in this case, 9. After applying the decomposition ofH, the
hidden state dimension is chosen to beK = 4. We apply the EBDBN(K = 4)
and EBDBN(-) methods for 10 different sets of initial valuesfor hyperparame-
ters, hidden states, and gene variances. A 99.9% cutoff is used as a threshold
for the z-scores of the edges, and only edges identified in 80%of the runs are
retained for the final network structure. For the VBSSM and VAR methods,
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Figure 8: Four-way Venn Diagram of total edges identified by the EBDBN(x),
EBDBN(-), VBSSM, and VAR.

Table 1: Positive, negative, and total edges found in T-celldata.
Method # Positive # Negative Total Edges (%)

EBDBN(x) 435 109 544 (16.2)
EBDBN(-) 338 214 552 (16.4)
VBSSM 233 122 355 (10.6)

VAR 9 6 15 (0.4)

cutoff values of 99.9% for the z-scores and 80% for the local fdr correction are
used, respectively.

The effect of each gene-gene interaction is determined by the sign of the
significant elements of theD matrix from Equation (1). That is, activatory rela-
tionships are represented by positive elements ofD, and inhibitory relationships
by negative elements. The number of edges (positive, negative, and total) found
by each method is displayed in Table 1. The overlap of significant edges is dis-
played in a four-way Venn diagram in Figure 8. Only 13 edges are selected by
all four methods under consideration, largely due to the small number (15) of
edges identified by the VAR method. There are 93 edges identified by at least
three of the methods, and 371 by at least two of the methods. Several edges are
identified by only a single method; there are 223, 210 and 185 such identified
edges for the EBDBN(K = 4), EBDBN(-), and VBSSM, respectively.

The sub-network identified by both the EBDBN(K = 4) and VBSSM is
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Figure 9: Edges inferred by both the EBDBN(K = 4) and VBSSM methods for
the T-cell activation data (Rangel et al., 2004). Nodes represent genes, blue solid
lines inhibitory regulations, red solid lines activatory regulations, and black dot-
ted lines edges with ambiguous regulation. Yellow nodes have five or more reg-
ulatory interactions with other genes, indicating important genes in the network
topology.
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Table 2: Description of important genes in network topology.
Gene # Description

7 CD69 antigen (p60, early T-cell activation antigen)
17 Survival of motor neuron 1, telomeric
21 Cyclin C
28 Early growth response 1
38 Caspase 4, apoptosis-related cysteine protease
41 GATA-binding protein 3
46 Interleukin 2 receptor, gamma (severe combined immunodeficiency)
48 Myeloperoxidase

made up of 120 edges involving 51 genes. Of these edges, 26 represent inhi-
bitions, 84 represent activations, and 10 have an ambiguousregulatory effect
(i.e., the two methods do not agree with respect to the type ofinteraction). The
structure of this “consensus network” is visualized using the software applica-
tion Cytoscape (Shannon et al., 2003), shown in Figure 9. Eight genes (7, 17,
21, 28, 38, 41, 46, 48) have a high degree of connectivity withother genes,
with 5 or more outward-directed edges. These genes appear tobe key players
in the network and could potentially be avenues of interest for future research
(descriptions of these genes can be found in Table 2).

In work by Rangel et al. (2004), the gene FYB (gene 1) is found to occupy
a crucial position in the graph, since it is involved in the highest number of
outward connections. In the consensus network found above,although it does
not figure as prominently, FYB is present and directly connected to three other
genes (genes 17, 33, and 38). An interleukin receptor gene, IL-2Rγ (gene 7),
is one of the most connected genes, with nine outward connections and one
feedback loop with itself.

A portion of the sub-network found by Beal et al. (2005) representing the
interaction between two proto-oncogenes of the Jun proteinfamily, Jun-B (gene
54) and Jun-D (gene 11), is also found in this consensus network (see Figure
10). This is of interest, as Jun-B and Jun-D are thought to negatively regulate
cell growth and inhibit programmed cell death, and thus are at the center of
mechanisms controlling apoptosis and proliferation. Bothsub-networks seem
to support this hypothesis, as Jun-B appears to regulate theapopototic gene
Caspase-4 (gene 38), and at least indirectly, Caspase-8 (gene 18). Despite their
differences, both sub-networks support a central pathway in which Jun-B ac-
tivates Caspase-4, which in turn activates Jun-D. These results agree with the
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Figure 10: Subnetwork found representing the interaction between genes in the
Jun protein family and genes involved in programmed cell death. (Left) Subnet-
work proposed in Beal et al. (2005). (Right) Subnetwork proposed by consensus
of VBSSM and EBDBN(K = 4).

current literature, and suggest an important role for Jun-Bin T-cell activation
and tumor promotion (see Gurzov et al., 2008).

6 Discussion

We have presented an algorithm to infer the structure of generegulatory net-
works using an empirical Bayes estimation procedure for thehyperparameters
of a linear feedback state-space model. This work serves as acomplement to
the VBSSM of Beal et al. (2005), with the advantage of a straightforward, EM-
like estimation procedure and improved computational speed. The proposed
method performs comparably to previously published methods on model-based
data when a minimum number of replicates (≈ 10) and time points (≈ 10) are
measured.

Inferring the structure of gene regulatory networks is an intrinsically difficult
task, given the complexity of network topology, the small number of replicates
and time points available in real data, and the noise implicit in microarray ex-
pression measurements. As a necessary simplification, the proposed method
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deals solely with first-order linear dynamics in the state and observation equa-
tions of the state-space model. Although this is a good approximation to the
general nature of complicated biological systems, more realistic models of gene
regulatory interactions would undoubtedly capture complex relationships, such
as nonlinear or higher-order interactions, more effectively. In addition, the ap-
plicability of state space models to the task of network inference remains uncer-
tain, particularly due to the necessity of determining the hidden state dimension.
In this work, we used the singular value decomposition of theblock-Hankel
matrix for model selection. We are aware that the procedure is ad hoc and are
working on an improvement as a point of future research.

We have stressed the importance of using simulation studiesto compare the
performance of different network inference methods, but the current work illus-
trates some of the challenges inherent in doing so in this context. Model-based
simulations, though an over-simplified version of the complexities of gene reg-
ulatory networks, offer greater flexibility in the choice ofnetwork parameters
(e.g., number of genes, number of hidden states, percentageof edges present,
amount of noise, etc.). Although the more realistic data-based simulations better
represent the dynamics of gene regulatory networks, they present much smaller
datasets (only 10 genes and 1 replicate) than would typically be used for net-
work inference. As such, the development of a set of stochastic, time-course
benchmark datasets for comparisons among methods is a necessary addition to
the growing collection of network inference techniques.

It is somewhat surprising that although the EBDBN and VBSSM resemble
each other quite closely, over 60% of the interactions identified by each one
(64% for the former, 68% for the latter) are not identified by the other in the
real microarray data considered here. This seems to highlight one of the major
stumbling blocks for network inference methods: differentmethods, even those
very similar to one another, often yield very different results for the same data.
For this reason, we introduce the concept of a “consensus network”, that is,
one in which several different network inference methods are in agreement on
the significance of a particular edge. Although somewhat unorthodox from a
frequentist statistical point of view, this type of compromise (also referred to as
“model averaging”) may be more meaningful than applying a single method for
network inference, at least until microarray data can be feasibly collected for
a large number of replicates and time points. The further development of such
“consensus networks” is a focus of our current research.
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