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ABSTRACT 
 

Next-generation sequencing technologies are quickly becoming the preferred approach for 

characterizing and quantifying entire genomes. Even though data produced from these 

technologies are proving to be the most informative of any thus far, very little attention has been 

paid to fundamental design aspects of data collection and analysis, namely sampling, 

randomization, replication, and blocking. We discuss these concepts in an RNA-Sequencing 

framework.  Using simulations we demonstrate the benefits of collecting replicated RNA-

Sequencing data according to well known statistical designs that partition the sources of 

biological and technical variation. Examples of these designs and their corresponding models are 

presented with the goal of testing differential expression. 
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Next-generation sequencing (NGS) has emerged as a revolutionary tool in genetics, genomics, 

and epigenomics.  By increasing throughput and decreasing cost, compared to other sequencing 

technologies (Hayden 2009), NGS has enabled genome-wide investigations of various 

phenomena, including single nucleotide polymorphisms (Craig et al. 2008), epigenetic events 

(Park 2009), copy number variants (Alkan et al. 2009), differential expression (Bloom et al. 

2009), and alternative splicing (Sultan et al. 2008). One application with demonstrated 

effectiveness over previous technologies (e.g., microarrays and Serial Analysis of Gene 

Expression (SAGE)) is called RNA-Sequencing (RNA-Seq) (Cloonan et al. 2009). RNA-Seq 

uses NGS technology to sequence, map, and quantify a population of transcripts (Mortazavi et 

al. 2008; Morozova et al. 2009). While RNA-Seq is a relatively new method, it has already 

provided unprecedented insights into the transcriptional complexities of a variety of organisms, 

including yeast (Nagalakshmi et al. 2008), mice (Mortazavi et al. 2008), Arabidopsis (Eveland et 

al. 2008), and humans (Sultan et al. 2008).  

At present, there are three widely accepted commercially available NGS devices (Illumina’s 

Genome Analyzer, Applied Biosystems’ SOLiD, and the 454 Genome Sequencer FLX) for 

RNA-Seq (Marioni et al. 2008; Cloonan et al. 2008; Eveland et al. 2008). Across platforms, the 

RNA-Seq methodology is approximately the same. Briefly, RNA is isolated from cells, 

fragmented at random positions, and copied into complementary DNA (cDNA). Fragments 

meeting a certain size specification (e.g., 200–300 bases long) are retained for amplification 

using Polymerase Chain Reaction (PCR). After amplification, the cDNA  is sequenced using 

NGS; the resulting reads are aligned to a reference genome, and the number of sequencing reads 

mapped to each gene in the reference is tabulated. These gene counts, or Digital Gene 

 
 
 

 



Statistical Design and Analysis of RNA-Seq Data                                   4   

Expression (DGE) measures, can be transformed and used to test differential expression (see 

Morozova et al. 2009 for a review of these technologies as applied to RNA-Seq).  

Although there are many steps in this experimental process that may introduce errors and 

biases, RNA-Seq has been hailed as the future of transcriptome research (Shendure 2008) 

because it potentially generates an unlimited dynamic range, provides greater sensitivity than 

microarrays, is able to discriminate closely homologous regions, and does not require a priori 

assumptions about regions of expression (Cloonan et al. 2009; Morozova et al. 2009). As 

research transitions from microarrays to sequencing-based approaches, it is essential that we 

revisit many of the same concerns that the statistical community had at the beginning of the 

microarray era (Kerr and Churchill 2001a).  

Soon after the introduction of microarrays (Schena et al. 1995), a series of papers was 

published elucidating the need for proper experimental design (Kerr et al. 2000; Lee et al. 2000; 

Kerr and Churchill 2001a; Kerr and Churchill 2001b; Churchill 2002). All of these papers rely 

heavily on the three fundamental aspects of sound experimental design formalized by R. A. 

Fisher (1935a) seventy years ago, namely replication, randomization, and blocking.  These 

concepts can be understood by considering the following controlled experiment that is designed 

to test the effectiveness of two different diets. A sound experimental design would include many 

different subjects (i.e., replication) recruited from multiple weight loss centers (i.e., blocking). 

Each center would randomly assign their subjects to one of the two diets (i.e., randomization). 

Although the principles of good design are straightforward, their proper implementation 

often requires significant planning and statistical expertise.  To date, many NGS applications, 

specifically RNA-Seq, have neglected good design. While a few RNA-Seq studies have reported 

highly reproducible results with little technical variation (e.g., Marioni et al. 2008; Mortazavi et 
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al. 2008), in the absence of a proper design, it is essentially impossible to partition biological 

variation from technical variation.  When these two sources of variation are confounded there is 

no way of knowing which source is driving the observed results.  No amount of statistical 

sophistication can separate confounded factors after data have been collected.   

Generally, for differential expression analyses, researchers are interested in comparisons 

across treatment groups in the form of contrasts or pair-wise comparisons, and the designs for 

these analyses are usually quite simple.  The good news for NGS technologies is that certain 

properties of the platforms can be leveraged to ensure proper design.  One such feature, available 

in all three NGS devices, is the capacity to bar-code. Genomic fragments can be labeled or bar-

coded with sample-specific sequences that in turn allow multiple samples to be included in the 

same sequencing reaction (i.e., multiplexing) while maintaining, with high fidelity, sample 

identities downstream (Craig et al. 2008; Hamaday et al. 2008; 

http://www3.appliedbiosystems.com/). To date, bar-coding has only been appreciated as a 

means to increase the number of samples per sequencing run.  Yet here, we  demonstrate how  

multiplexing can be used as a quality control feature that offers the flexibility to construct 

balanced and  blocked designs for the purpose of testing differential expression.    

We anticipate that the progression from the current un-replicated unblocked designs to more 

complex designs will be swift once the full offerings of NGS technologies are appreciated. 

Toward this end, we provide a brief review of some powerful statistical techniques for testing 

differential expression under a variety of designs.  Although the designs that are presented are 

specific to RNA-Seq using the Illumina (Solexa) platform, the same statistical principles are 

applicable to the other NGS devices, as well as other types of comparative genetic and `omic 

data. 
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REPLICATION 

Un-replicated data: Observational studies with no biological replication are common in the 

RNA-Seq literature (e.g., Marioni et al. 2008). In an observational study, as opposed to a 

controlled experiment, the assignment of subjects to treatment groups is not decided by the 

investigator. In many cases, the different treatment groups consist of different tissue types.  For 

example, in Marioni et al. (2008)  messenger RNA (mRNA) was  isolated from liver and kidney 

tissues, randomly fragmented, and sequenced using the Illumina Genome Analyzer (GA). The 

Illumina technology (aka “Solexa”) relies on a flow-cell with eight lanes, or channels, and 

massively parallel sequencing by synthesis to simultaneously sequence millions of short DNA 

fragments in each of the lanes. Typically, independent samples of mRNA are loaded into 

different lanes of the flow-cell such that sequencing reactions occur independently between 

samples.  For illustration purposes, consider an example with seven subjects and seven treatment 

groups (T1,...,T7), where each subject is randomly assigned to one treatment group, and mRNA 

from each subject is loaded into a different lane (Figure1). Notice that there is no biological 

replication because there is only a single subject in each treatment group. 
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FIGURE 1.  Hypothetical Illumina GA flow-cell with mRNA isolated from subjects within seven 
different treatment groups  and loaded into individual lanes (e.g., the mRNA from the 
subject within treatment group 1 is sequenced in Lane 1).  As a control, a 

1 7( ,..., )T T
XΦ genomic sample is 

often loaded into Lane 5. The bacteriophage XΦ genome is known exactly, and can be used to 
recalibrate the quality scoring of sequencing reads from other lanes (Bentley et al. 2008). 
 
 

In order to analyze data from un-replicated designs, the sampling hierarchy must be taken 

into account. Regardless of the design, we can define three levels of sampling at work in RNA- 

Seq data: subject sampling, RNA sampling, and fragment sampling. Subjects (e.g., organisms or 

individuals) are ideally drawn from a larger population to which results of the study may be 

generalized (un-replicated data consists of a single subject within each treatment group). RNA 

sampling occurs during the experimental procedure when RNA is isolated from the cell(s). 

Finally, only certain fragmented RNAs that are sampled from the cells(s) are retained for 

amplification, and since the sequencing reads do not represent 100 percent of the fragments 

loaded into a flow-cell, fragment-level sampling is also at play.      

Un-replicated data consider only a single subject per treatment group. Typically either there 

is one subject to which every treatment is applied (e.g., in Marioni et al. (2008), liver and kidney 

samples were extracted from one human cadaver), or one distinct subject within each treatment 

group (e.g., Figure 1). In either situation, it is not possible to estimate variability within treatment 

group, and the analysis must proceed without any information regarding within-group  
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TABLE 1 
A 2x2 contingency table of (un-replicated) digital gene expression (DGE) measures for testing 
differential expression between Treatment1 and Treatment2 of Gene A.  The cell 
counts represent the DGE count for Gene A (k = 1) or the Remaining Genes (k = 2) for 
Treatmenti,  i=1,2.  The marginal row total is denoted , is the marginal total for column 
i,  is the grand total. 

kin
thk .kN .iN

..N
   

 Treatment1 Treatment2 Total 
Gene A 11n  12n  1.N  

Remaining Genes 21n  22n  2.N  

Total .1N  .2N  ..N  

 

biological variation. As such, in the context of RNA-Seq, statistical methods for finding 

differences between groups are limited to RNA and fragment-level sampling information.   

Since the sampling scheme for RNA-Seq is similar to SAGE (Velculescu et al. 1995), and 

there is a sizable statistical literature already established for analyzing differential DGE measures 

from un-replicated SAGE data, similar methods can be used for un-replicated RNA-Seq data. 

See Man et al. (2000), Romualdi et al. (2001), and Ruijter et al. (2002) for reviews and 

comparisons of techniques, and Tino (2009) for further discussion.  For both RNA-Seq and 

SAGE data the analysis usually proceeds on a gene-by-gene basis by organizing the data in a 2x2 

table (Table 1). Perhaps the most natural test for differential expression in the un-replicated case 

is Fisher’s Exact Test (Fisher 1935b) which fixes the marginal totals of the 2x2 table and tests 

differential expression using the hypotheses: 

0 A: 1 versus H : 1,  whereH θ θ= ≠  

11 22

12 21

,  andπ πθ
π π

=  

(1)

where kiπ is the true proportion of counts in cell ,  ( 1,2;  1,2),k i k i= = assuming every transcript 

was isolated and perfectly sequenced. In Table 1 we can think of having N1. white balls and N2.  
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FIGURE 2. The log2 fold change, between Treatment1 and Treatment2, of the normalized gene 
expression is plotted on the y-axis, and the mean log2 expression is plotted on the x-axis. Gene 
expression counts were normalized by the column totals of the corresponding 2x2 table (e.g., 
Table 1). Blue dots represent significantly differentially expressed genes as established by 
Fisher’s Exact Test; grey dots represent genes with similar expression. The red horizontal line at 
zero provides a visual check for symmetry. 
 

black balls in an urn. If we draw N.1 balls from the urn, we may ask, “What is the probability of 

observing an outcome at least as unlikely as  white balls?”  If this probability (i.e., the P-value 

from Fisher’s Exact Test) is small, then the column classification has affected the draw from the 

urn. In our application, Gene A is differentially expressed between Treatment1 and Treatment2. 

One method of calculating two-sided P-values is to sum the probabilities of all 2x2 tables with 

probabilities less than or equal to that of the observed table where the probability of a 2x2 table 

(e.g., Table 1) is:   

11n
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1. 2. .1 .2

.. 11 12 21 22

! ! ! !
! ! ! ! !

N N N NP
N n n n n

=
� � � �

 
(2)

where denotes the observed value of .  Note that there are several methods for computing 

two-sided P-values from Fisher’s Exact Test (Agresti 2002). Figure 2 illustrates the behavior of 

Fisher’s Exact Test for testing differential expression, between two treatment groups, for every 

gene in an RNA-Seq data set. It is worth remembering that Fisher’s Exact Test becomes more 

conservative as expression values decrease to zero, a point concurrent with the fact that genes 

with small expression values also demonstrate larger variability. This phenomenon as related to 

RNA-Seq data is discussed in detail in Bloom et al. (2009). The methods used by Kal et al. 

(1999) (a test of the equality of two binomial proportions) and Audic and Claverie (1997) (a 

Bayesian model with a Poisson likelihood and a flat prior on the mean) may also be used, 

although comparisons between these, and other, approaches to Fisher’s Exact Test (Man et al. 

2000; Romualdi et al. 2001; Ruijter et al. 2002) show marginal differences in performance.  

kin� kin

Limitations of un-replicated data: The fundamental problem with generalizing results 

gathered from un-replicated data is a complete lack of knowledge about biological variation. As 

Fisher (1935a) noted, without an estimate of variability (i.e., within treatment group), there is no 

basis for inference (between treatment groups). Although we can test for differential expression 

between treatment groups from un-replicated data, the results of the analysis only apply to the 

specific subjects included in the study (i.e., the results can not be generalized). To better 

understand the unrealistic conclusions that can be drawn from un-replicated data, suppose that an 

alien visits Earth and only observes two people, one male named “John” standing 177 cm and 

one female named “Jane” standing 180cm. The same reasoning that results in unrealistic 

conclusions from testing differential expression between treatment groups based on un-replicated  

                

 
 
 

 



Statistical Design and Analysis of RNA-Seq Data                                   11   

 
FIGURE 3. A multiple flow-cell design based on three biological replicates within seven 
treatment groups.  There are three flow-cells with eight lanes per flow-cell.  The control 

XΦ sample is in Lane 5 of each flow-cell. Tij refers to the thj replicate in the treatment 
group ( .  

thi
1,...,7;  1,...,3)i j= =

 

data would compel the alien to believe that not only is John shorter than Jane, but that women 

are, on average, taller than men. 

Replicated data: Consider extending the example illustrated in Figure 1 (i.e., seven treatment 

groups with one subject per treatment) to include two more biological subjects within each 

treatment group (Figure 3). The biological replicates allow for the estimation of within-treatment 

group (biological) variability, provide information that is necessary for making inferences 

between treatment groups, and give rise to conclusions that can be generalized.  

A simple method for testing differential expression that incorporates within-group (or, 

within-treatment) variability relies on a Generalized Linear Model (GLM) with over-dispersion.  

The model is similar to the one provided by Lu et al. (2005). Consider a per-gene Poisson GLM.  

If represents the DGE measure for theijkY thj replicate ( 1,..., )j J= in the treatment group 

 of gene k, and represents the overall number of reads from the 

thi

( ..., )1,i = I ijc thj replicate in the 

treatment group (e.g., ), then we can model as a thi ijc = ijk
k
∑Y ijkY Poisson( )ijkμ random variable, 

where ijk ijk ijcμ λ=  and ijkλ represents the rate at which reads from the thj replicate in the 

treatment group map to the gene relative to all the other genes (Marioni et al. 2008). In this thi thk
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example, the inclusion of the term is equivalent to normalizing by the total number of reads 

per lane, a common practice in RNA-Seq (Mortazavi et al. 2008). The following model is fit 

independently to each of k genes:    

ijc

log logijk ij k ikcμ α τ− = + ,  (3)

where kα is the mean rate of expression across treatments for gene k and ikτ is the effect of the 

treatment on the overall mean rate of expression for gene k. Differential expression of gene k 

between treatment group i  and treatment group 

thi

i′ is tested with the following hypotheses:  

0 A:  versus H :ik i k ik i kH τ τ τ τ′ ′= ≠  (4)

A simple Poisson GLM assumes that Variance( ) Mean( )ijk ijkY Y= , and when this assumption holds 

the hypotheses (4) can be tested by comparing the likelihood ratio test statistic (LRT) to a 2
1dfχ =  

distribution, where the LRT takes the form: 

,

ˆLRT=2 log( / ),ijk ijk ijk
i j

y μ μ∑ �  (5)

and ˆijkμ is the maximum likelihood estimate (MLE) of ijkμ  (under the alternative hypothesis) 

while ijkμ� is the MLE of ijkμ under . If there is any within treatment group variability between 

individuals that is beyond that expected by Poisson sampling, then the required assumption of 

the Poisson GLM (i.e., that

0H

ce(Varian ) Mean(ijk ijkY ))Y= will not hold. In fact, if the LRT in (5) is 

used to evaluate the hypotheses in (4) when the assumption is violated, it typically results in 

inflated Type I error rates. In order to maintain the Type I error at the appropriate level we need 

to estimate a dispersion parameterφ , where
( )

( )
ijk

kij

Var Y
E Y

φ =  (if 1φ > the data are said to be “over-
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dispersed,” in more rare cases, 1φ < and the data are “under-dispersed). The estimate of φ  

suggested in Faraway (2006), and Tjur (1998) is: 

2

,

ˆ ˆ( ) /
ˆ

ijk ijk ijk
i j

y

m p

μ μ−

−
φ =

∑
 

(6)

where m is the total number of observations and p is the number of estimated parameters in 

model (3) (i.e., in our example with three replicates per treatment, 3 7 and 7m p= ×

1 21,df m p

= ). Both 

Faraway (2006) and Tjur (1998) argue that when over-dispersion is present, the hypotheses in (4) 

should be tested by comparing the following test statistic to a dfF = = − distribution: 

LRT .
φ̂

 
(7)

This method is similar to the one described in Baggerly et al. (2004) where an over-dispersed 

logistic regression model is fit to SAGE data to test differential expression.  Other methods from 

the SAGE literature may also be considered, for example Vencio et al. (2004) took a Bayesian 

approach with a beta-binomial model accounting for within-class variability. Thygesen and 

Zwinderman (2006) used a Poisson model with a gamma prior in an attempt to model all genes 

simultaneously. Robinson and Smyth (2007, 2008) have incorporated the moderated test statistic 

approach (Smyth 2004) into a negative binomial model to account for both within-class and 

across-gene variability.  Their approach is available in the edgeR package (Robinson et al. 2010) 

from Bioconductor (Gentlemen et al. 2004).   

BALANCED BLOCK DESIGNS 

Without careful planning an unblocked design faces a fundamental problem with 

generalizing the results, namely, the potential for confounding.   With respect to RNA-seq 

analysis, if the treatment effects are not separable from possible confounding factors, then for 
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any given gene, there is no way of knowing whether the observed difference in abundance 

between treatment groups is due to the biology or the technology (e.g., amplification or 

sequencing bias).  For example in Figure 3 all replicates of Treatment1 are sequenced in Lane 1 

and all replicates of Treatment2 are sequenced in Lane 2. Any differences in expression between 

Treatment1 and Treatment2 are confounded with possible lane effects that may persist across 

flow-cells. In fact, once the data are collected there is no way of separating the effects due to lane 

from the effects due to true treatment differences.  

In RNA-Seq data, the design is the same for every gene, even though different genes have 

different variances and are potentially subject to different errors and biases. Of course, there are 

sources of variation that affect the majority of genes and these should certainly be integrated into 

the design. However, to ensure a robust analysis across all genes, sources of variation affecting 

only a minority of genes should be integrated into the design as well (e.g., a PCR based GC bias 

may only affect a small proportion of transcript fragments, therefore if it is possible, PCR batch 

should be integrated into the design). As such, we examine two main sources of variation 

(beyond the sampling hierarchy explained previously) that may contribute to confounding of 

effects in RNA-Seq data, namely “batch effects” and “lane effects”.  Batch effects include any 

errors that occur after random fragmentation of the RNA until it is input to the flow-cell (e.g., 

PCR amplification and reverse transcription artifacts). Lane effects include any errors that occur 

from the point at which the sample is input to the flow-cell until data are output from the 

sequencing machine (e.g., systematically bad sequencing cycles and errors in base-calling).  

Batch and lane effects have both been observed in previous studies. PCR amplification and 

reverse transcription artifacts were found to be non-negligible in both Balwierz et al. (2009) and 

Chepelev et al. (2009). Chepelev et al. (2009) also observed systematically bad sequencing 
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cycles, and Rougemont et al. (2009) discusses the presence of base-calling errors in the Solexa 

platform. Although Marioni et al. (2008) found that variation across lanes generally follows a 

Poisson sampling process, they did observe considerably more variation for a non-negligible 

number of genes (on the order of ). 210

Balanced blocks by multiplexing: To eliminate confounding caused by batch or lane effects, 

consider the situation in which all samples of RNA are pooled into the same batch and then 

sequenced in one lane of a flow-cell.  This would ensure that any batch effects are the same for 

all samples, and since the sequencing reaction is contained in one lane, all effects due to lane will 

be the same for all samples. While indeed this is an idealized situation, it can be accomplished by 

bar-coding the RNA immediately after fragmentation. Once bar-codes are attached to the random 

fragments, the samples can be pooled and processed together through the reverse transcription, 

size selection, and amplification steps. Typically, each lane is dedicated to sequencing one 

sample, so the number of samples m is equal to the number of lanes   In order not to 

lose sequencing depth compared to the typical layout, total bar-coded samples can be pooled 

and processed together through the amplification step. The amplification product can then be 

divided into equal parts. Each part is then input to a different lane of the flow-cell. By exposing 

equal portions of every unique (i.e., bar-coded) sample to the same experimental conditions (i.e., 

same batch in the same lane), “balanced blocks” are formed.  

,  ( ).L m L=

m

L
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FIGURE 4.  Comparison of two designs for testing differential expression between treatments A 
and B. Treatment A is denoted by red tones, treatment B by blue tones. In the ideal balanced 
block design (left panel), six samples ( 6)m = are bar-coded, pooled, and processed together. The 
pool is then divided into six equal portions that are input to six lanes ( 6)L =  of the flow-cell. 
Bar-coding in the balanced block design results in six technical replicates of each sample, 
while balancing batch and lane effects, and blocking on lane. The balanced block design also 
allows partitioning of batch and lane effects from the within-group biological variability. The 
confounded design (right panel) represents a typical RNA-Seq experiment and consists of the 
same six samples, no bar-coding, and does not permit partitioning of batch and lane effects from 
the estimate of within-group biological variability. 

(T 6)=
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FIGURE 5  A Balanced Incomplete Block Design (BIBD) for three treatment groups (T1, T2, T3) 
with one subject per treatment group (T11, T21, T31) and two technical replicates of each (T111, 
T112, T211, T212, T311, T312). After fragmentation, each of the three samples are bar-coded and 
divided in two (e.g., T11 would be split into T111 and T112), then pooled and sequenced as 
illustrated (e.g., T111 is pooled with T212 as input to Lane 1). 
 

It is worth noting that if L lanes are utilized, there is no loss of sequencing depth compared to 

running each sample in a lane. Figure 4 shows a comparison of this design to a typical design 

that confounds sample with batch and lane.   

 

Balanced Incomplete Block Designs and Blocking Without Multiplexing: Although the 

previous balanced block design is convenient for illustration purposes, in reality resources, 

technical constraints, and the scientific hypotheses under investigation will dictate the number of 

treatments ( ),I  the number of biological replicates per treatment ( the number of unique bar-

codes (  that can be included in a single lane, and the number of lanes available for 

sequencing( )  When the number of unique bar-codes in one lane is less  than the number of 

treatments ( a complete block design (Figure 4) is not be possible. In these cases, we 

suggest using a Balanced Incomplete Block Design (BIBD). If T is the total number of possible 

technical replicates per biological replicate, then a BIBD (according to our scheme of blocking  

),J

)s

.L

i.e., )s I<
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FIGURE 6. A design based on three biological replicates within seven treatment groups.  For 
each of the three flow-cells there are eight lanes per flow-cell, and a control ( XΦ ) sample in 
Lane 5. Tij refers to the thj replicate in the treatment group (thi 1,...,7;  1i j ,...,3)= = . In this design 
the flow-cells form balanced complete blocks, and the lanes form balanced incomplete blocks.   
 

by batch and lane by multiplexing) satisfies /T sL JI=  (Oehlert 2000).  For a situation where 

there are three treatments , a single subject within each treatment group the ability 

to include two unique bar-codes (  within a lane, and three available lanes for 

sequencing (  (currently, Illumina advertises 12 different bar-codes in a single lane 

http://www.illumina.com/documents/products/datasheets/datasheet_sequencing_multiplex.pdf) a  

( 3)I = ( 1),J =

2)s =

3)L =

BIBD as illustrated in  Figure 5  is possible. Extensive lists of other BIBDs are given in Fisher 

and Yates (1963) and Cochran and Cox (1957). 

           Clearly multiplexing is useful for generating technical replicates that are effective in 

blocking on lane and batch effects to reduce confounding.   However, it is important to 

understand that technical replicates are no substitute for independent biological replication, and 

that for a sufficient number of biological replicates certain designs can accommodate lane and/or 

flow-cell as blocking factors. As an illustration of this flexibility, the design in Figure 3 can be 

re-arranged as a balanced complete block design where the blocks are flow-cells, and a balanced 

incomplete block design where the blocks are lanes (Figure 6).   
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Analyzing a balanced block design:  The generalized linear model in (3) can be expanded to 

include known blocking factors. Consider Figure 6 where both lane and flow-cell form blocks.  

The model for this design is:  

log logijkfl ij k ik fk lkcμ α τ υ ω− = + + +  (8)

where fkυ is the effect of the thf flow-cell on the mean rate of expression for gene k, and 

similarly lkω  is the effect of the  lane on the mean rate of expression for gene k. This model can  

be fit on a gene-by-gene basis implicitly assuming gene-by-block interactions (if one is unwilling 

to make this assumption, model (8) can easily be modified to fit all genes simultaneously 

allowing for the estimation of global blocking factors which can be used as off-sets in a per-gene 

model (3)). Notice that model (8) separates the lane and flow-cell effects (i.e., technological 

variation) from the within-group biological variability. The hypotheses for testing differential 

expression between Treatment  and Treatment i

thl

i ′  are as in (4), and the dispersion 

parameter ( )φ is estimated as: 

2

, , ,

ˆ ˆ( ) /
ˆ

ijkfl ijkfl ijkfl
i j f l

y

m p

μ μ
φ

−
=

−

∑
 

(9)

where m = 21 and p = 15, and the LRT is:  

, , ,

ˆLRT=2 log( / ).ijkfl ijkfl ijkfl
i j f l

y μ μ∑ �  (10)

The F-statistic for testing differential expression is simply the LRT in (10) divided by φ̂  as 

estimated in (9). Under the null hypothesis of no differential expression, this F-statistic is 

approximately distributed as a random variable. 
1 21,df df m pF = = −
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Analyzing a balanced block design with technical replicates:  Consider the balanced block 

design in Figure 4. Let represent the DGE measure for the  technical replicate of 

the

ijktY tht ( 1,...,6)t =

thj biological replicate (  in the treatment group (1,...,3)j = thi 1,..., 2)i = of gene k. Then 

and can be modeled as before with a .k =ij ijkt
t

Y Y∑ .ijkY Poisson( ijk )μ random variable, 

where ijk ijkcijμ λ=  and ijkλ represents the rate at which reads from the thj replicate in the 

treatment group map to the gene relative to all the other gene (the offset term no longer 

represents the total number of reads per lane, but the total number of reads in the 

thi thk ijc

thj replicate of  
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FIGURE 7.  Four designs (A-D) are compared in the simulation study for treatments  and . 
Design A is a biologically un-replicated unblocked design with one subject for treatment g

11( )T  and one subject for treatment group 2T 21( )T . D  B is a biologically un-replicated
balanced block design with 11T split (ba oded) into two technical replicates 111 112(T T 21

split into t cal rep ates 211 212( ,  )T T and input to Lanes 1 and 2. Design C is a 
biologically replicated unblocked design with three subjects from treatment 
group 1T 11 12 13 , and three subjects from treatment group 2T  21 22 23 . Design D is a 
biologically replicated balanced block design with each subject (e.g., ) split (bar-coded) into 
six technical replicates (e.g., T ) and input to six lanes. 
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the treatment group summed over technical replicates,thi
,

ij ijkt
k t

c Y=∑ ). The model, hypotheses, 

estimation, and testing procedures are the same as in (3-7) with replacing .  This analysis 

strategy does not include lane as a blocking factor, therefore lane effects will not be partitioned 

from estimates of within-treatment group variability (since only one batch was used, batch-to-

batch variation was removed from residual error and batch effects need not be included in the 

model). However, since lane effects are balanced across treatment groups the potential for 

.ijky ijky
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confounding on lane effects is eliminated. In order to accurately partition the lane effects from 

estimates of within-treatment group variability a repeated measures GLM (see Faraway 2006) 

with over-dispersion is necessary.  To our knowledge, hypothesis testing in this paradigm is 

currently problematic and a point of future research. 

SIMULATIONS 

To evaluate the effectiveness of the proposed multiplexed designs, we compare a 

biologically un-replicated unblocked design (A);  a biologically un-replicated balanced block 

design with technical replicates (i.e., multiplexing) (B); a biologically replicated (triplicate) 

unblocked design (C); and a biologically replicated (triplicate) balanced block design with 

technical replicates by multiplexing (D) in an experimental setting testing differential expression 

between Treatment 1 and Treatment 2 (Figure 7). Gene counts were simulated across 

treatment groups, and we compare the false positive rate (1- specificity) and the true positive rate 

(sensitivity) for each design. 

1( )T 2( )T

Data Simulation: We fixed the total number of reads at c = 3,000,000 and the mean sampling 

rate for treatment group 1T 1(denoted )λ at four different values  which 

corresponds to gene counts on the order of   and , respectively 

 We varied the mean l fold change (LFC), between  and  from -3 to 3 

in increments of 0.25. The treatment group  sampling rate was calculated as:  

2 3 4(10 ,10 , 10 , 10 )− − − −

110

1T 2T

5

)

410 ,

2og

2T

310 , 210 ,

5(e.g., *10 30).c − =

2 1log ( )
2 2 LFCλλ −= . (11)

Gene counts and were sampled according to Poisson1 jY 2 jY 1(cλ  and Poisson 2(c )λ distributions, 

respectively 1 1 2P ( ),  Poisson( ))j jY c Y 2c( oisson λ λ∼ ∼ . In order to evaluate the effectiveness of 
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modeling with an over-dispersed Poisson GLM, we added Gaussian noise to each gene count 

rounding to the nearest integer: 

[ ],  ij ij jY Y ε′ = +  

(0, / )j N vε σ ψ=∼  

5,10,15,100ψ =  

1 2( )v n n / 2.λ λ= +  

Four different simulation settings are considered, batch effect and lane effect (S1); batch effect 

and no lane effect (S2); no batch effect and lane effect (S3); and no batch effect and no lane 

effect (S4).  Batch effects were simulated by adding Gaussian noise to each noisy gene count 

and rounding to the nearest integer:  ( )ijY ′

j[ ],   (0, /10).ij ijY Y
ij ij j ijY Y N Yε ε′ ′′′ ′ ′= + ∼  

No noise was considered in settings S3 and S4 (i.e., for settings S3 and S4, ). Lane effects 

were simulated by Poisson sampling from

ij ijY Y′ = ′′

1 jY ′′and 2 jY ′′ at different rates varying between lanes 

Poisson( )ij ij jY Y δ′′� ∼  

Discrete Uniform{0.65,0.8,0.95}.jδ ∼   

For settings with no lane effect (S2 and S4), the Poisson sampling rates were held constant 

( 0.8jδ = ). Since designs B and D included technical replicates, we distributed the respective 

sampling rates with no loss of depth for the gene counts in each biological replicate.  

For design (A) we tested for differential expression using Fisher’s Exact Test (1), setting 

both column totals of the 2x2 table to 3,000,000. For design (B) we fit a balanced block design 

with technical replicates model. We set the offset term to c, and since this design does not have 
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any biological replicates (i.e., J=1) we did not estimate dispersion.  The likelihood ratio was 

compared to a 2
1dfχ =  distribution. For design (C) we fit model (3) with c as the offset, estimated 

dispersion as shown in (6), and used the F-test described in (7). For design (D) we fit a balanced 

block design that acknowledged the technical replicates with c as the offset.  

We ran 10,000 simulations under each setting (S1-S4), varying 1λ andψ . The false positive 

rate (i.e., Type I error rate) was calculated as the proportion of times a gene was declared to be 

differentially expressed when the LFC was zero. The true positive rate (i.e., statistical power) 

was calculated as the proportion of times a gene was determined to be differentially expressed in 

the correct direction when the LFC was not zero.  

 
Results: Receiver Operating Characteristic (ROC) curves offer a useful way of comparing false 

positive rates with true positive rates. Using ROC curves the true positive rate is typically plotted 

on the vertical axis, and the false positive rate plotted on the horizontal axis. The resulting curves 

can be compared by fixing a false positive rate (Type I error rate) and contrasting the 

corresponding true positive rates (statistical power). If one ROC curve is always above another, 

this indicates its superiority in classifying genes as differentially expressed. The diagonal identity 

line indicates the performance of classifying a gene as differentially expressed using a 

completely random guess (e.g., guessing differential expression 90% of the time yields a 90% 

true positive and false positive rate).  

The designs featuring independent replication (Designs C and D) demonstrate remarkably 

better performance than the un-replicated designs (Designs A and B) whenever there is non-

negligible within treatment group biological variability (Figure 8, Figures S1 and S2) across 

simulation settings (S1-S4). Even when there is very small within treatment group biological 

variability (Figure S3), the replicated designs still outperform the un-replicated designs. 
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FIGURE 8.  ROC curves for the within group variability setting 5ψ = . The x-axis represents the 
false positive rate and the y-axis represents the true positive rate.  The four panels of the graph 
show results for each of the four simulation settings. The ROC curve for the unblocked un-
replicated design (A) is in solid red, the blocked un-replicated design (B) is in dotted red, the 
unblocked replicated design (C) is in solid blue, and the blocked replicated design (D) is in 
dotted blue. The replicated designs always outperform the un-replicated designs, and whenever 
there is a batch effect or lane effect, the blocked designs outperform their unblocked 
counterparts. 
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TABLE 2 
The false positive rates (at the 0.05 nominal level) for designs A–D considering four settings 
of 1λ  , and four simulation settings (batch effect and lane effect (S1), batch 
effect and no lane effect (S2), no batch effect and lane effect (S3), no batch and no lane effect 
(S4)). 

2 3 4 5(10 ,10 , 10 , 10 )− − − −

 
 
   Sampling Rate 1( )λ      Design                                        Simulation Setting 

  S1 S2 S3 S4 

210−  A 

B 

C 

D 

0.9655 

0.9524 

0.0494 

0.0476 

0.9548 

0.9521 

0.0499 

0.0463 

0.9630 

0.9496 

0.0485 

0.0482 

0.9508 

0.9498 

0.0480 

0.0487 

310−  A 

B 

C 

D 

0.8789 

0.8456 

0.0477 

0.0506 

0.8595 

0.8479 

0.0480 

0.0491 

0.8744 

0.8431 

0.0532 

0.0472 

0.8434 

0.8481 

0.0499 

0.0489 

410−  A 

B 

C 

D 

0.6521 

0.5551 

0.0522  

0.0538 

0.5873  

0.5622 

0.0505 

0.0529 

0.6325 

0.5583 

0.0527 

0.0522 

0.5527 

0.5677 

0.0516 

0.0532 

510−  A 

B 

C 

D 

0.2662 

0.2407 

0.0482 

0.0488 

0.2299 

0.2452 

0.0524 

0.0460 

0.2491  

0.2458 

0.0503 

0.0494 

0.2111 

0.2411  

0.0461 

0.0477 
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To evaluate which designs upheld the typical 0.05 false positive rate, for each of the four 

different sampling rates , we calculated the proportion of times a gene 

was declared differentially expressed (using a p-value cutoff of 0.05) when the LFC was zero 

(Table 2; 

2 3 4 5
1( 10 ,10 ,10 ,10 )λ − − − −=

5ψ =

1λ =

).  The replicated designs (C and D) maintained the nominal significance level 

(0.05) across the simulation settings demonstrating that designs featuring independent replication 

coupled with analyses that estimate within-group variability are robust to batch effects, lane 

effects, and extra-Poisson variability. The estimated false positive rates for the un-replicated 

designs (A and B) suffered under all simulation settings, especially for genes with larger 

expression values. Although the false positive rates tended to decrease slightly as batch and lane 

effects were removed, in the absence of a batch or lane effect, the Type I error rates were still 4 

to 5 times larger than the nominal significance level for genes with the smallest level of 

expression( ).   .  510−

Interestingly, the blocked designs did not outperform the un-blocked designs in terms of the 

false positive rates (Table 2). However, across simulation settings, whenever a batch or lane 

effect is present, the blocked designs demonstrate distinguishably higher true positive rates than 

the unblocked designs. We speculate that there are two reasons for this result. First, the blocked 

designs are all included in the same batch such that batch to batch variation is removed from 

residual error.  Second, even though we did not use lane as a blocking factor, lane effects were 

balanced across every biological replicate in the two treatment groups thereby reducing the 

chance that a lane effect would overly influence one treatment group and produce a misleading 

result (i.e., confounding). Partitioning the variation due to lane through a statistical model that 
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included blocks on lanes may further enhance the performance of the blocked designs by 

reducing the residual error. 

DISCUSSION 

Fisher (1935a) was right.  Replication, randomization, and blocking are essential 

components of any well planned and properly analyzed design.  RNA-Seq designs and analyses 

are no exception.  Luckily, the current format and properties of the NGS platforms lend 

themselves nicely to the concepts of randomization and blocking.  However, the decision to 

biologically replicate remains in the hands of the scientist.   

Our purpose in writing this paper is to demonstrate that variability (which is dependent on 

the organism, laboratory techniques, and the biological factors under investigation) may be larger 

than expected, and if not estimated properly will negatively affect the results of any study. This 

variability is positively correlated with the magnitude of the overall variability between 

biological subjects and can be dealt with by employing statistical models that not only 

accommodate estimation of within-treatment group biological variability, but remain faithful to a 

nominal significance level. Indisputably, the best way to ensure reproducibility and accuracy of 

results is to include independent biological replicates (technical replicates are no substitute) and 

to acknowledge anticipated nuisance factors (e.g., lane, batch, and flow-cell effects) in the 

design. 

For both replicated and un-replicated scenarios the proposed balanced block designs benefit 

from both the NGS platform design, as well as multiplexing.  These designs are as good, if not 

better than, their unblocked counterparts in terms of power and Type I error, and are 

considerably better when batch and/or lane effects are present.  Realizing of course that it is not 

possible to determine whether or not batch and/or lane effects are present a priori, we 
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recommend the use of block designs to protect against observed differences that are attributable 

to these potential sources of variation. Since we understand both the expense associated with 

block designs, and the concern of multiplexing, we offer some alternatives.  Certainly, it is 

possible to avoid multiplexing if there are enough biological replicates and sequencing lanes that 

allow for designs that block on lane and/or flow-cell (see Figure 6).  However, if resources are 

limited (i.e., one flow-cell) multiplexing offers an alternative that at the very least eliminates the 

potential for confounding of effects.  Multiplexing and blocking aside, the bottom line remains 

the same, results from un-replicated data cannot be generalized beyond the sample tested (here, 

differential expression). 

Even though the benefits of good designs far outweigh any drawbacks, we anticipate 

objections to the multiplexed designs related to cost, loss of sequencing depth, and bar-code bias.  

To mitigate these concerns we provide some reassurances.  First, although increased cost may be 

a concern, the added cost and time to multiplex is negligible when compared to the overall time 

and resources required for RNA-Sequencing. Second, there may be additional concerns that 

multiplexing will result in an overall loss of sequencing depth. This will only be problematic if 

enough bar-codes are incorrectly identified such that the read counts for each gene is affected. 

Recently, Phillipe et al. (2009) estimated that, on the Illumina platform, the probability that a 20 

base transcript tag contains one or more sequencing errors is 0.0048. Using this as an upper 

bound on the probability that the bar-code will contain one or more sequencing errors (the bar-

code is six bases long), in a lane with 10,000 million usable sequencing reads and 10,000 

different transcripts, miscalled bar-codes would result in an average loss of at most 4.8 reads 

from the read count per transcript. Third, while there may be technical problems with 

multiplexing, such as uneven coverage of the samples or bias in the base-calls adjacent to the 
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bar-code, as long as the problem with uneven coverage is consistent within each sample, 

normalization schemes that take into account lane- and sample-specific coverage can correct for 

this (e.g., dividing each gene count by the coverage over sample, or the coverage over lane). 

Read bias associated with bar-coding is not problematic if it affects all samples the same way. 

Specifically, a proper normalization scheme will be robust to bias as long as the problem is 

consistent within sample.  

The design principles that are presented here are applicable to a variety of applications 

involving quantitative comparisons across samples and can be put into practice on every NGS 

platform as applied to RNA-Seq. However, for other applications (e.g., ChIP-Seq and Copy 

Number Variant studies, etc.) a clearly defined statistical model that fully accounts for sources of 

variation must be developed before specific details of the design can be described.  
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SUPPORTING FIGURES 

FIGURE S1.  ROC curves for the within group variability setting 10.ψ =  The x-axis represents 
the false positive rate, the y-axis represents the true positive rate.  The four panels of the graph 
show results for each of the four simulation settings. The ROC curve for the unblocked un-
replicated design (A) is in solid red, the blocked un-replicated design (B) is in dotted red, the 
unblocked replicated design (C) is in solid blue, and the blocked replicated design (D) is in 
dotted blue. The replicated designs always outperform the un-replicated designs and whenever 
there is a batch effect or lane effect, the blocked designs outperform their unblocked 
counterparts. 
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FIGURE S2. ROC curves for the within group variability setting 15.ψ =  The x-axis represents 
the false positive rate, the y-axis represents the true positive rate.  The four panels of the graph 
show results for each of the four simulation settings. The ROC curve for the unblocked un-
replicated design (A) is in solid red, the blocked un-replicated design (B) is in dotted red, the 
unblocked replicated design (C) is in solid blue, and the blocked replicated design (D) is in 
dotted blue. The replicated designs always outperform the un-replicated designs and whenever 
there is a batch effect or lane effect, the blocked designs outperform their unblocked 
counterparts.   
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FIGURE S3.  ROC curves for the within group variability setting 100.ψ =  The x-axis represents 
the false positive rate, the y-axis represents the true positive rate.  The four panels of the graph 
show results for each of the four simulation settings. The ROC curve for the unblocked un-
replicated design (A) is in solid red, the blocked un-replicated design (B) is in dotted red, the 
unblocked replicated design (C) is in solid blue, and the blocked replicated design (D) is in 
dotted blue. The replicated designs always outperform their un-replicated counterparts and 
whenever there is a batch effect or lane effect, the blocked designs outperform their unblocked 
counterparts.   


