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a b s t r a c t

The microarray is an important and powerful tool for prescreening of genes for further
research. However, alternative solutions are needed to increase power in small microarray
experiments. Use of traditional parametric and even non-parametric tests for such small
experiments lack power and have distributional problems. A mixture model is described
that is performed directly on expression differences assuming that genes in alternative
treatments are expressed or not in all combinations (i) not expressed in either condition, (ii)
expressed only under the first condition, (iii) expressed only under the second condition,
and (iv) expressed under both conditions, giving rise to 4 possible clusters with two
treatments. The approach is termed aMean-Difference-Mixture-Model (MD-MM)method.
Accuracy and power of theMD-MMwas compared to other commonly usedmethods, using
both simulations, microarray data, and quantitative real time PCR (qRT-PCR). The MD-MM
was found to be generally superior to other methods in most situations. The advantage
was greatest in situations where there were few replicates, poor signal to noise ratios, or
non-homogeneous variances.

Published by Elsevier B.V.

1. Introduction

Microarrays provide unique insight into gene regulation networks as impacted by any number of factors, including tissue,
time, treatment, condition, or genetic background, see Walsh and Henderson (2004) for a review. The major statistical
questions posed by such experiments were summarized by Allison et al. (2002), and included: (1) evidence of differential
expression (DE), (2) number of genes with true DE, (3) confidence interval (CI) of mean expression difference, (4) threshold
above which genes are interesting and should be followed up, and what proportion of genes in this list are likely to be
false positives, and (5) what proportion of genes not declared interesting are likely to be false negatives. As Allison et al.
(2002) concluded, if the power of the experiment was near perfect, then ordinary frequentist significance testing would be

Abbreviations: FDR, false discovery rate; pFDR, positive FDR; SAM, significance analysis of microarrays; qRT-PCR, quantitative reverse transcriptase
polymerase chain reaction.
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Fig. 1. Simulation results for two treatments, each with 4 replicates. Treatment effects and random errors were sampled from a normal distribution. True
DE plotted against the calculated value of t . Observations associated with each of the 4 distributions are identified by letter (A = D(0) , B = D(1) , C = D(1

′) ,
D = D(2)).

sufficient to answer these questions. However, due to the costs of microarray chips, many experiments have few replicates
per condition, while the number of genes to be analyzed per chip is large, resulting in the so-called small n large p problem
(Martella, 2006). A solution to this problem is the use of mixturemodels (MM), first developed for other applications (Aitkin
and Wilson, 1980; Edelbrock, 1979) and later proposed by a number of researchers for microarray analysis. Most MMwere
developed to cluster samples e.g. Alexandridis et al. (2004), Asyali and Alci (2005), Ghosh (2004), Kauermann and Eilers
(2004), Kendziorski et al. (2003), Lai et al. (2007), Martella (2006), McLachlan et al. (2002, 2006) and Pan et al. (2006)
but several cluster genes e.g. Allison et al. (2002), Do et al. (2005), Efron et al. (2001), Lee et al. (2000), McLachlan et al.
(2005), Newton et al. (2004), Pan (2002, 2003) and Reverter et al. (2006). Each of these methods employs a different set of
assumptions, yet no method has been commonly accepted as a standard. The majority of these MM are based on clustering
of test statistics (such as t or F ) e.g. Efron et al. (2001), McLachlan et al. (2002), Pan (2002) and Reverter et al. (2006), p-values
derived from test statistics e.g. Allison et al. (2002), or z values derived from p-values e.g. Lai et al. (2007) and McLachlan
et al. (2006).
Unfortunately, methods that cluster based on test statistics, or their derivatives, may be susceptible to a critical problem

that occurs with small sample sizes. Allison et al. (2002) notes that with very small sample size parametric tests of the
differences between levels of gene expression will be more sensitive to assumed distributional forms of the expression
data, and resulting p-values may not be accurate. Allison et al. (2002) also states that although non-parametric tests, such as
bootstrapping p-values, could potentially solve this problem, if n < 5, then p-values will be affected by the discreteness of
the bootstrapped distribution and there will be a limited number of possible distinct p-values. As such Allison et al. (2002)
concludes that the resulting MM analysis with small sample sizes might be unreliable. Results presented by Jeffery et al.
(2006) support this conclusion. The authors used cross validation analysis of data from several microarray experiments
using 10 different feature selection methods. They found that with low replication, or high variance, gene ranking based on
these statistics were poor, and simple fold and non-parametric methods were more powerful than parametric methods.
An example of this phenomenon supporting the concern of Allison et al. (2002) is illustrated in Fig. 1. These data were

sampled from a distribution with a common error variance across genes (Fig. 1 is illustrated from Case 16 in Table 1, details
are given in the Simulations section). Those genes with the largest values of t (those greater than an arbitrary critical value
of ±20) are the first genes to be statistically significant at some Type I error rate, but represent some of the smallest true
differences. In the left tail 50% of the largest values of t are false positives, i.e. from the null distribution (the distribution is
skewed to the right because the mean of one of the clusters was increased by a treatment). In contrast, those genes with
greatest true DE (those greater than an arbitrary DE of ±5 on the figure) were all contained within zero ±7 units of t and
the coefficient of determination for regression of t on DE was very poor (R2 = .09). In this example the assumption of
homogeneous error variances was true, thus one would expect the correlation between t and DE to be greater because the
numerator of the t statistic is DE while the expected value of the denominator is constant. These results confirm that for
small n, clustering based on parametric test statistics or their derivatives and p values is likely to identify genes that exhibit
modest or even no difference in expression in response to a given treatment. The apparent discrepancy between the test
statistic and true DE results from the fact that the t statistic is a ratio and by chance the denominator may be unusually
small. As the number of replicates increases this problem becomes increasingly rare. However, due to the current high costs
of microarrays, experiments with 2 treatments and 4 (or fewer) biological replicate chips per treatment (8 total) are not
uncommon particularly for preliminary or exploratory type experiments (Pedra et al., 2004; Wayne and McIntyre, 2002).
The number of components (clusters) is the next major concern in MM analysis. Except for those MM proposed by

Lee et al. (2000) and Reverter et al. (2006), the number of components proposed in a microarray MM is based on desired
outcomes, not the underlying biology. The maximum number of components based on desired outcomes is usually 2 (Efron
et al., 2001; Liao et al., 2004;Martella, 2006;McLachlan et al., 2002; Newton et al., 2004; Pan, 2002), (defined as differentially
expressed and null or affected and not), but 3 (Lai et al., 2007) (defined as up, down, or null), and k (Allison et al., 2002)
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Table 1
Alternative parameters used for each of the simulated cases

Case Proportion in each distribution r Variances sn Average expression levels under each
condition

π0 π1 π1′ π2 σ 2G σ 2ε µY e µYu µZe µZu

1 .9 .025 .025 .05 4 1 1 1 0 0 0 0
2 .9 .025 .025 .05 16 1 1 2 0 0 0 0
3 .9 .025 .025 .05 4 16 1 4 0 0 0 0
4 .9 .025 .025 .05 4 1 16 .4 0 0 0 0

5 .5 .125 .125 .25 4 1 1 1 0 0 0 0
6 .5 .125 .125 .25 16 1 1 2 0 0 0 0
7 .5 .125 .125 .25 4 16 1 4 0 0 0 0
8 .5 .125 .125 .25 4 1 16 .4 0 0 0 0

9 .5 .125 .125 .25 4 1 1Ď 1Ď 0 0 0 0
10 .5 .125 .125 .25 16 1 1Ď 2Ď 0 0 0 0
11 .5 .125 .125 .25 4 16 1Ď 4Ď 0 0 0 0
12 .5 .125 .125 .25 4 1 16Ď .4Ď 0 0 0 0

13 .5 .125 .125 .25 4 1 1 1 1 0 0 0
14 .5 .125 .125 .25 16 1 1 2 1 0 0 0
15 .5 .125 .125 .25 4 16 1 4 1 0 0 0
16 .5 .125 .125 .25 4 1 16 .4 1 0 0 0

π0 , π1 , π1′ , π2 = proportion of genes expressed in neither, the first, the second, or both conditions, respectively; r = replicates; σ 2G = variance among
genes; σ 2ε = variance among biological samples, assumed common to all genes, but heterogeneous and unique to each gene where indicated with

Ď; σ 2∂ =
technical variation; sn = signal to noise ratio sn = σG

√
r/ (σε + σ∂ ); µY e , µYu , µZe , µZu = mean of all genes expressed and not expressed in the first

condition, and expressed and not expressed in the second condition, respectively.

clusters have also been proposed. In contrast, Lee et al. (2000) and Reverter et al. (2006) based the number of components
on biology. The concept of Reverter et al. (2006) was that connection of genes to pathways is dependent on condition (tissue,
time, or treatment).When genes are connected they are expressed, but connection and level of expression can vary between
treatments. This is an important concept to capture in a MM because expressed genes have variation in transcript number
due to other cis or trans-acting elements. They partition not only by DE, but also by pathway, and because there can be any
number of biological pathways, the number of clusters is the same. Lee et al. (2000) on the other hand, based the number of
components on expressed and not expressed genes, but for a single condition (treatment).
Our desire was to examine MMmethods that would be applicable to experiments with a small number of replicates and

based on underlying modes of gene action. From the above considerations, we avoided MM methods based on clustering
test statistics, or their derivatives. The alternative approach was to simply use the raw (or normalized) data as proposed by
Lee et al. (2000). But, we desired to model DE based on patterns of gene expression, i.e. connectivity by condition combined
with direction. Given these goals, we considered themost viable approachwas to generalize themethods of Lee et al. (2000)
to the case of differential expression.Wewill show that estimates of the variance associated with each cluster have relevant
interpretations in terms of biological processes useful in answering questions posed by Allison et al. (2002).
What we are proposing is a special case of the more general field of MM. General programs are readily available for MM

based on any normally distributed variable, e.g. EMMIX (McLachlan et al., 2002). The purpose of our research is to examine
how well an MM approach based on raw data, with components defined by connectivity and direction, works for detecting
DE genes in experiments with small replication. The approach was to compare accuracy and power to other commonly
used methods of microarray analysis. Because the procedure is based on clustering differences between means, we call the
method MD-MM for Mean Difference-Mixture Model to differentiate it from other clustering methods.

2. Statistical methods

MD-MMdevelopment: Consider first a single condition for which a replicatedmicroarray experiment is completed. This
is exactly the situation described by Lee et al. (2000). There will be two categories of genes: those that are expressed to some
degree, and those that are not to any degree, i.e. the genes are either turned on (connected) or not. If turned on, they may
have differing numbers of gene transcripts due to genetic (cis and trans-acting elements) and environmental factors. Next
consider a second condition for which the same microarray is again used in a replicated manner. In this second condition,
the same or different set of genes would have the same or different levels of expression. Our approach is to combine both
results into one analysis for differential expression. In this development, we expect a maximum of four categories of genes,
which are described as: (i) not expressed in either condition, (ii) expressed only under the first condition, (iii) expressed
only under the second condition, and (iv) expressed under both conditions. We do not expect to be able to identify all genes
in each of these categories, but rather we aim to find those genes that have greatest differential expression as found in the
tails of the distributions. In addition, not all categoriesmay be present in all experiments. For example, the same set of genes
may be on or off on both conditions in a particular experiment, and in such a case there would be only two categories (i and
iv).
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Modeling gene expression under different conditions: Forwhat follows assume amicroarray oligo chip, or a spotted cDNA
membrane, with a single channel or dye, with N genes. The methods can be extended to 2-dye spotted chips after adjusting
expression levels for block and dye effects using an appropriatemixedmodel for the design, such as those given byWolfinger
et al. (2001). The usual assumption is made that errors are independent of treatment or that suitable transformation is
applied to correct the problem if it exists.
For each treatment condition, assume r biological replicates, from each of which RNA is isolated and either converted to

cDNA or directly hybridized to independent chips or membranes, depending on the technology used. For the first condition,
let these observations (after suitable transformation and normalization) be denoted Zij for expression of the jth replicate
(j = 1, 2, . . . , r) of the ith gene (i = 1, 2, . . . ,N). These observations are modeled differently depending on whether the
gene is expressed or not. For expressed genes assume the following model:

Z eij = µZe + Gi + ε(i)j + ∂(ij) (1)

where Z eij is the observed level of expression (signal intensity) for the jth replicate (j = 1, 2, . . . , r) of the ith gene
(i = 1, 2, . . . , n1), µZe is the average gene expression under that condition, Gi is the effect of the ith gene, ε(i)j is biological
sampling error and includes genetic variation among individuals, and ∂(ij) is technical error due to experimental procedures.
The terms Gi, ε(i)j and ∂(ij) are assumed to be normally distributed, independently from each other, with means zero and
variances σ 2G , σ

2
ε and σ

2
∂ , respectively. The signal variance of the expressed genes is then σ

2
Ze = σ 2G + σ

2
ε + σ

2
∂ . For those

genes that are not expressed, any non-null average refers to background as there is no transcript being produced for such
genes. Thus we assume the following model:

Zui′j = µZu + ∂(i′j) (2)

where Zui′j is the observed signal intensity for the jth replicate of the i
′th gene i′ (i′ = 1, 2, . . . , n2), µZu is the average of

the unexpressed genes (background noise) and ∂(i′j) is the technical error. Because these genes are not expressed, it is not
possible for the environment or other conditions to have an effect, thus all variation is due to technical variation. The signal
variance of these non-expressed genes is σ 2Zu = σ

2
∂ , thus it follows that σ

2
Ze > σ 2Zu . Because genes can only be in one of these

two categories N = n1 + n2.
Assume that under another condition the same genes are measured with the same number of replicates and denoted

as Yij (a balanced design is considered hereinafter without loss of generalization as the methods can be easily extended for
cases with unequal numbers of replication). For these measurements, the same or different set of genes may be expressed
at the same or different levels. The expressed genes are described by the following model:

Y eij = µY e + G
′

i + ε
′

(i)j + ∂
′

(ij) (3)

and not expressed by:

Y ui′j = µYu + ∂
′

(i′j) (4)

with corresponding definitions as for the first condition.
The putative differential expression for each gene is estimated as the difference between means as: Di =

1
r

(∑r
j=1 Zij −

∑r
j=1 Yij

)
. Depending on whether a gene is expressed under neither, only one, or both conditions, the Di are

modeled by different equations: (i) Not expressed under either condition (k = 0) : D(0)i =
1
r

(∑r
j=1 Z

u
i′j −

∑r
j=1 Y

u
i′j

)
, with

conditional expectation E
(
D(0)i

)
= µZu − µYu = 0, because the mean of the unexpressed genes is expected to be the

same regardless of condition; (ii) expressed only under the first condition (k = 1) : D(1)i =
1
r

(∑r
j=1 Z

e
ij −

∑r
j=1 Y

u
ij

)
with

conditional expectation: E
(
D(1)i

)
= µZe + Gi − µYu ; (iii) expressed only under the second condition (k = 1′) : D

(1′)
i =

1
r

(∑r
j=1 Z

u
ij −

∑r
j=1 Y

e
ij

)
with conditional expectation: E

(
D(1
′)

i

)
= µZu −G′i−µY e and (iv) expressed under both conditions

(k = 2) : D(2)i =
1
r

[∑r
j=1 Z

e
ij −

∑r
j=1 Y

e
ij

]
with conditional expectation: E

(
D(2)i

)
= µZe + (Gi − G′i) − µY e . The marginal

expectations and variances are: E
(
D(0)

)
= µD(0) = µZu − µYu = 0, σ 2D(0) = 2σ

2
∂ /r; E

(
D(1)

)
= µD(1) = µZe − µYu ,

σ 2
D(1)
= σ 2G + σ

2
ε /r + 2σ

2
∂ /r; E

(
D(1
′)
)
= µD(1′) = µZu − µY e , σ

2
D(1′)
= σ 2G + σ

2
ε /r + 2σ

2
∂ /r; E

(
D(2)

)
= µD(2) = µZe − µY e ,

σ 2
D(2)
= 2σ 2G + 2σ

2
ε /r + 2σ

2
∂ /r , respectively.

Estimation: The conditional distributions, given the subset class k and respective parameters, Di | k, µD(k) , σ
2
D(k)
∼

N
(
µD(k) , σ

2
D(k)

)
, for k = 0, 1, 1′, or 2, are N

(
µD(k) , σ

2
D(k)

)
≡ φ(Di | k, µD(k) , σ

2
D(k)
) = (2πσ 2

D(k)
)−1/2 exp

{
−
(
Di − µDk

)2
/(

2σ 2
D(k)

)}
. The overall distribution is f (Di) =

∑2
k=0 πkφ(Di | k, µD(k) , σ

2
D(k)
), where πk is the respective mixing proportion

of each distribution and
∑2
k=0 πk = 1. The incomplete-data log likelihood function of the mixture model is LICD(θ) =∑N

i=1 ln
∑2
k=0 πkφ(Di | k, µD(k) , σ

2
D(k)
), which can be maximized using the EM algorithm (Dempster et al., 1977). The
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Fig. 2. Distribution of D associated with each component of the MM and FDR.

associated complete-data log likelihood function is: LCD(θ) =
∑N
i=1
∑2
k=0w

(k)
i

{
lnφ(Di | k, µD(k) , σ

2
D(k)
)+ lnπk

}
, where

w
(k)
i is an indicator variable such thatw

(k)
i = 1 if the ith gene belongs to cluster k, andw

(k)
i = 0 otherwise. The expectation

of the complete-data log likelihood function is: E[LCD(θ)] =
∑N
i=1
∑2
k=0 E[w

(k)
i ]

{
lnφ(Di | k, µD(k) , σ

2
D(k)
)+ lnπk

}
, and the

EM algorithm proceeds as follows. For a given initial set of parameter values, the E-step is: E[w(k)i ] = ρ
(k)
i = πkφ(Di |

k, µD(k) , σ
2
D(k)
)/
∑2
k′=0 πk′φ(Di | k, µD(k) , σ

2
D(k)
), and the M-step is: µD(k) =

∑N
i=1 ρ

(k)
i Di/(πkN), σ

2
D(k)
=
∑N
i=1 ρ

(k)
i (Di −

µD(k))
2/(πkN), and πk =

∑N
i=1 ρ

(k)
i /N . The procedure is repeated until convergence is achieved. Because convergence to a

local maximummay occur, rather than to the global maximum, a grid of starting points spanning the solution space should
be examined. Note that there is a natural ordering of the variances:σ 2D2 > σ 2D1 > σ 2D0 σ 2

D(2)
> σ 2

D(1)
> σ 2

D(0)
; this result can

be used to help discern genes that are associated with which class.
Although we have defined four components, it is possible that less than four may be needed for a given situation, i.e. all

genes are truly null, or all genes are expressed, or some other combination. Also, categories 2 and 3 (k = 1, 1′) may be
difficult to separate as they both have the same variance structure andmay have only slightly different expectations. For a 3
componentmodel, and for those genes expressed only in one condition or the other, an average across both single expression
distributions will result, i.e. D(∗) =

(
D(1) + D(1

′)
)
/2. Thus, the number of components in the mixture models can be chosen

using somemodel selection criteria such as Akaike’s information criterion (AIC, Akaike, 1974) and the Bayesian Information
Criterion (BIC, Schwarz, 1978).
False Discovery Rate (pFDR): After the parameters are estimated, the data is sorted by Di for a one sided test for differential
expression, or abs (Di) for a 2-tailed test, and for each gene ρ

(0)
i , the probability the gene belongs to the null cluster is

calculated. Next for the mth ordered value we compute qm = 1
m

∑m
i=1 ρ

(0)
i , which is the cumulative average proportion of

genes expected under the null distribution and is conceptually equivalent to the q values of Storey (2003). For a (100α)%
pFDR simply findm such that qm 6 α (Allison et al., 2002). Conceptually these areas are given in Fig. 2 for the data shown in
Fig. 1.
The method used by Storey (2003) to find the pFDR is essentially based on a 2-component mixture model based on

clustering t or p values, but is, as they state, always biased except for the case when all genes are null. The estimate of the
mixing proportion for k = 0, the null distribution, could be combined with the pFDR method of Storey et al. (2004) to give
a more accurate q-value estimate.

3. Methods for validation and comparison

Simulations: For the simulations, a wide variety of genetic parameters were used with the intention of capturing the
range of possibilities that might be encountered in actual experiments; those cases are given in Table 1. The data were
generated based on Eqs. (1)–(4)with differing proportions of observations under each condition. Cases 1–12wereworse case
scenarios where the overall mean expression level over all genes for each treatment was not different. In cases 13–16means
over treatments were different. Formost cases gene effects, biological, and technical errors were sampled from independent
normal distributions with expectations of zero and variance σ 2G , σ

2
ε and σ

2
∂ , respectively. Although the assumption of a

common variance for technical and environmental error seemed reasonable, the assumption that all genetic effects (Gi) are
sampled from a common distribution is questionable, but unavoidable with our approach. The effect of this assumption was
tested in Cases 9–12 of Table 1, whereby we simulated a different variance among biological samples associated with each
gene, those variances being a base value as given in Table 1 plus a random value from a uniform distribution (uniform on
0–9), for each gene.
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A chip with 50,000 genes was assumed; the mixing proportion for the expressed genes was set to either low (π0 = .9,
Eqs. (1) and (3) were used for 2500 genes; Eqs. (1) and (4) for 1250 genes; Eqs. (2) and (3) for 1250 genes, and Eqs. (2) and (4)
for 45,000 genes) or high (π0 = .5, Eqs. (1) and (3) were used for 12,250 genes; Eqs. (1) and (4) for 6250 genes; Eqs. (2) and
(3) for 6250 genes, and Eqs. (2) and (4) for 25,000 genes). The overall mean for all equations was set to 0, except for Cases
13–16where themean of the expressed geneswas set to 1, i.e.µY e = 1. The signal to noise ratio, sn = σG

√
r/ (σε + σ∂), was

set to either high, medium, low, or very low by holding σ 2∂ constant and changing either σ
2
G , σ

2
ε or r . These factors were not

considered in all combinations, as too many results would be generated; rather 16 selected combinations were examined
as given in Table 1. The data sets are given in the supplemental material along with the MD-MM programs.
For comparison, several popular methods of microarray analysis were examined. These included the simple t-tests with

FDR (Benjamini and Hochberg, 1995) or pFDR (Storey, 2003; Storey et al., 2004) approaches for multiple testing, and the
permutation-based attenuated t-test of SAM software (Tusher et al., 2001). Comparisons were based on total errors (Type I
and Type II) and Power= (1-Type II).
Data halving andmutual validation:We analyzed amicroarray experiment using the Arabidopsis Affymetrix r©GeneChip r©

containing 22,819 genes. The design was a 2× 2 factorial of genotypes (‘wild type’ vs. the pickle) and exposure treatments
(uniconazole-P or no uniconazole-P) as described by Rider et al. (2003). There were 6 replicate chips for each treatment
combination using different biological samples for each replicate for a total of 24 chips. For comparison purposes, data from
only the pickle mutant, with and without uniconazole exposure, were used. This restriction, combined with data halving,
resulted in a two-treatment experiment with few replicates (r = 3), the situation we are addressing. These data were split
into two sets (A and B), with three replicates per treatment (uniconazole exposure or not) in each set.
Consistency was determined by the chi-square statistic and correlation. The data within each partition were divided into

those genes whichwere classified as DE, and not, for eachmethod. The results were then tested for non-independence using
a chi-square 2× 2 contingency table. The chi-square statistics (χ2AB) determines the degree to which classification into each
set is non-random. A secondmeasure of consistency is the correlation of calls between data sets rAB. For data set A, a dummy
variable XA is coded 0 if the null is accepted and 1 if rejected for each gene. Similarly for data set B, a dummy variable XB
is coded 0 if the null is accepted and 1 if rejected; then rAB = cov(XA, XB)/

√
V (XA)V (XB) is computed. It can be shown that

r2AB = χ
2
AB/N .

The relative power = rPower is defined to be the number rejected by both data sets over N . We consider a reasonable
basis for comparison of methods as that which gives the highest rPower alongwith the greatest consistency, as measured by
either rAB or χ2ABχ

2
AB. Obviously this method of comparison has limitations and by itself may give false conclusions, especially

if all hypotheses are accepted or rejected in both data sets, but if used in conjunction with other methods of comparison,
adds to the strength of the final conclusion.

Correlation between microarray analysis and quantitative real time PCR. Quantitative real time PCR (qRT-PCR) is
considered the most robust method for quantitative analysis of differential expression and is commonly used to confirm
differential expression as identified by microarray analysis. We used an ABI Prism 7000 analysis performed using RNA from
a single pooled sample across biological replicates in association with the Arabidopsis experiment (Rider et al., 2003). 18S
rRNAwas used as a standardization control for these expression studies. Because only a single pooled sample was analyzed,
statistical significance couldnot bedetermined. Rather, the datawere correlatedwith thedecisionsmadeusing eachmethod.
First the qRT-PCR data was separated into 2 categories, those with a difference in cycle numbers between treatment of
∆CT > 1 and ∆CT < 1. This data was cross classified with those genes declared DE and not DE by each method in the
microarray analysis. A 2 × 2 chi-square was then used to test if the association was different from random. Second, the
correlation between decision category and qRT-PCR category was estimated.

4. Results

Comparison by simulations: For the examples used, a 4-componentMD-MM resulted in the best fit, but not significantly
better than the 3-component model. This result was expected whenever the absolute values of means of genes in
components 2 and 3, and their variances, were similar, such as in scenarios 1–12. However, even for scenarios 13–16, where
the absolute value of means of genes in components 2 and 3were different, but variances the same, the 4-componentmodel
did not fit significantly better than a 3-component model. But a 3-component model always fit significantly better than a
2-component model. Thus a 3-component model was fitted to all cases; results are given in Table 2.
In all cases examined and methods compared, use of the MD-MM approach resulted in the greatest levels of power and

lowest total errors. On average, over all cases, the MD-MM had three times the power and with 14% fewer total errors than
the next best method (SAM). The MD-MM particularly excelled where the signal to noise ratio was poor (Cases 4, 8, 12, and
16). In cases 4, 8, and 16, only the MD-MM was able to detect any differentially expressed genes, and in all those cases did
so with powers ranging between 43% and 72%. With heterogeneous variances (Cases 9–12), regardless of the signal to noise
ratio (sn), the MD-MM resulted in almost an order of magnitude greater power than t-tests coupled with the FDR and pFDR
approaches and three times that of SAM. For a differentially expressed distributionwith amean greater than zero, i.e. biased
toward up regulation (Cases 13–16), the power and error rate of the MD-MM was improved as the distributions have less
overlap.
These results show that even for the most difficult cases, where the centers of the distributions of the component

distributions are the same, differentially expressed genes can be distinguished. As seen from these results, the key to
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Table 2
Total error rate (%) and power (%) for alternative methods of microarray analysis for cases given in Table 1

Case Method

FDR pFDR SAM MD-MM

Errors Power Errors Power Errors Power Errors Power

1 10 0 10 0 9.6 3.6 9.0 9.8
2 8.1 19.6 8.1 20 7.5 25.5 6.5 35.4
3 6.8 33.2 6.7 34.4 3.9 61 3.8 63.9
4 10 0 10 0 10 0 5.8 43.8

5 50 0 49.9 0.1 48.2 3.7 40.1 17.1
6 35.2 30.5 33.8 33.8 32.2 36.5 26.2 49.4
7 24.4 52.6 21.9 58.9 23.1 55.1 14.6 72.8
8 50 0 50 0 50 0 24.7 51.8

9 50 0 50 0 49.9 0.1 22.1 56.9
10 49 2 48.9 2.2 48.8 2.5 18.6 64.1
11 45.9 8.3 45.3 9.7 42.5 15.4 12.2 77.8
12 50 0 50 0 50 0.1 15.0 71.8

13 50 0 49.8 0.4 42.4 15.6 35.8 31.3
14 29 43.2 27.3 47.3 25.7 50.6 21.9 58.5
15 24.2 52.8 21.8 58.9 19.7 63.2 14.8 72.4
16 50 0 50 0 50 0 22.6 56.3

Ave 33.9 15.6 33.3 17.4 32.1 20.4 18.2 52.5

Power = 100[1− (#false negatives/#trueDE)].
Errors = 100(#false positives+ #false negatives)/N.
ForMD-MM, the null distributionwas always defined as the distribution centered at 0with smallest variance, genes in all other distributionswere declared
DE.

Table 3
True and estimated proportion of genes in null distribution with the MD-MM and pFDR methods

Case True percent in the null distribution Estimated percent in null distribution Percent error
MD-MM pFDR MD-MM pFDR

1 90 84.3 95.9 −6.3 6.5
2 90 90.1 92.8 0.1 3.1
3 90 89.9 91.5 −0.1 1.6
4 90 85.2 98.9 −5.3 9.9
5 50 54.1 80.2 8.2 60.3
6 50 49.9 69.9 −0.2 39.8
7 50 49.7 58.9 −0.6 17.9
8 50 51.9 96.3 3.8 92.6
9 50 52.5 94.8 5.0 89.6
10 50 51.6 86.5 3.2 73.0
11 50 49.5 77.7 −1.0 55.5
12 50 51 46.7 2.0 −6.6
13 50 49.1 75.2 −1.8 50.3
14 50 49.8 63.4 −0.4 26.8
15 50 50.1 59.3 0.2 18.6
16 50 49.3 89.7 −1.4 79.5
Mean 60.0 59.9 79.9 0.3± 0.9 38.7± 8.4

The null distribution was identified as that distribution with a mean of 0 and smallest variance, i.e. due only to technical variation.

distinguishing differentially expressed genes, from both the null distribution and from lowly differentially expressed genes
within the same distribution, is through exploiting the information that expressed genes have greater variances. Of course,
if the means of the distributions are also different, then the ability to distinguish differentially regulated genes may also
improve, but only in one direction, because the center of the expressed distribution will have decreased overlap with the
null distribution in one direction but increased in the other.
Estimation of proportion of transcriptome differentially expressed: Estimation of the proportion of genes in the null
distribution is given in Table 3. By definition, all other genes not in the null cluster are either expressed in one environment
or the other or both. TheMD-MMaccurately and precisely estimated the proportion in the null distribution, being on average
within 0.3±0.9% of the true value. In contrast, the pFDRmethod was consistently biased upward, usually by a large degree,
averaging 38.7±8.4% overestimation. Storey (2003) acknowledges that their estimator is always biased upward, except for
the case where all genes are truly null.
Comparison by data halving andmutual validation. For the analysis of the first half of the data by theMD-MMmethod, we
found that a 3 component MM fit significantly better (BIC= 12,776) than a 2 component (BIC= 16,902), but a 4 component
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Table 4
Comparison of power and consistency among methods using data splitting

Method Data set A Data set B Consistency rP%
C R rAB χ2AB

FDR C 22,056 439 0.27 1,670 .5
R 196 119

pFDR C 21,100 365 0.33 2,525 1.6
R 990 355

SAM C 13,324 7530 0.26 1,576 7.0
R 350 1606

MD-MM C 16,635 953 0.74 12,413 17.9
R 1,135 4087

C= accept, R= reject, rP= rPower.

Fig. 3. Distribution of the MM components.

MM (BIC = 12,782) was not better than a 3, results using the AIC criteria were the same. Distributions fit using the 3
components are shown in Fig. 3. Genes expressed in neither treatment, in only one treatment (up or down), and expressed
in both treatments (up or down) accounted for respectively 66%, 25%, and 9% of the total distribution. Analysis of the second
half of the data gave similar results. It is interesting that the primary form of DE is the expression under one condition, and
not the other indicating that genes are turned on or off and infrequently modulated by treatments.
Consistency and rPower are given in Table 4. The MD-MM had the greatest rPower, followed by SAM, pFDR and FDR. The

rPower of MD-MM was twice that of SAM and almost 3 times that of pFDR. The consistency across data sets, as measured
by chi-square, was similar for FDR, pFDR, and SAM, but approximately 2.5 times greater for the MD-MM.
Correlation betweenmicroarray analysis and quantitative real time PCR. Results for all methods are given in Table 5. The
MD-MMcorrectly identifiedDE genes almost twice that of the othermethodswhile total errorswere less. Evenmore striking
differences between methods were obtained using those same treatments but with the wild type genetic background (see
Appendix Table A.1).

5. Discussion

We used three approaches for verification and comparison amongmethods, each has advantages and disadvantages. The
first was simulated data. The advantage of simulation is the answers are known without error, but the major disadvantage
is the data structures and the distributions simulated may not accurately reflect real world microarray data. The second
method used was actual microarray data, but combined with data splitting, where half of the data are used to verify the
remainder. Here, the advantage is that the data structures and distributions are valid, but we can only infer the accuracy of
the methods on agreement between different subsets. The third method used was correlation of decisions with expression
levels as determined by qRT-PCR. Here, the advantage is that qRT-PCR is a robust approach that is commonly used by
biologists to confirm differential expression as identified by microarray analysis, but this analysis was limited by the
additional time and expense and by the fact that qRT-PCR is itself subject to error. However, because all three methods
were used, each contributed to the strength of the conclusions.
Simulation results over a wide variety of parameters and assumptions showed that the MD-MM had the greatest

power and lowest total errors of the methods compared. Results using data halving and qRT-PCR on real data confirmed
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Table 5
Correlation of decision by method and classification by qRT-PCR for each data set and for which qRT-PCR results were available

Method Data set qRT-PCR X2 Correlation
∆CT < 1 ∆CT > 1
Decisiona Decisiona

Not DE DE Not DE DE

FDR A 139 5 138 33 28 .28
B 180 16 114 57 38 .31

pFDR A 181 15 113 58 40 .33
B 162 34 88 83 40 .33

SAM A 192 4 134 37 36 .31
B 179 17 93 78 35 .31

MD-MM A 139 59 52 119 59 .40
B 131 67 46 125 53 .38

a Decision based on 5% FDR (FDR, pFDR, SAM); or overlap with null distribution (MD-MM).

Fig. 4. Observed relationship of the t statistic with normalized treatment differences (D).

these findings for at least one experimental situation. All three methods of comparison support each other, not only as to
robustness and power of alternative methods, but also under which conditions the orders are determined. Additionally, our
results appear to be the first to incorporate qRT-PCR analysis as one of several approaches to extensively compare methods
of microarray analysis for both Type I and II errors, as well as power.
The simulation results indicate that the advantage of the MD-MM approach increased when applied under any of the

following conditions: increased variance among biological replicates, low replication, and non-homogeneous variances. All
of these factors result in a decrease in the overlap between the distributions of the null and differentially expressed genes,
thus cumulatively or individually lending strength to the MD-MM approach. These same factors either have no impact or
weaken the ability of the simple t-test to distinguish genes. The only factor that can increase power (for a given significance
level) of the simple t-test, or similar methods, is to increase the numbers of replicates. Although the data were generated
based on our set of assumptions, these are the same set of assumptions needed for analysis of variance, i.e. normality and
common variance. Thus comparisons were between parametric methods (SAM, FDR, pFDR) are based on the same set of
assumptions, although SAM is less dependent on those assumptions and should be more robust.
The microarray data also supports our concern regarding use of t-tests with small replication to find genes with large

expression differences. As shown in Fig. 1, those genes with the largest values of t were often due to underestimation of the
error variance, rather than large differences in expression. This relationship was examined with the real data in Fig. 4 where
the calculated value of t and observed differences in treatment means for each gene is given. Here the greatest values of t
are again associated with some of the smallest mean differences while the largest mean differences are associated with the
smallest values of t .
Similarly, this concern can be demonstrated with qRT-PCR. We examined the top 25 ranked genes with the highest

differential expression, as determined by qRT-PCR, in data sets A and B (Table 5) and found that the MD-MM found 36% and
28% respectively of these genes. In contrast, pFDR identified 4% and 4%, SAM identified 0% and 8%, and FDR identified 0 and
4% respectively of these genes. Thus ranking genes based on the simple t-test does not necessarily identify a high proportion
of genes with detectable DE, whereas an MM based on raw, or transformed, differences does. In addition to having better
success at identifying genes that exhibit DE, MD-MM has other technical advantages that are worth noting. Estimates of
magnitudes for sources of variation can be used for quality control purposes and experimental design to determine sample
sizes needed to achieve a desired power.
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One critical feature of MD-MM that allows it to better describe the transcriptome is the recognition that genes can only
fall into four expression categories, with three different variance structures. Genes in Category 4, i.e. expressed in both
conditions, may include genes with minimal or negligible difference in expression in the two conditions, whereas all genes
in Category 1 cannot have any real difference in expression, yet both situations can result in genes that are (virtually) not
differentially expressed. However, microarray data that arise from expressed genes are influenced by biological background,
sampling, and technical errors, whereas those related to null genes are only influenced by technical errors. Thus each
category of gene is expected to have a different variance structure. Therefore fitting differential expression into two
categories (differentially expressed and not) as commonly found in the literature is a vast oversimplification that either
assumes (1) all expressed genes are expressed under both conditions, but at different levels, or (2) that genes are only
expressed in one condition but not the other. There is no allowance for a combination of (1) and (2).
Use of our MD-MM to declare significant DE genes requires careful consideration of our definition of DE. All genes

expressed in at least one environment or condition are by definition DE, even those that are expressed in both environments
at approximately the same level. This is because there is zero probability of two expressed genes having a true difference of
zero. From a pragmatic perspective, genes which are expressed in both environments but near equally will overlap the null
distribution, which by definition is centered at zero, and will be declared not-DE. In Fig. 2, all those genes contained within
the (p/2)%FDR interval are considered not DE because they overlap the null by (1 − p)%, but for genes in any interval, we
can give the probability of being associated with each of the distributions.
Although the MD-MM method uses raw (or transformed) differences as the metric of DE, the result should not be

interpreted as a fold change test. A fold change test is based on a constant critical value for significance, usually 1 if log2
transformed. As a result, power can decrease as sample size increases (Allison et al., 2002), which is the opposite of what the
MD-MM method achieves. With the MD-MM the critical value, determined by the overlap of expressed gene distributions
with the null distribution, decreases directly with sample size, i.e. σ 2

D(0)
= 2σ 2∂ /r . However, we implicitly assume a common

variance for genes within a cluster and common technical variation across clusters. This assumption is certainly false but
appears adequate for our MD-MM approach based on both simulations with heterogeneous variances and actual data. Thus
our mixture model also takes into account variance structure of gene expression levels, which is not accounted for with a
simple fold change. Another beneficial feature of using a MM approach is that it can be used to facilitate a meta-analysis
across labs and platforms by standardizing the deviations within labs/platforms to a phenotypic variance estimated for
that lab/platform before combining data. For a meta-analysis, the D statistic is standardized using the phenotypic standard
deviation among expression levels across the transcriptome. Because of the large number of genes in an array, this variance
can be measured with great precision.
In conclusion, the MD-MM as developed here allows for greater power in poorly replicated experiments and also with

poor signal to noise ratios.
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Appendix

See Table A.1.

Table A.1
Correlation of decision for uwt vs.wt comparison by method and classification by qRT-PCR for each data set and for which qRT-PCR results were available

Method Data set qRT-PCR X2 Correlation
∆CT < 1 ∆CT > 1
Decisiona Decisiona

Not DE DE Not DE DE

FDR A 220 0 142 5 8 .14
B 219 1 141 6 6 .13

pFDR A 219 1 138 8 9 .16
B 218 2 137 10 10 .16

SAM A 218 1 136 11 14 .19
B 218 2 135 12 13 .19

MD-MM A 167 53 49 89 63 .41
B 171 49 47 100 76 .46

a Decision based on 5% FDR (FDR, pFDR, SAM); or overlap with null distribution (MD-MM).
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