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Introduction 

A new approach to biology, that we call systems biology, has emerged over the past 10 years or 

so—an approach that looks at biology as an informational science, studies biological systems as 

a whole, and recognizes that biological information in living systems is captured, transmitted, 

modulated, and integrated by biological networks which pass this information to molecular 

machines for execution.  This approach differs from early “systems approaches to biology” in 

that it attempts both a bottom-up approach (from large molecular datasets) and a top-down 

approach (from computational modeling and simulations) where there is an attempt to trace 

complex observations of phenotype back to the digital core encoded in the genome. New 

measurement and visualization technologies together with powerful computational and modeling 

tools have transformed systems biology by making it possible for the first time to execute the 

five uniquely defining features of contemporary systems biology: 1) measurements of the various 
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types of biological information that are global or comprehensive to the greatest extent possible 

(e.g., measure the digital code of all genes or, for example, the concentrations of all mRNAs, all 

proteins, all metabolites, etc.); 2) the different levels of information (DNA, RNA, protein, etc.) 

must be integrated to understand or capture how the environment has modified the basic digital 

information of the genome at each level of the biological information hierarchy (DNA, RNA, 

proteins, interactions, biological networks, cells, individuals and ecologies) and thereby to 

induce biological responses; 3) all biological systems (e.g. networks) must be studied 

dynamically as they capture, transmit, integrate and utilize the biological information necessary 

for the execution the two most fundamental responses of living organisms – development or 

physiological responses to the organism‘s environment, 4) all measurements must be 

quantitatively determined to the greatest extent possible, and 5) the global and dynamic data 

from the variety of information hierarchies must be integrated and modeled. These models 

essentially create hypotheses about biological functions and mechanisms of disease that can then 

be tested experimentally by systems perturbations—the enumeration of new data sets, their 

integration, modifications of models, in an iterative manner, until the working models reflect the 

reality of the experimental data.  Once the models accurately fit the biological systems 

measurements, they can be used to predict the results of perturbing the system in new ways (e.g. 

for designing treatment strategies or for identifying likely underlying causes for disease). 

 

The information revolution in biology will enable systems medicine to emerge in the next ten 

years.  Key to this transformation will be harnessing computationally the vast amount of 

biological information becoming available through rapid advancement in measurement, 

visualization and computational technologies.  Two fundamental types of biological information, 
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the digital information of the genome and interacting information from the environment, are 

integrated together to specify the five fundamental mechanisms of life—evolution, development, 

physiological responses, aging and the onset and progression of disease (Hood et al., 2004).  

Advances in high throughput DNA sequencing will enable each person’s genome to be 

sequenced rapidly, and at a reasonable cost providing digital information for each person, and 

making possible the prediction of increasingly accurate probabilistic health futures.  Also, the 

advance of high-throughput measurement technologies will enable the assessment of dynamic 

environmental information emerging from the integration of genome and environmental 

information from each individual, as reflected, for example, by the changing levels of proteins in 

the blood—thus providing a real time (current) heath assessment of the individual.  These 

technologies will generate tremendously large, dynamical data sets about health states and hence 

about the states of relevant biological networks of the individual patients.  This detailed 

information will arise through the use of perturbation experiments coupled with global 

experimental technologies, and progress in systems biology research is increasingly elucidating 

the functions and structures of these networks.    

 

A systems approach to medicine argues that disease arises from disease-perturbed biological 

networks and that the dynamically changing, altered patterns of gene expression that are 

controlled by these perturbed networks give rise to the disease manifestations.  Here, we present 

a systems view of biology and disease together with a discussion of some recent advances in 

state-of-the-art in vitro and in vivo diagnostics technologies, and we suggest how, as these 

technologies mature, they will move us towards a future of predictive, personalized, preventive, 

and participatory medicine (P4 medicine) (Hood et al., 2004). 
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I. Systems Science in Biology and Medicine 

A. Systems biology 

How do systems approaches to biology and medicine lead to a revolutionary view of medicine?  

We present this systems view in some detail because an understanding of P4 medicine and its 

implications for society are predicated upon understanding these systems principles.  Two 

primary domains of biological information lend themselves readily to such systems-level 

analysis: the static, digital information of the genome, and the dynamic information arising from 

environmental interactions with the sub-cellular, cellular,  and tissue levels of organization 

(Hood et al., 2004).  Digital genome information encodes two types of biological networks — 

protein interactions and gene regulatory networks.  Protein networks transmit and use 

biological information for development, physiology and metabolism.  Gene regulatory networks 

— transcription factors, their regulatory binding sites and the small RNAs that regulate networks 

of other transcription factors and other RNAs interacting with one another  — receive 

information from signal-transduction networks, integrate and modulate it, and convey the 

processed information to networks of genes or molecular machines that execute developmental 

and physiological functions.  In biological systems these two types of networks are closely 

integrated. The organization of these networks can be inferred from various types of 

measurements including, for example, global measurements of dynamically changing levels of 

mRNAs and proteins during developmental and physiological responses, as well as large-scale 

measurements of protein–protein and protein–DNA interactions.  There are multiple 

hierarchical levels of organization and information (for example, DNA, RNA and protein 
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networks, cellular and metabolic networks, and organization and responses of organ systems). To 

understand biological systems, information must be gathered from as many information levels as 

possible and integrated into models that generate hypotheses about how biology works.  Let us 

now consider the logic of systems approaches to medicine. 

 

B. Systems medicine 

The central premise of systems medicine is that disease-perturbed networks alter patterns of 

expression in genes and proteins – and that these altered patterns encode the dynamic 

pathophysiology of the disease and necessarily results in altered molecular fingerprints that can 

be detected clinically. Through advances in measurement technologies and computational 

analysis tools for tissue and blood analyses, we will be able to read these signals to make a 

multitude of diagnoses to distinguish health from disease and to determine the nature of any 

pathology.  Multi-parameter analyses of biological information will be key to tracking these 

altered patterns in disease-perturbed networks.  Diagnostic methods of the past have been pauci-

parameter in nature—usually measuring just a single parameter relevant to a specific disease 

state (e.g. PSA), and so our ability to track health and disease has been limited.  Current and 

emerging technologies are creating a transition into a new era of predictive, preventative, and 

personalized medicine.  A causal disease perturbation could be the result of specific, disease-

causing DNA mutations, pathogenic organisms, or other pathological environmental factors such 

as toxins.  Molecular fingerprints of pathological processes can take on many molecular forms, 

including the analyses of proteins (Wang et al., 2005), DNA (Papadopoulou et al., 2006), RNA 

(Scherzer et al., 2007), and metabolites (Solanky et al., 2003), as well as informative, post-

translational modifications to these molecules such as protein phosphorylation.   
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Signals related to health and disease can be found in multiple sites.  For instance, many bodily 

fluids such as the blood, urine, saliva, cerebral spinal fluid and so forth can be sampled to 

identify evidence of perturbed molecular fingerprints reflecting the altered expression patterns of 

genes and proteins in disease-perturbed biological networks.  Of these, the blood is likely the 

most information rich organ (or fluid) in that it bathes all of the tissues in the body, and it is 

easily accessible for diagnostic procedures.  In addition to the biomolecules secreted into the 

blood from cells and tissues throughout the body, the transcriptomes and proteomes of cells 

circulating in the blood (e.g. white blood cells) are also potentially an abundant source of 

biomedically important information (Buttner et al., 2007).  Thus, the amount of information 

available in the blood about health and disease is enormous if we learn to read and interpret the 

molecular signals. 

 

As an example of an environmental disease perturbation, we have studied the dynamic onset of 

the infectious prion disease in several strains of mice at the level of mRNA in the brain (the 

affected organ), and showed that a series of interlocking protein networks that surround the prion 

protein are significantly perturbed across the 150-day span from disease initiation to death.  

Figure 1 shows differential networks that were derived from comparisons of mRNA-expression 

patterns in normal and diseased brains at each of three time points after infection. They involve 

67 proteins in the prion replication and accumulation network. The initial network changes occur 

well before the clinical signs of the disease can be detected and predict later widespread 

histopathological events. 
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Figure 1.  A central sub-network involved in neuronal pathology in mouse prion disease, shown 
at three times after inoculation.  Red circles indicate increased levels of gene expression relative 
to controls. 
  

These dynamically changing, disease-perturbed networks lead to two important conclusions. 

First, some significant network nodal points change before the related clinical or histological 

changes are evident. Therefore, labeled biomarkers that are specific for the changing nodes or the 

biological processes they regulate could be used for in vivo imaging diagnostics even before 

symptoms arise, as has already been shown in patients (Golub et al., 1999; Quackenbush, 2006; 

Ramaswamy et al., 2001; Wang et al., 2005).  Alternatively, if some of these altered nodes 

encode secreted proteins, they could provide readily accessible in vitro diagnostic blood markers 

for early disease detection. Second, many of the sub-networks of proteins that change during the 

onset of disease affect changes in phenotypic traits that are consistent with the pathology of the 

disease. About 900 perturbed mRNAs appear to encode the core prion-disease response and 

during the progression of the prion-disease process, several hundred undergo significant gene 

expression changes well before the clinical signs of prion disease. Many of these potential early-
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disease ‘sentinels’ are predicted to be secreted into the blood and therefore represent potential 

protein biomarkers for early disease diagnosis through blood protein analysis. One interesting 

new diagnostic method evaluates relative expression reversals in protein concentrations or gene 

expression levels.  This procedure eliminates the need for data normalization or the 

establishment of population-wide thresholds.  This approach has been successfully used to 

identify robust and accurate classifiers for prostate cancer (Xu et al., 2005), sarcomas (Price et 

al., 2007), and a variety of other cancers (Tan et al., 2005), as well as to predict treatment 

outcomes in breast cancer (Ma et al., 2004), demonstrating the efficacy of even relatively low-

order systems analysis in medicine. 

 

Another key issue that needs to be addressed is how to best decouple two primary dimensions of 

disease information: namely, disease stratification (e.g., which type of prostate cancer is present) 

and disease progression (e.g., stage of development of a particular prostate cancer stratification 

in time).  Molecular signature changes can indicate the presence of different diseases 

(stratification) as well as their stage (progression).  Thus, a key challenge in future will be to 

develop analysis tools that will enable us to differentiate the location of the physiologic state in 

regards to both of these critical clinical dimensions. 

 

II. Multi-parameter Blood-Bourne Biomarkers 

In principle, it is clear how blood samples containing secreted molecules from all of the tissues 

in the body can be used as a window into health or disease states (Anderson and Anderson, 2002; 

Fujii et al., 2004; Hood et al., 2004; Lathrop et al., 2003; Lee et al., 2006).  In practice, however, 

the task of identifying markers of disease states in the vast array of secreted proteins can seem 
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daunting.  There are millions of different proteins present in the blood and they are expressed at 

levels that probably differ by 12 orders of magnitude (1012). Thus, there are indeed very 

significant challenges associated with defining relevant biomarkers in the plasma proteome, as is 

evidenced by the paucity of blood protein markers found thus far, despite significant efforts 

(Wilson, 2006). This fact highlights the need to develop well-founded systems approaches to 

diagnostics in order to hasten the identification of such markers and to harness the tremendous 

information potential of the blood.  While the potential information available to diagnose heath 

and disease is enormous, it is also true that the challenges of separating signal from background 

noise (biological or measurement noise) are also very significant. Sources of noise include error 

in measurements, polymorphisms in the population, environmental variations, stochastic 

variations, as well as signal dilution through mixing and other processes of molecule transport.  

Thus, enhancing signal while reducing noise will be a primary theme of research in predictive 

medicine for the foreseeable future. 

 

An important strategy for dealing with noise arising from genetic polymorphisms and health 

histories in the population are through dynamic, subtractive analyses carried out in the individual 

patient.  In other words, measurements taken from individual patients at different time points 

(longitudinal data) can be used to perform subtractive analyses where only the differences 

observed are considered.  Thus, each patient becomes their own control, which eliminates many 

of the sources of noise.  Eventually, it will be important for each patient to have biannual blood 

analyses taken so that changes can be observed relative to the background of what is normal in 

each individual rather than relative to the population at large. Such databases of measurements 
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will be essential to enabling personalized and predictive medicine.  Using each patient as their 

own control is one of the essential features of the emerging personalized medicine. 

 

A. Organ-specific blood protein fingerprints 

We discuss the organ-specific blood protein fingerprint approach to diagnostics because it lies at 

the very heart of the predictive medicine that will emerge over the next 10 years.  Our feeling is 

that this will be one of the central data gathering strategies for predictive and personalized 

medicine and, accordingly, we will discuss it in some detail.  The idea that disease arises from 

dynamically changing disease-perturbed networks, that the diseased organs will secrete proteins 

into the blood, and that if these proteins are encoded by disease-perturbed networks their  levels 

of expression in the blood will be altered in a manner that reflects the specific nature of the 

disease.  Indeed, this idea is the basis for the very broad range of blood biomarker studies that are 

being carried out by many scientific centers (Anderson and Anderson, 2002; Fujii et al., 2004; 

Hood et al., 2004; Lathrop et al., 2003; Lee et al., 2006). The major difficulty with this simple 

view is that if you identify multiple blood proteins whose changes are specific for a particular 

disease state (as compared against normal controls) and then examine the same blood markers 

for that disease in bloods drawn from individuals, with say 10 other pathologies, these marker 

proteins can change in unpredictable ways since multiple organs control the expression of most 

blood proteins and these organs respond differently to various environmental signals. The 

important point is that if a marker protein synthesized in five organs changes in the blood, we 

cannot be certain which organ(s) is the origin of the change.  While that marker may sample a 

biological network relevant to disease diagnosis, since its origin is not clear its use as a disease 

biomarker may raise more questions than it answers. The solution to this dilemma is clear – 
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employ organ-specific blood protein biomarkers whose changes must therefore reflect changes 

only in the organ itself.  If enough of these organ-specific blood proteins are sampled, they will 

represent a survey of many different biological networks in the organ of interest and will provide 

sufficient diagnostic information for any disease.  Eventually, correlation of these organ specific 

biomarkers with more general biomarkers may prove to be the best long term strategy for 

developing diagnostic fingerprints. 

 

We have several lines of preliminary evidence that suggest this organ-specific blood protein 

approach will be effective.  In prostate cancer, for example, there are disease-mediated altered 

patterns of mRNA and protein expression in the prostate. Some of these genes are expressed 

primarily in the prostate (organ-specific products) and some of these organ-specific proteins are 

secreted into the blood, where they collectively constitute a protein molecular fingerprint 

comprised of say 100 or more proteins whose relative concentration levels probably report the 

status of the biological networks in the prostate gland. We have demonstrated that changes in the 

blood concentrations of several of these prostate-specific blood proteins reflect the various stages 

of prostate cancer and, as discussed above, various brain-specific blood proteins also reflect the 

progression of prion disease in mice.  We propose that the distinct expression levels of the 

individual proteins in each fingerprint represent a multi-parameter (and therefore potentially 

information rich) diagnostic indicator reflecting the dynamic behavior of, for example, the 

disease-perturbed networks from which they arise.  The analysis of 50 or so organ-specific 

proteins should allow us to both stratify diseases in the organ as well as determine their stage of 

progression.  We have identified 10s to 100s of organ-specific transcripts in each of the 40 or so 

organs that we have examined in mouse and human. 
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We can envision a time over the next 5-10 years when 50 or so organ-specific blood proteins will 

be identified for each of the 50 or so major organs and tissues in humans—so that computational 

analyses of the relative concentrations of the protein components in these organ-specific 

fingerprints will enable blood to become the primary window into health and disease. When we 

analyze data from these blood indicators, we also may be in a position to identify the 

dynamically changing disease-perturbed network(s).  The analysis of these dynamic networks 

will allow us to study in detail the pathophysiology of the disease response and hence be in a 

position to think of new approaches to therapy and prevention. To generate the ability to assess 

simultaneously all 50 organ blood protein fingerprints in patients, we ultimately need to develop 

the microfluidic or nanotechnology tools for making perhaps 2500 rapid protein measurements 

(e.g. 50 proteins from each of 50 human organs) from a droplet of blood.  Nanotechnology is 

necessary because only this severe miniaturization can allow the necessary thousands of 

measurements from a single drop of blood.  In order to reach this stage we will also have to 

create the appropriate computational tools to capture, store, analyze, integrate, model and 

visualize the information arising from this approach. 

 

III. Emerging in vivo and in vitro technologies 

A. In vitro measurement technologies 

P4 medicine will require that in vitro measurements of thousands of blood proteins be executed 

rapidly, automatically and inexpensively on small blood samples. This will require 

miniaturization, parallelization, integration and automation of tissue and blood purification and 

measurement technologies. In short, it will require making in vitro measurements inexpensively 



 13

– perhaps for a penny or less per protein measured. This need for inexpensive in vitro 

measurements is driving the development of integrated microfluidics and nanotechnologies for in 

vitro diagnostics.  We further argue that the complex changes in these protein levels must be 

analyzed computationally to search for the patterns that correlate with particular diseases—and 

indeed to stratify each disease as well as determine its stage of progression.  

 

To meet the expanding requirements of systems medicine, in vitro measurements of cells, 

proteins, mRNAs, etc., whether for fundamental biological studies or for pathological analysis, 

must not just be inexpensive, but must also be sensitive, quantitative, rapid, and executed on very 

small quantities of tissues, cells, serum, etc.   We are working towards developing chip platforms 

that can take a few microliters (a finger prick) of blood, separate the plasma from the serum, and 

then measure on the order of 100 or more proteins and/or mRNAs quantitatively, with high 

sensitivity and specificity, and in a few minutes time.  We can envision a time 5-10 years hence 

when small hand-held devices will be able to make these 2500 measurements from a fraction of a 

droplet of blood, send them via wireless to a server for analysis and consequently inform the 

patient and physician as to the status of the patient.  While many fundamental scientific 

challenges remain to be solved before this goal is achieved, none of those challenges appear 

insurmountable at this point.   

 

One will also be able to use the blood cells as powerful diagnostic markers—either of infectious 

diseases or of genetic diseases.  Microfluidic cell-sorting technologies for being able to sort 

blood cells into their 10 or so individual types for analysis are now available.  Even more 

important is the emergence of single-cell analytic tools where DNA, mRNAs or small RNAs, 
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proteins and even metabolites can be analyzed rapidly from individual cells.  The cells can also 

be perturbed with appropriate environmental stimuli to identify defects.  It is possible that an 

appropriate analysis of immune cells (both innate and adaptive) from the blood will reveal 

important information about past antigenic history of the individual as well as current state of 

immunological responsiveness.  Similarly, analysis of rare blood cells such as circulating cancer 

cells may also be utilized to guide therapies. 

 

Another type of in vitro measurement will be a determination of the complete genome sequence 

of individuals with a nanotechnology approach to sequencing single strands of DNA on a 

massively parallel basis (billions of DNA strands simultaneously).  A device like this will 

emerge over the next 5-10 years and will allow millions, if not billions, of individual human 

genome sequences to be determined rapidly, inexpensively and in a massively parallel manner. 

The 2500 organ-specific blood marker measurements and the complete individual human 

genome sequences will be the heart of the predictive and personalized medicine that will emerge 

over the next 10 years or so. 

 

While transcriptomic approaches have proven useful for identifying informative molecular 

signatures for a number of diseases (Quackenbush, 2006), high throughput proteomic 

characterizations have lagged behind.  The reason for this difference is clearly the more difficult 

challenge of measuring proteins compared to mRNA transcripts.  Emerging proteomics 

technologies hold the promise of greatly improving our ability to make detailed disease 

assessments using protein-based molecular signatures.  One key advantage of protein signatures 

relative to gene expression is that the proteins found in the blood and other accessible bodily 
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fluids exhibit slower degradation rates than their mRNA counterparts—and of course proteins 

are the direct agents mediating the disease process itself.  Thus, protein concentration signatures 

represent an important class of molecular signature for disease diagnosis.  

 

B. The challenges of proteomics and blood protein biomarkers.  

The blood is an ideal organ for identifying biomarkers because it interacts with virtually every 

organ and major tissue type in the body, and each secretes proteins into the blood.  Moreover, the 

blood is easily accessible for diagnostic studies—and presumably the analysis of changes in 

protein levels or protein modifications that could serve as surrogates or reflections of health and 

disease.  As noted earlier, the blood is an enormously complex organ; it contains hundreds of 

thousands to millions of proteins whose concentrations range over 12 orders of magnitude.  

Since there is for proteins no equivalent to the polymerase chain reaction (PCR) amplification 

procedure, only the more abundant proteins can be seen by conventional protein analysis studies.   

It should also be pointed out that many different features of proteins ultimately must be 

characterized or quantified:  identification, quantification, chemical modifications, alternative 

mRNA splicing products, cellular localizations, three-dimensional structures (and their 

dynamics), as well as their functions.  We here are only concerned with the quantification and 

identification of proteins. 

 

There are two general approaches to the analysis of protein mixtures.  In one case protein-capture 

agents such as antibodies are used—and with appropriate controls these approaches can quantify 

the levels of proteins.  These techniques include Western blot analyses, ELIZA assays, surface 

plasmon resonance and protein chips.  A second approach is to use mass spectrometry.  Since 
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proteins have large masses that are difficult to analyze accurately by mass spectrometry, most 

proteins are analyzed after converting them into tryptic peptides (or other proteolytic fragments) 

whose masses are far smaller and hence more easily analyzed.  Because blood is such a complex 

mixture, proteins of interest are often enriched by some type of fractional procedure (charge, 

hydrophobility, size and/or the presence of modifications such as glycosylation or 

phosphorylation,) before (or after) their conversion into peptides and analysis by mass 

spectrometry.  Isotopically labeled and synthesized peptides may be used to identify and quantify 

(relative or absolute) the same peptides from unknown samples (and hence one obtains a proxy 

for the quantification of their corresponding proteins) very effectively by mass spectrometry. 

 

We discuss below examples of some of these techniques. 

 

1. Antibody microarrays using surface plasmon resonance imagining (SPRI) 

Protein chip methods hold great potential for broad quantitative screens of proteins, and a variety 

of techniques have been developed based on antibody binding (Haab et al., 2001; Olle et al., 

2005; Song et al., 2007).  Various types of antibody arrays have been used for biomarker 

discovery and protein profiling of serum from patients with prostate, lung, pancreas and bladder 

cancer (Gao et al., 2005; Miller et al., 2003; Orchekowski et al., 2005; Sanchez-Carbayo et al., 

2006).  One emerging approach with tremendous promise is SPRI (Hu et al., 2007; Huber and 

Mueller, 2006; Koga et al., 2006), which enables real-time, label-free measurement of protein 

expression by large numbers of different antibodies.  SPR-based chips have a detection 

sensitivity of 10-100 times less than ELISA (Hu et al., 2007), but have a spatial resolution down 

to approximately 4 µm (Lyon et al., 1998).  It is thus possible to print up to 800 unique 
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antibodies on Lumera Nanocapture GoldTM microarray slides and monitor the abundance of the 

target proteins in real time (Hu et al., 2007) even in complex samples such as blood.  Because the 

same slide can be regenerated for reuse many times in 10 minutes or less (Z. Hu, C. Lausted, 

unpublished observations).  We are in the process of automating the sample introduction 

procedures using microfluidic chips , which means that SPRI has the capacity necessary to 

screen rapidly through tens to hundreds of patient samples.  Thus, this approach holds 

tremendous promise to be able to screen through large numbers of proteins, including secreted 

proteins and cell-surface markers and not only measure their presence, but also abundance and 

the dynamics of their binding.  The limitation of this technique is its dependence on the affinity 

and specificity of the antibodies it employs for detection—cross reactivities in complex protein 

mixtures (such as blood) can pose significant problems.   

 

2. DNA-encoded antibody libraries (DEAL) 

One recently developed technique that offers great potential for detailed analyses is DEAL.  The 

primary advantage of DEAL is that it uses a single, robust chemistry – that of DNA 

hybridization – to spatially localize and detect proteins, mRNAs, and cells, all in a multiplexed 

fashion.  Antibodies are typically too fragile to survive the fabrication procedures associated with 

assembling robust microfluidics chips, but DNA oligomers are significantly more robust. DEAL 

thus enables the detection of panels of protein biomarkers within a microfluidics environment 

and from very small quantities of biological material (100 nanoliters or so) (Yang et al., 2006).  

This amount of plasma can be readily separated from whole blood on-chip, thus allowing for the 

measurement of serum biomarkers from a fingerprick of whole blood.  In addition, within the 

environment of flowing microfluidics, the rate-limiting step in performing a surface 
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immunoassay is the kinetics of the binding of the analyte to the surface-bound capture agent 

(Zimmermann et al., 2005). Thus, DEAL-based immunoassays can be executed very rapidly.   

  

The versatility of DEAL also enables multiplexed cell sorting and localization, followed by few- 

or single-cell measurements of protein, RNA, and other biomolecules (Bailey et al., 2007).  

DEAL can be engineered into a highly sensitive and very rapid measurement technique, with a 

reported detection limit of 10 fM for the protein IL-2 – 150 times more sensitive than the 

corresponding commercial ELISA assay.  This sensitivity can be applied to the isolation of rare 

cells based on combinations of cell-surface markers, enabling the isolation and addressing of 

individual cancer stem cells.  DEAL can also be used to make single cell measurements of 

secreted proteins from each of these isolated single cells.  Thus, DEAL offers superb sensitivity 

and the ability to perform spatially multiplexed detection for characterization of rare cell types, 

such as circulating cancer cells or cancer stem cells.  These advantages still face the inherent 

limitations of antibodies, so the development of new approaches to generating protein-capture 

agents is a critical part of future development of comprehensive blood diagnostics. 

 

D. Mass spectrometry based techniques 

1. Isotopic tagging for relative and absolute quantification (iTRAQ) of proteins analyzed by mass 

spectrometry 

 

Stable isotope labeling enables the quantitative analysis of protein concentrations through mass 

spectrometry (MS).  One state-of-the-art technique for quantitative MS is iTRAQ (Ross et al., 

2004), which uses stable isotope labeling of proteolytic peptides.  This technique modifies 
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primary amino acid groups of peptides by linking a mass balance group, and a reporter group by 

forming an amide bond.  When MS/MS is used for analysis with iTRAQ-tagged peptides, the 

mass balancing carbonyl moiety is released as a neutral fragment generating 4-8 distinct sets of 

peptides whose relative abundances can be determined quantitatively. Because eight different 

iTRAQ reagents are currently available, comparative analysis of a set of two to eight samples is 

feasible within a single MS/MS run (Hu et al., 2007).  The, iTRAQ technology represents the 

state-of-the-art in quantitative proteomics and represents a promising technology for using 

proteomics to differentiate key differences in protein networks. 

 

2. Glyco-peptide capture—front end enrichment of blood proteins containing sugar residues  

Mass spectrometry-based methods will allow for the identification of proteins spanning 

approximately three orders of magnitude in concentration from a given sample.  Therefore, 

methods that can select specified fractions of the proteome are important for simplifying the 

sample sufficiently to identify the proteins of interest.  One recently developed approach is the 

shotgun glycopeptides capture approach (Sun et al., 2007).  This approach selects for N-linked or 

O-linked glycosylated peptides by selectively coupling these peptides to beads—allowing the 

uncoupled peptides to be washed away—then the glycosylated peptides are be released and 

analyzed by mass spectrometry. Both secreted and cell-surface proteins are enriched for 

glycopeptides compared with their nuclear and cytoplasmic counterparts. Thus, this approach 

can be used to, for example, identify candidates for unique cell-surface markers to make 

identifications of clinically relevant cellular subpopulations.   

 

D. In vivo molecular diagnostics 
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As it relates to personalized and predictive medicine, in vivo molecular diagnostics will also 

require the development of a diverse library of molecular imaging probes. These modular tools 

can be used to 1) identify the specific location of disease-perturbed networks in patients; 2) link 

in vivo molecular measurements in diseased tissue in patients to in vitro measurements; 3) 

rapidly assess the efficacy of personalized therapeutics; and 4) validate that a drug is hitting its 

target and inducing the desired pharmacological outcome. Although there are many in vivo 

imaging modalities, perhaps the best current method from the point of view of personalized and 

predictive medicine in patients is positron emission tomography (PET) molecular imaging 

(Czernin and Phelps, 2002). For PET, trace quantities of radiolabeled molecular probes are 

injected into the patient. As the probes circulate through the body and its various organ systems, 

they interact with target proteins to provide imaging assays for, as examples, the rate of 

metabolic processes, the concentration of receptors in signal transduction, enzyme activity, 

DNA-replication rates, hormone status, pharmacokinetics and pharmacodynamics. 

 

IV. Computational and Mathematical Challenges in Systems Medicine 

A. Molecular Signature Classifiers 

Computational methods are needed to reduce the high degree of data dimensionality associated 

with global data sets to identify molecular signatures that can be used for disease diagnosis.  

Despite notable and significant challenges that remain (Dupuy and Simon, 2007; Simon, 2005), 

computational analyses to identify molecular signatures from global gene expression data sets 

that can be used for diagnosis and treatment selection (Quackenbush, 2006) is an area of research 

that has shown significant promise.  These studies typically involve the collection of samples 

from two or more classes (e.g. cancer vs. normal, or responsive vs. non-responsive to treatment) 
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and the use of a set of data on which to train the classifier and another set on which to test.  In the 

absence of a true test set, re-sampling methods (such as cross-validation) are generally used to 

estimate likely performance of the classifier on future data.  The ability to generate an accurate 

classifier is a function of factors such as 1) the size of the training set relative to the number of 

features, 2) the computational method used, and 3) the inherent distinctness of the selected 

phenotypes.  Typically, the number of samples is far less than the number of transcripts, and 

consequently over-fitting is a significant problem.  This leads to the need for computational 

methods that avoid over-fitting when selecting a classifier.  A variety of methods have been 

applied to cancer diagnoses including approaches based on support vector machines (Furey et al., 

2000; Ramaswamy et al., 2001)  and relative expression reversals (Geman et al., 2004; Price et 

al., 2007; Tan et al., 2005; Xu et al., 2005), among many others.  Application of these methods 

has perhaps been applied most extensively to the study of cancer, leading to the discovery of 

molecular classifiers of varying degrees of accuracy to identify prognostic signatures for breast 

cancer (Adler and Chang, 2006; Buyse et al., 2006; Dai et al., 2005; Foekens et al., 2006; 

Glinsky et al., 2004; Goncalves et al., 2006; Ivshina et al., 2006; Liu et al., 2007; Ma et al., 2004; 

Nuyten et al., 2006; Park et al., 2007; Pawitan et al., 2005; Thomassen et al., 2007; van 't Veer et 

al., 2002; van de Vijver et al., 2002; Wang et al., 2005; Weigelt et al., 2005), ovarian cancer (De 

Cecco et al., 2004; Smith, 2002; Spentzos et al., 2004), colon cancer (Barrier et al., 2006; 

Giacomini et al., 2005), prostate cancer (Dhanasekaran et al., 2001; Glinsky et al., 2004; 

Halvorsen et al., 2005; Lin et al., 2005; Luo et al., 2002; Singh et al., 2002; Xu et al., 2005), and 

brain cancer (Fuller et al., 2005; Kim et al., 2002), among others.   

 

B. Biological Networks and the Interactome 
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Among the most promising opportunities presented by systems biology is the integrated 

assessment of multiple biological parameters to magnify our understanding of complex 

developmental or pathological states. The interaction between all individual biomolecules in 

complex regulatory, signal transduction, and feedback networks present in eukaryotic organisms 

forms the theoretical framework for this higher-order analysis and is referred to as the 

interactome. These dynamic associations include protein-protein interactions, transcriptional 

regulation, and post-transcriptional gene silencing by short-interfering RNA and microRNA 

(Ruvkun, 2001). Multiple high-throughput methods have been developed to characterize the 

interaction between proteins, including the yeast-two-hybrid system (Ito et al., 2001) and 

surface plasmon resonance (Usui-Aoki et al., 2005).  These methods are to determining 

interactome interactions what microarray studies are to determining relative mRNA 

concentrations.  Identifying multi-protein and multi-gene interactions is a complex 

computational and statistical task. Current studies often examine pair-wise interaction data 

between biomolecules, such as whether two proteins are positively correlated or negatively 

correlated in vivo.  These techniques have been used to profile portions of the yeast, fly, worm, 

and human interactomes, aided by automated data mining programs such as Reactome (Joshi-

Tope et al., 2005) and curated databases including BioGRID (Stark et al., 2006). Computational 

appraisal of these biological networks promises multi-variate markers of pathology where 

traditional, single-parameter studies are insufficient, and represents a promising new domain for 

the characterization, diagnosis and potential treatment of human disease. 

 

C. Quantitative predictive models of biological systems 
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Quantitative network models in biology can be grouped into two broad classes, statistical 

inference networks and biochemical reaction networks (Price and Shmulevich, 2007). Statistical 

inference networks represent one approach to modeling biological networks that holds 

tremendous potential for advancing knowledge of biology.  One approach is the use of statistical 

associations in high-throughput data types to infer predictive network models.  These statistical 

inference networks differ from interaction networks in that the connections between different 

network components is accompanied by mathematical functions precisely relating how 

perturbations to one (or a set of) component(s) appears to effect the others, independent of the 

state of interaction.  In essence, statistical inference networks are predictive and computable, 

while interaction networks as a rule are not.  Interaction networks can, however, be an important 

– even essential – information source for the reconstruction of predictive statistical inference 

networks.  The growing amounts of high-quality microarray gene expression data, coupled with 

input from gene-protein interaction networks, are now making it possible to make robust 

statistical inferences about the structure and dynamics of biomolecular control systems, such as 

transcriptional regulatory networks.  Many approaches attempt to infer relationships between 

gene expression measurements using deterministic or stochastic formalisms. The fundamental 

idea behind these approaches is that models that faithfully capture such relationships have 

predictive capacity as regards system behavior and can be used to gain insight about system-wide 

properties, such as steady-state behavior or responses to perturbations or specific stimuli. 

Accurate network models that can predict the results of perturbations hold promise for enabling 

personalized medicine by allowing for the rational design of therapies and the identification of 

likely disease-causing perturbations. 
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When the necessary biochemical detail is known, biochemical reaction networks can be 

reconstructed – providing the basis for quantitative network models.  These networks represent 

the underlying chemistry of the system, and thus represent stoichiometric relationships between 

inter-converted biomolecules.  Biochemical reaction networks are directly based on chemistry, 

rather than a reflection of statistical associations, as are statistical inference networks.  These 

stoichiometric reconstructions have been most commonly applied to small-molecule 

interconversions in metabolic networks, but this formalism can easily incorporate biological 

transformations of all types, including for metabolic, signaling, protein-protein interactions, and 

gene regulatory networks (Palsson, 2004).  One enabling resource for large-scale quantitative 

modeling of metabolic networks to study human disease is the recent stoichiometric 

reconstruction of known human metabolism at the genome-scale (Duarte et al., 2007).   These 

biochemical reaction networks can be used to make numerous quantitative simulations that have 

been shown previously to match well with experimental data in model organisms (Price et al., 

2004).  These successes with model organisms have also been extended to models of simple 

human systems such as the erythrocyte (Mulquiney and Kuchel, 2003; Price et al., 2004) and 

mitochondria (Thiele et al., 2005), with the global metabolic reconstruction poised to allow for 

larger human metabolic networks to now be modeled.  Genome-scale models based on 

biochemical networks provide a comprehensive, yet concise, description of cellular functions, 

and provide means for quantitatively interrogating the effects on heath and disease of specific 

network perturbations and/or defined environmental changes. 

 

D. Personalized and Predictive Genomics and Proteomics 

The striking change in medical practice over the next 5–20 years will be the exponential increase 
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in the amount of biological data that will be gathered on individual patients at the DNA, RNA, 

protein, and cellular levels, all of which will be available for multi-parameter and multi-scale 

analyses. Our prediction is that billions of measurements will eventually be made over the 

lifetime of each individual. For example, in the future, each human will have his or her genome 

sequenced with 6 billion DNA bases (spanning both the maternal and paternal contributions to 

the individual’s genome).  The computational challenges associated with comparing billions of 

individual human genomes one to another to extract relevant differences and then to associate 

these differences with health and disease will pose a striking series of computational challenges.  

Moreover, perhaps 2,500 blood-protein measurements will be taken twice a year on each 

individual; and in vivo imaging analyses will be carried out, albeit less frequently. These data 

will be assimilated to generate a highly detailed picture of the evolving health/disease states of 

each individual. 

 

Conclusions and Perspectives 

Nanotechnology and microfluidic sensing chips with integrated microfluidic delivery devices 

will be developed over the next 5–10 years so that we reach a point at which thousands of 

proteins and/or RNAs can be analyzed quantitatively from only a fraction of a droplet of blood. 

This will allow physicians to assess the health/disease status of virtually every organ in the body 

at 6-month intervals and will become the first critical element of predictive medicine.  We also 

predict that nanotechnology approaches to the sequencing of single DNA strands, will over the 

next 5-10 years lead to instrumentation that can rapidly, cheaply and simply sequence individual 

human genomes.  This will be a second foundation of predictive medicine – assessing the 

variability in individual human genomes to generate probabilistic future health histories for each 
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individual human, and integrating it with diagnostics.  Similarly, in vivo imaging agents will 

permit the functional visualization of informational molecules and drugs in humans, which will 

provide powerful and informative in vivo diagnostics approaches. These measurement 

technologies, together with both new computational approaches to extract information from these 

data and the systems view of medicine, will lead to three important revolutions in medicine. 

 

First, over the next 10–20 years, a medicine that is predictive, personalized, preventive and 

participatory will emerge. Obtaining individual human genome sequences will lead to individual 

predictive health histories, whereas biannual blood measurements of thousands of proteins from 

the molecular fingerprints of human organs will give us a real-time assessment of individual 

health. Predictive medicine will result in a personalized medicine that focuses on the illnesses of 

an individual and eventually their wellness, preventing disease rather than treating it. The 

systems approach to disease will in time permit the identification of the key disease-perturbed 

sub-networks and the identification of important nodal points, which, if perturbed by drugs, 

could make the network behave in a more normal fashion or at least delete the more deleterious 

effects of the disease-perturbed network. This capability will provide a new approach for drug-

target discovery, and a powerful and rapid new approach for developing drugs. Predictive, 

personalized and preventive medicine, if appropriately orchestrated with patient-oriented 

interpretations, will also enable patients to understand more deeply and actively participate in 

personal choices about illness and wellness.   Participatory medicine will necessitate the 

development of powerful new approaches to handling enormous amounts of personal 

information in a secure manner, and to a new form of medical education of individual patients as 

well as their physicians.  Over the next 5-20 years medicine will become predictive, personalize, 
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preventive and participatory (P4 medicine). 

 

Another very exciting idea is that, in the long-term, systems analysis of blood offers the potential 

to open up a new avenue for studying human biology – when we learn to read and interpret the 

information inherent in secreted organ-specific protein patterns.  The key patterns in these 

secreted proteins represent different network perturbations, and hence, different diseases.  When 

secreted proteins enter the blood, they can provide a novel means to study biology in higher 

organisms and to identify drug targets through linking blood measurements to perturbations in 

underlying biological networks.  Importantly, learning to study perturbations in underlying 

networks through secreted protein patterns (to whatever resolution is possible) will provide 

access to studying biological networks in vivo that are not amenable to direct experimentation.   

Developing the capacity to identify in vivo network perturbations through secreted protein 

measurements in the blood will open up a new avenue to drug target identification and will 

provide a novel means to discover the perturbed sub-networks. Since taking blood is relatively 

non-invasive it has less potential than biopsies or other invasive techniques of greatly distorting 

the system being studied.  Thus, this approach has the potential to strongly complement existing 

approaches to study human biology.  The effect of drugs, toxicity, human development and even 

aging may all be amenable to study through the blood if we can learn to read and interpret the 

signals in the proteins, which has the potential to be very significant in human biology.   

 

Second, as the sensitivity of measurements increases (both in vitro and in vivo), we will achieve 

a digitalization of biology and medicine — that is, the ability to extract relevant information 

content from single individuals, single cells and ultimately single molecules — with its attendant 
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economies of scale. Just as Moore’s law led in time to the widespread digitalization of 

information technologies and communications, the exponentially increasing ability to extract 

quantized biological information from individual cells and molecules will transform biology and 

medicine in ways that we can only begin to imagine.   

 

Finally, all of these changes — a systems approach to medicine with its focus on disease 

prevention and more efficient drug discovery, the introduction of increasingly inexpensive 

nanotechnology based diagnostics and in vivo measurement technologies, the highly accurate and 

specific molecular characterization of the systems biology of disease, and the digitalization of 

medicine — will start to reduce the inexorably increasing costs of health care.  This can, in 

principle, enable us to afford to provide for the more than 45 million people in the United States 

who currently lack health insurance, to reduce the crushing costs of healthcare to society, and to 

export our digital predictive and preventive medical approach to the developing world.  Just as 

the mobile phone has become a fundamental communication mode in developing countries, and 

has changed the lives of much of the world’s population, so digital medicine of the 21st century 

can bring to the world’s citizens a global and strongly improved state of human health and 

healthcare.  In our view P4 medicine will become the foundational framework for global 

medicine. 
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