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Gastrointestinal stromal tumor (GIST) has emerged as a clinically
distinct type of sarcoma with frequent overexpression and muta-
tion of the c-Kit oncogene and a favorable response to imatinib
mesylate [also known as STI571 (Gleevec)] therapy. However, a
significant diagnostic challenge remains in the differentiation of
GIST from leiomyosarcomas (LMSs). To improve on the diagnostic
evaluation and to complement the immunohistochemical evalua-
tion of these tumors, we performed a whole-genome gene expres-
sion study on 68 well characterized tumor samples. Using bioin-
formatic approaches, we devised a two-gene relative expression
classifier that distinguishes between GIST and LMS with an accu-
racy of 99.3% on the microarray samples and an estimated accuracy
of 97.8% on future cases. We validated this classifier by using
RT-PCR on 20 samples in the microarray study and on an additional
19 independent samples, with 100% accuracy. Thus, our two-gene
relative expression classifier is a highly accurate diagnostic method
to distinguish between GIST and LMS and has the potential to be
rapidly implemented in a clinical setting. The success of this
classifier is likely due to two general traits, namely that the
classifier is independent of data normalization and that it uses as
simple an approach as possible to achieve this independence to
avoid overfitting. We expect that the use of simple marker pairs
that exhibit these traits will be of significant clinical use in a variety
of contexts.

cancer � classification � diagnostic � machine learning �
molecular signature

Gastrointestinal stromal tumors (GISTs) and leiomyosarco-
mas (LMSs) are common mesenchymal tumors with re-

markably similar phenotypic features (1, 2). Until recently, the
differentiation between these two entities had not been thought
to be clinically relevant. Chemotherapeutic agents, such as
doxorubicin and ifosfamide used in the treatment of soft-tissue
sarcomas have resulted in response rates of 0–10% in patients
with advanced GIST (3–5). However, the use of the selective
tyrosine kinase inhibitor imatinib mesylate [also known as
STI571 (Gleevec; Novartis Pharmaceuticals Corp., East
Hanover, NJ)] has resulted in response rates of �50% for
patients with GIST (6, 7, **). Conversely, patients with advanced
LMS expect response rates of 27–53% when treated with doxo-
rubicin or newer regimens combining gemcitabine with do-
cetaxel (8, 9) but do not benefit from imatinib therapy (10, 11,
††). Thus, there is clear clinical importance in distinguishing
between these two entities to guide the most effective therapy.
Currently, the best marker to differentiate GIST from LMS is Kit
immunostaining, which is subjective and variable due to cellular
heterogeneity that may result in false-negative diagnoses. Kit-
negative GISTs and Kit-expressing LMS have been reported on
the basis of tumor cell morphology and other markers such as
CD34, desmin, and smooth muscle actin (‡‡). The occurrence of
Kit-negative GIST in the literature is �4–10% (2, 12).

We used whole human genome microarray data of 68 well
characterized GIST and LMS samples to identify a simple gene
expression classifier that would differentiate these tumor types

with high accuracy. We chose to use a supervised top scoring pair
(TSP) analysis (13, 14), which finds pairs where the relative
expression of a gene pair is reversed between the two cancers.
This method is advantageous because it provides the simplest
possible classifier that is independent of data normalization,
helps to avoid overfitting, and results in a very simple experi-
mental test that is easy to implement in the clinic. We identified
a single gene set (OBSCN and C9orf65) that accurately classified
GIST from LMS with an estimated accuracy by using leave-one-
out cross-validation of 97.8% on future cases on the basis of the
microarray data and of 19 of 19 additional cases diagnosed
correctly using RT-PCR. We conclude that this two-gene set
provides a rapid, PCR-based assay that reliably distinguishes
GIST from LMS and has the potential to aid in diagnosis and in
the selection of appropriate therapies. The use of marker pairs
based on relative expression reversals that are independent of
data normalization holds tremendous promise as a method for
the development of clinically relevant biomarkers.

Results
We selected 22 cases of GIST and 25 cases of LMS and isolated
total proteins from the tumor tissues and measured Kit protein
expression with a Western blotting assay. Only 16 of 22 GIST
cases had detectable levels of Kit protein (Fig. 1A). In contrast,
5 of 25 LMS cases had (weak) Kit expression. An immunohis-
tochemistry staining assay showed that, in low Kit-expressing
tissues, staining of c-Kit protein was weak and heterogeneous
(Fig. 1B). For these cases, immunostaining for other markers
such as CD34, desmin, and smooth muscle actin had to be
performed for pathological determination, significantly increas-
ing the time and effort required for accurate diagnosis. Thus, Kit
expression as a marker for GIST is useful, but not always
adequate.
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Identification of a Two-Gene Classifier to Distinguish GIST from LMS.
The goal of this study was to identify accurate and simple
diagnostic markers that differentiate GIST from LMS through
genomic profiling and comparison. This study was composed of
two major steps. The first step was to use microarray data from
68 tumor samples to find a potentially simple gene expression
classifier to distinguish GIST from LMS with a high degree of
accuracy. The second major step was to test this classifier by
using RT-PCR on a new set of correctly diagnosed tumor
samples to verify a simple yet accurate gene expression-based
test for diagnosis.

Microarray data (68 tissue samples and 43,931 transcripts)
were used to find a classifier to distinguish GIST from LMS with
the primary goal of identifying a simple pattern that has a high
degree of likelihood of performing well on future cases. The
method we used for supervised classification is the TSP approach
(13, 14). This approach has been shown to provide comparable
accuracies to support vector machines and other sophisticated
methods, as well as to provide a very robust gene-expression
marker for prostate cancer across multiple array platforms (15).

Training a classifier on our 68 samples led to the discovery of
the following TSP classification rule: If OBSCN expression is
greater than C9orf65 expression, then classify as GIST; all else
classify as LMS. This TSP classifier was correct on all of the
samples except for one for which the measured expressions of
OBSCN and C9orf65 were the same on the microarray (Fig. 2).
This indeterminate case was scored as a random guess (50%),
resulting in a 99.3% (67.5 of 68 samples) accuracy of the data set.

In addition to finding the two-gene classifier, we also used
leave-one-out cross-validation to assess the expected error of this
classifier on future data. Thus, we left out each of the 68 samples
to evaluate how a classifier trained on the remaining 67 samples
would perform on the left-out sample and then averaged the
results. The simple two-gene tests picked within each cross-
validation loop classified each test sample correctly, except for
one case for which the outcome was indeterminate (the same
sample as discussed above) and one case for which the selected
pair misdiagnosed the held-out sample. This misdiagnosis oc-
curred because, in one of the 68 cross-validation loops, a
different pair was selected than OBSCN/C9orf65 and then
subsequently misdiagnosed the held-out sample. Thus, although
the OBSCN/C9orf65 classifier did not miss on any of the samples,
the method we applied to the data set (TSP) has a slightly higher
than expected error on future cases. Thus, the accuracy of the
TSP approach as applied to this data set was estimated at 97.8%

(66.5 of 68 samples) for future cases. With these promising
results, we proceeded to the RT-PCR validation step.

Validation of the Classifier by Using RT-PCR and Independent Samples.
We next performed RT-PCR on (i) a subset of the samples used
in the microarray experiment, including the sample with iden-
tical OBSCN and C9orf65 expression on the microarray, and (ii)
an independent set of 19 additional samples that were not
included in the microarray experiment. The RT-PCR results
showed that the relative expression of OBSCN and C9orf65 (i.e.,
which gene had higher expression) was the same as what was
shown on the microarray in all cases tested (Fig. 3). When the
sample that was indeterminate based on the microarray study
was tested using RT-PCR, the expression of OBSCN was found
to be slightly higher than the expression of C9orf65, resulting in
the classifier correctly matching the clinicopathologic diagnosis
of GIST. Thus, the accuracy of the classifier based on RT-PCR
data confirmed the expectations from the microarray expression
data and showed that, with a more precise measurement, it was
also correct on the sample previously classified as indeterminate.
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Fig. 1. Kit protein expression in GIST and LMS. (A) The expression of Kit detected by Western blotting for 47 tumor samples (22 GIST and 25 LMS). Blue arrows
indicate samples diagnosed as GIST, and red arrows indicate LMS. Each GIST sample for which no Kit protein was observed and each LMS sample that (weakly)
expressed Kit are marked with a *. (B) Immunohistochemistry staining of two Kit-positive GIST samples. (C) Immunohistochemistry staining of two Kit-negative
GIST samples.
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Fig. 2. Expression values of the two genes involved in the TSP classifier on the
Agilent microarrays after quantile normalization. (Note: The classification is
independent of normalization, because the decision is based only on which
gene is higher, but the magnitude of the expression shown does vary some-
what with normalization technique.) The separating line (slope � 1) repre-
sents the cutoff for which gene is more highly expressed. It is not a fit to
the data.
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The independent set of 19 additional samples provided the
most important test of our classifier, with the clinicopathologic
diagnosis of GIST or LMS being made before running the
RT-PCR of the classifier genes. On the independent set of 19
samples, consisting of 14 GIST samples and 5 LMS samples, the
classifier agreed with the clinicopathologic diagnosis in every
case. Moreover, two of the 14 GIST samples were from fine
needle aspirates, indicating that this test can be used with small
tissue samples. (The clinicopathogical diagnosis and classifier
performance for each sample used in this study can be found at
www3.mdanderson.org/�genomics/SupplementalTableSample-
Classifications.pdf.) Thus, the total accuracy of the classifier on
the data set combining the independent samples with those used
in the microarray study was 100%. (One of the samples was

initially diagnosed by histopathology as a LMS but was later
determined to be most consistent with a GIST in view of the
finding that it arose from the ileum, metastasized to the liver and
peritoneum, did not stain for desmin by immunohistochemistry,
and was resistant to LMS chemotherapy.) Thus, the two-gene
classifier chosen has yet to fail on any sample we have tested. Of
course, this result does not mean that we can expect the classifier
to perform perfectly on all future cases, but based on the
evidence accumulated to date, there is a strong expectation of
high accuracy.

Classifier Performance Relative to Kit Expression. We also compared
the performance of the two-gene relative expression classifier
with c-Kit expression from the microarray experiments. The data
show greatly increased effectiveness of separation of GIST and
LMS by using the TSP classifier over c-Kit expression (Fig. 4).
We noted that the expression of c-Kit had an accuracy of 87.3%
(cutoff determined by using 1D linear discriminate analysis)
compared with 97.8% of the TSP classification procedure in
leave-one-out cross-validation. Examples of GIST samples with
low Kit expression and LMS samples with high Kit expression are
shown in Table 1. Therefore, the TSP gene expression classifier
was more accurate than c-Kit at both the protein and the RNA
levels.

Discussion
GIST was previously thought to be best grouped with spindle cell
and other soft-tissue sarcomas, including LMS, but in recent
years it has emerged as a distinct entity. Moreover, GISTs
continue to be misclassified as LMS or other soft-tissue sarco-
mas. GISTs have mutated and activated c-Kit or PDGFR onco-
gene and are exquisitely sensitive to therapy with imatinib
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Fig. 3. Relative expression (OBSCN/C9orf65) as measured using RT-PCR. (A) Results are shown from 20 samples also used in the microarray experiments and
an additional independent set of 17 samples. Classifier prediction as LMS or GIST is determined by which gene (OBSCN or C9orf65) is more highly expressed.
Clinical diagnosis is shown as ‘‘X’’ for GIST and ‘‘O’’ for LMS. (B) The raw data in terms of the distance of Ct average from the RT-PCR experiments (OBSCN Ct �
C9orf65 Ct).

Table 1. Abnormal Kit expression in GIST and LSM

Sample ID nos.
Kit exp,

arbitrary units

OBSCN
exp/C9orf65

exp (�1 � �GIST)

Kit exp/median
Kit exp in all
samples, %

GIST with low c-Kit exp
21 140 2.6 3
34 634 1.5 13
50 1,243 2.7 25
67 280 6.0 6
68 283 15.2 6

LMS with high c-Kit exp
10 10,156 0.06 207
41 5,535 0.07 113
43 9,127 0.22 186

exp, expression.

3416 � www.pnas.org�cgi�doi�10.1073�pnas.0611373104 Price et al.



mesylate or sunitinib but resistant to cytotoxic chemotherapy.
Conversely, LMSs are most effectively treated with cytotoxic
chemotherapy and are resistant to tyrosine kinase inhibitors.
Thus, the appropriate diagnosis of these histopathologically
similar entities is at times a life-and-death decision. Because
mutated Kit is frequently expressed at a relatively elevated level
in GIST cells, Kit expression has become a key diagnostic marker
supporting the diagnosis of GIST. However, use of Kit as a
diagnostic marker poses a number of problems, as previously
discussed. Thus, we drew on the wealth of information encoded
in the transcriptomes of relevant human tissues to develop a
global search approach to identify an accurate, robust, simple-
to-use method to accurately distinguish GIST from LMS. We
applied a recently developed analytical method to 68 well
characterized GIST and LMS tumors and identified a single pair
of genes whose relative expression patterns accurately differen-
tiated GIST from LMS.

The genes in the TSP classifier, OBSCN and C9orf65, are not
well characterized. The OBSCN (obscurin) gene is located on
chromosome 1. It is a relatively large gene spanning �150 kb and
containing �80 exons. The protein product is �720 kDa, with 68
Ig domains, 2 fibronectin domains, 1 calcium/calmodulin-
binding domain, 1 RhoGEF domain with an associated PH
domain, and 2 serine–threonine kinase domains. OBSCN be-
longs to the family of giant sarcomeric signaling proteins that
includes titin and nebulin and appears to mediate interactions
between the sarcoplasmic reticulum and myofibrils. OBSCN
binds to the sarcoplasmic reticulum by interaction with small
ankyrin-1 and by the contractile myofibril via titin and sarco-
meric myosin (16, 17).

However, the C9orf65 gene is yet to be characterized and is only
named after its location on chromosome 9 (ORF 65). Unpublished
information provided in the GeneCard (www.genecards.org/cgi-
bin/carddisp.pl?gene�C9orf65&search�C9orf65) suggests that
C9orf65 interacts with reticulocalbin 3, a member of the Cab45/
reticulocalbin/ERC45/calumenin (CREC) family of multiple EF
hand Ca2�-binding proteins localized to the secretory pathway (18).
In a recent study, Meza-Zepeda et al. (19) reported chromosomal
region copy number differences between 7 GIST and 12 LMS cases.
Interestingly, one of the regions reported, 9q21.11–9q34.3, includes
one of the two gene pairs, C9orf65 (located at 9q21.2).

The biological reason why OBSCN is essentially always expressed
at a higher level than C9orf65 in GISTs and with the inverse

occurring in LMS remains unknown. It is interesting to speculate
that perhaps OBSCN has functional importance for the GIST cell.
GIST cells are thought to arise from the interstitial cell of Cajal, the
intestinal pacemaker cell, or a closely related cell in this lineage.
Therefore, if GISTs do arise from a neuromuscular pacemaker cell,
than it would not be surprising to find the altered expression of
certain genes found in muscle cells, such as OBSCN. However,
because OBSCN expression seems to play a role in normal muscle
processes, an alternative possibility is that, in the process of tumor-
igenesis, the LMS cells may have phenotypically diverged from
normal smooth muscle such that these cells no longer express the
proteins a normal muscle cell requires for its function. For instance,
leiomyoma typically retain expression of smooth muscle markers
such as �-actin, myosin heavy chain, and total myosin that are
frequently lost in LMS (20). Thus, it would not be surprising that
LMS would have a relatively low expression level of the muscle
protein OBSCN. Although not yet proven, it is conceivable that the
two genes with reversed expression patterns represent two key
nodes in the gene regulatory network such that their relative
expression has a major impact on the network state and the
resulting cellular phenotype. In this sense, the relative expression
approach is poised to help identify key genes that drive important
cellular processes.

The use of genomics-based molecular approaches in determining
the diagnosis, prognosis, and appropriate therapeutic approach is
already impacting clinical care for breast cancer patients. Paik et al.
(21) reported the discovery of a 21-gene biomarker set that could
be used to predict the risk for recurrence of breast cancer after
adjuvant hormonal therapy. Thus, some clinicians are now adding
chemotherapy to a patient’s therapeutic regimen if the 21-gene
classifier predicts that the patient has a high chance of recurrence
if treated with hormonal therapy alone. Moreover, patients with a
low risk of recurrence can be spared the toxicity of chemotherapy.
Other investigators have developed prognostic tests for breast
cancer that rely on overall patterns of gene expression in microar-
rays using very large gene sets (22). In our approach, we used paired
gene set discriminators that allow the use of fewer genes to
effectively separate populations.

The accuracy of this two-gene classifier method is near 100%
in both the training and independent validation groups. The
assay is superior to Kit-based diagnosis and accurately diagnoses
Kit-negative GISTs and those GISTs with weak or heteroge-
neous Kit expression. Additionally, the patchy pattern of Kit
expression in some cases renders current diagnostic methods
used on biopsy samples unreliable, whereas the two-gene relative
expression classifier we identified was highly accurate in the
diagnosis of biopsy samples. The probable reason for the pre-
dictive power of the classifier in cases for which it was not trained
is due to two inherent characteristics. First, the classifier is very
simple, so it is not prone to overfitting the data, which can
commonly occur when using more complex classifiers. The
second major advantage of this approach to classification is the
use of pairs of genes to eliminate normalization issues rather
than relying on absolute gene expression levels. In particular, the
use of relative expression makes unnecessary the establishment
of a population-wide threshold, as is needed for a single marker,
or for parameter weightings, as is needed for more complex
multiple-parameter classifiers.

In addition to the success of differentiating GIST and LMS
detailed herein, the k-top scoring pair (k-TSP) method was
shown to perform comparably with the best multigene classifi-
cation methods using a number of published cancer transcrip-
tome data sets (13). Further, the method had remarkable ability
to correctly predict results across different mRNA measurement
platforms (15). It is possible that in the future this approach may
be used not only to differentiate ambiguous histologies and to
assess prognosis but also to determine who will benefit from
chemotherapy, which type of chemotherapy to use, and which
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patients are at risk for local or distant relapse. Similarly, the
relative expression reversal approach should be applicable to the
development of robust protein-based markers from complex
proteomic measurements from tumor tissues or bodily f luid such
as blood. Because quantification of any single protein is subject
to uncertainties caused by measurement variability, normal
fluctuations, and individual related variation in baseline expres-
sion, identification of pairs of markers that may be under
coordinated, systematic regulation should prove to be more
robust for individualized diagnosis and prognosis.

In summary, we have developed an approach to discriminate
GIST from LMS that may lead to a better understanding of the
biologic differences of these two histologically similar entities.
Moreover, utilization of this technology may aid clinicians and
pathologists in diagnosis and treatment of patients who have
tumors that cannot be clearly classified as either GIST or LMS.
We believe that this approach will be widely applicable to
molecular marker identifications from genomics and proteomics
studies and will accelerate the translation of results from high-
throughput exploratory studies to the clinic.

Materials and Methods
Patients and Samples. All of the samples were obtained from
surgical specimens at the M. D. Anderson Cancer Center and
stored at the Institutional Tumor Tissue Repository with patient
consent and an Institutional Review Board-approved protocol.
The tissues were snap-frozen within 20 min of surgical resection.

Pathology Evaluation. Hematoxylin- and eosin-stained slides of
formalin-fixed paraffin-embedded tissue blocks of all cases were
reviewed by one of the authors (A.K.E.-N.). Previous diagnosis
and the immunostaining results, if any, between 4 and 36 (mean
14) slides per case were evaluated. Immunohistochemical stain-
ing for smooth muscle actin (SMA) was performed on 45 cases.

Because intra-abdominal spindle cell malignant neoplasms
comprise a wide spectrum of morphologic and biological entities,
including GIST and LMS, multidisciplinary attempts were made
to segregate individual tumors on the basis of cellular features
by light microscopy; immunostaining for Kit, CD34, and SMA;
and clinical observations, including the site of the primary
tumor, the pattern of metastatic spread, and the efficacy of
systemic therapy. Leiomyosarcoma was diagnosed when a tumor
manifested intersecting fascicles of elongated spindle cells with
cigar-shaped, elongated nuclei with amphophilic cytoplasm with
at least 5 of 10 high power field mitotic figures and positive SMA
and after negative CD34 immunostaining in patients with the
appropriate clinical setting. GIST diagnosis was made when a
patient had the clinical presentation consistent with GIST, and
the tumor was composed of spindled, epithelioid, or mixed cell
proliferations with positive Kit, positive cytoplasmic CD34, and
negative SMA. The few tumors that were negative for Kit, SMA,
and CD34 were classified on the basis of the light microscopic
features and clinical pattern of disease.

Western Blot Analysis. Standard procedure was used for protein
isolation and Western blot analysis. The membranes were probed
with primary antibodies [anti-Kit (Santa Cruz Biotechnology, Santa
Cruz, CA) or anti-�-actin to control for protein loading] followed
with horseradish peroxidase-conjugated secondary antibodies (at a
dilution of 1:2,000). Membranes were washed and incubated in
enhanced chemiluminescence solution (Amersham Life Science,
Piscataway, NJ), and subjected to autoradiography.

RNA Isolation and Quantitative RT-PCR Assays. Total RNA was
isolated and quantified as described in ref. 23. Assays-on-
Demand from ABI (Applied Biosystems, Foster City, CA) were
used to quantify RNA levels of OBSCN (Hs00405789�m1) and
c9orf65 (Hs00373436�m1) on an ABI 7900 HT with a 96-well

block. PPIA, also known as cyclophilin A endogenous control
assay (4326316E), was used to verify the integrity of each sample.
We assayed each sample in triplicate with 25 ng of input RNA
per well in a volume of 25 �l reaction containing 1� TaqMan
One-Step RT-PCR Master Mix (Applied Biosystems) and 1�
gene expression assay. The following cycling conditions were
used: 48°C for 30 min for reverse transcriptase reaction then
PCR, 10 min at 95°C, then 50 cycles of 95°C for 15 seconds and
60°C for 1 min. Cycle threshold values (Ct) generated from
Sequence Detection System 2.2 (Applied Biosystems) default
parameters were exported to determine relative mRNA abun-
dances between the two genes in the classifier. The lower the Ct
value, the more abundant the RNA was because fewer PCR
cycles were required to amplify the RNA.

Microarray Experiments. Microarray experiments were carried
out using whole human genome oligo arrays with 44k 60-mer
probes (Agilent Technologies, Palo Alto, CA) with 500 ng of
total RNA starting material according to the manufacturer’s
protocol. Hybridized arrays were scanned with Agilent’s dual
laser-based scanner. Then, Feature Extraction software ver-
sion 8.0 (Agilent Technologies) was used to link a feature to
a design file and to determine the relative f luorescence
intensity between the two samples. The microarray data are
publicly available at www3.mdanderson.org/�genomics/
sarcoma�data�matrix�for�supplemental.zip.

Classification Algorithm. The method used herein for supervised
classification is TSP (13, 14). The basic idea of the TSP approach
is to select markers in pairs that exhibit relative expression
reversal between the classes being compared. In its simplest
form, the marker is thus dependent on only the following
question: is the expression of gene A higher than the expression
of gene B in the sample? If so, the diagnosis is class 1 (i.e., GIST).
If the expression of gene B is higher than for gene A, then the
diagnosis is for class 2 (i.e., LMS). If additional pairs had been
needed to obtain better classification, they would have been
combined and each pair rule would have been assigned a vote,
with a majority vote for a given class determining the diagnosis;
this is called the k-TSP approach (13). For our data set, TSP
outperformed k-TSP. The computation of the TSP classifier and
the error estimation were done using the k-TSP program down-
loaded from https://jshare.johnshopkins.edu/atan6/public�html/
KTSP (13). The estimation of the classification error on future
cases was performed using leave-one-out cross-validation. This
estimate was then verified using an independent test on an
additional set of patient samples. All other numerical analyses
presented herein were performed using Matlab (Mathworks,
Natick, MA).

Genes Included in Selecting the Classifier. A subset of genes was
removed before final analysis because, although they were
potentially among the best predictive genes from a computa-
tional standpoint, they were not amenable to RT-PCR amplifi-
cation for the validation stage (a robust multiexon assay was not
available in Assays-on-Demand from ABI). Thus, a subset of 20
genes was removed. The classifier was then trained on only the
remaining set of genes. Given the near perfect behavior of our
classifier, however, we could hardly have improved on the
effectiveness of the gene pair found, even if robust RT-PCR
amplification was available for all of the genes on the microarray.
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