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The analysis of the large amount of data generated in mass spectrometry–based proteomics 
experiments represents a significant challenge and is currently a bottleneck in many 
proteomics projects. In this review we discuss critical issues related to data processing and 
analysis in proteomics and describe available methods and tools. We place special emphasis 
on the elaboration of results that are supported by sound statistical arguments.

Introduction
A main goal of proteomics has been the complete and 
in most cases quantitative analysis of the proteome of a 
species or, in multicellular organisms, a particular cell or 
tissue type. Although this goal has remained elusive, sig-
nificant progress has been made in the development of 
an array of technologies for proteome analysis and their 
application to biological and clinical research1. At pres-
ent, the vast majority of proteomic data are being gener-
ated by mass spectrometry, more specifically by tandem 
mass spectrometers of ever increasing performance2. 
These instruments and the diverse workflows they sup-
port have in common that they generate hundreds to tens 
of thousands of fragment ion spectra per hour of data 
acquisition. The assignment of these fragment ion spectra 
to peptide sequences, the inference of the proteins repre-
sented by the identified peptides and the determination of 
their abundances in the analyzed sample present complex 
computational and statistical challenges. It is essential for 
proteomics to develop and generally apply tools and solu-
tions to these problems that provide accurate and repro-
ducible results. Failure to do so introduces and propagates 
errors in the literature, makes it difficult for reviewers and 
readers to evaluate the conclusions of manuscripts or to 
meaningfully compare the results of different studies, and 
renders databases containing proteomic data essentially 
useless3. In this review we discuss critical problems fac-
ing the analysis of mass spectrometry–derived proteomic 
datasets and present the currently available solutions.

Assignment of fragment ion spectra to peptide 
sequences
The currency of information for tandem mass spec-
trometry (MS/MS) based proteomics is the fragment 
ion spectrum (MS/MS spectrum) of a specific peptide 
ion that is fragmented, typically in the collision cell 
of a tandem mass spectrometer. The correct assign-
ment of such a spectrum to a peptide sequence is a first 
and central step in proteomic data processing. A large 
number of computational approaches and software 
tools have been developed to automatically assign pep-
tide sequences to fragment ion spectra. These can be 
classified into three categories: (i) Database searching, 
where peptide sequences are identified by correlating 
acquired fragment ion spectra with theoretical spec-
tra predicted for each peptide contained in a protein 
sequences database, or by correlating acquired frag-
ment ion spectra with libraries of experimental MS/
MS spectra identified in previous experiments (spec-
tral library searching); (ii) De novo sequencing, where 
peptide sequences are explicitly read out directly from 
fragment ion spectra; and (iii) hybrid approaches, such 
as those based on the extraction of short sequence tags 
of 3–5 residues in length, followed by ‘error-tolerant’ 
database searching. For large-scale proteomics studies 
database searching remains the most frequently used 
peptide identification method. However, the other 
strategies provide attractive alternatives in specific 
situations, as discussed below.
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Table 1 | A list of publicly available tools for MS/MS-based proteomics
Program Reference Website

Database search tools

SEQUEST 84 http://www.thermo.com 

MASCOT 85 http://matrixscience.coma

ProteinProspector 86 http://prospector.ucsf.edua

ProbID 87 http://tools.proteomecenter.org/wiki/index.
php?title=Software:ProbIDb

TANDEM 88 http://www.thegpm.orga,b

SpectrumMill http://www.chem.agilent.com

Phenyx 89 http://www.phenyx-ms.com

OMSSA 4 http://pubchem.ncbi.nlm.nih.gov/omssaa,b

VEMS 90 http://personal.cicbiogune.es/rmatthiesenb

MyriMatch 91 http://www.mc.vanderbilt.edu/msrc/bioinformaticsb

Spectral matching tools

SpectraST 12 http://www.peptideatlas.org/spectrast

X! P3 92 http://p3.thegpm.org/tandem/ppp.html

Biblispec 11 http://proteome.gs.washington.edu/bibliospec

De novo sequencing tools

Lutefisk 93 http://www.hairyfatguy.com/lutefiskb

PepNovo 94 http://peptide.ucsd.edu/pepnovo.pya,b

PEAKS 95 http://www.bioinformaticssolutions.com

Sequit http://www.proteomefactory.com

Sequence tag/hybrid approaches

GutenTag 16 http://fields.scripps.edu/GutenTag

Inspect 17 http://peptide.ucsd.edu/inspect.htmla,b

Popitam 96 http://www.expasy.org/tools/popitam

Statistical validation of peptide and protein identifications

PeptideProphet 21 http://www.proteomecenter.org/software.phpb

ProteinProphet 56 http://www.proteomecenter.org/software.phpb

Scaffold http://www.proteomesoftware.com

Databases for storing and mining of mass spectrometry data

PeptideAtlas 97 http://www.peptideatlas.org

Proteios http://www.proteios.org

SBEAMS http://sbeams.org

CPAS 98 https://www.labkey.org

PRIDE 99 http://www.ebi.ac.uk/pride

Data sharing

Tranche http://www.proteomecommons.org/dev/dfsb

Tools for protein quantification

PEPPER (label free) 74 http://www.broad.mit.edu/cancer/software/genepatternb

EXPRES (isotopic labeling) http://www.proteomecenter.org/software.phpb

Libra (iTRAQ isobaric labeling) http://www.proteomecenter.org/software.phpb

ASAPRatio (label free) 100 http://www.proteomecenter.org/software.phpb

MSQuant (isotopic labeling) http://msquant.sourceforge.netb

RelEx (isotopic labeling) 101 http://fields.scripps.edu/relex
aFree access through the web interface (functionality might be limited). bFree distribution.

Spectral identification by sequence database searching. Several MS/
MS database search programs have been developed (Table 1), and 
their basic functionality is illustrated in Figure 1. The programs take 
the fragment ion spectrum of a peptide as input and score it against 
theoretical fragmentation patterns constructed for peptides from the 
searched database. The pool of candidate peptides is restricted based 
on user-specified criteria such as mass tolerance, proteolytic enzyme 

constraint and types of post-translational modification allowed (see 
Supplementary Notes online for discussion of the most important 
criteria). The output from the program is a list of fragment ion spectra 
matched to peptide sequences, ranked according to the search score. 
Typically, only the best scoring peptide match is considered during 
the subsequent statistical analysis step (see below). The search score 
measures the degree of similarity between the experimental spectrum 

and the theoretical spectrum, and therefore 
serves as the primary discriminating param-
eter for separating correct from incorrect 
identifications.

A number of scoring schemes have been 
described in the literature, including spec-
tral correlation functions (for example, 
SEQUEST) or related concepts such as shared 
fragment counts and dot product (for exam-
ple, TANDEM, OMSSA, MASCOT). Scoring 
functions can also be based on empirically 
observed rules (for example, SpectrumMill) 
or statistically derived fragmentation fre-
quencies (for example, PHENYX). The 
score that is actually reported by the tool 
can be based on a somewhat arbitrary scale 
(for example, Xcorr score in SEQUEST), 
or converted to a statistical measure called 
expectation value, E value, which refers to 
the expected number of peptides with scores 
equal to or better than observed score under 
the assumption that peptides are match-
ing the experimental spectrum by random 
chance (OMSSA, TANDEM and more 
recently MASCOT). E value is computed 
either by assuming that the database search 
score follows a certain (for example, Poisson) 
distribution4,5, or by empirical fitting of the 
observed distribution of scores6 (see Fig. 1). 
This score is largely invariant under dif-
ferent scoring methods and gives a clearer 
interpretation of goodness of match across 
different instrument platforms and search 
algorithms. It should be stressed, however, 
that neither the best match nor a high search 
score (or low E value) are reliable indicators 
for a true match. Discriminating true from 
false matches is therefore a critical next step 
in proteomic data analysis.

Spectral identification by spectral matching. 
A notable inefficiency of shotgun proteomics 
experiments lies in the repeated rediscovery 
of the same identifiable peptides by sequence 
database searching methods, which often are 
time consuming and error prone. With the 
availability of large amounts of proteomic 
data, part of which are organized in gener-
ally accessible databases (Table 1), it can be 
anticipated that all the proteins of a species 
that are detectable by mass spectrometry 
will eventually have been discovered. In fact,  
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systematic sequencing of proteins produced by microbes and eukary-
otic species7,8 has already reached remarkable depth of proteome 
coverage. Such extensive proteome maps now open the possibility of 
inferring the sequence of a peptide by matching its fragment ion pat-
terns against a library of spectra representing the peptide sequences 
contained in the proteome map9–12.

In this approach, a spectral library is compiled meticulously from a 
large collection of experimentally observed mass spectra of correctly 
identified peptides. An unknown spectrum can then be identified by 
comparing it to all the candidates in the spectral library to determine 
the match with the highest spectral similarity13. Recently, a number 
of tools have been developed that support peptide identification by 
spectral matching (Table 1). The spectral matching approach sub-
stantially outperforms classical sequence database searching in speed, 
error rate and sensitivity characteristics of the results12 and has the 
advantage that the statistical models developed for assessing the out-
put of database search tools (see below) are easily adaptable to the 
method12. However, no peptides will be identified that were not pre-
viously entered into the respective spectral library. At this time, when 
no proteome map has been completed, spectral matching approaches 
might be used most effectively as a rapid first pass in an incremental 
search strategy.

Spectral identification by de novo sequencing. In the de novo 
sequencing approach the amino acid sequence of a peptide is explicitly 
read from a fragment ion spectrum. Initially this was accomplished 
manually. More recently, an array of tools has been developed that 
assist the researcher with this task (Table 1). The main advantage of 
de novo sequencing over the database search method is that it allows 
identification of spectra for which the exact peptide sequence is not 
present in the searched sequence database, such as peptides contain-
ing sequence polymorphisms and modified peptides. It is therefore 
mainly used for protein analysis in species for which no or limited 
genome sequence information is available or for identifying modified 
peptides. However, de novo analysis is computationally intensive and 
requires high quality fragment ion spectra. Furthermore, research-
ers analyzing proteomic data are more interested in knowing what 
proteins are present in the sample. This means that peptide sequences 
extracted from MS/MS spectra using de novo algorithms need to be 
matched, using for example BLAST, against the sequences of known 
proteins present in the sequence databases, a strategy that is tedious 
in high throughput proteomics environment. Thus, a more effective 
strategy may be to start with database searching, and apply de novo 
sequencing tools to the remaining unassigned high quality spectra14.

Spectral identification with hybrid approaches. Spectral identifica-
tion can also be carried out using hybrid approaches that combine ele-
ments of both de novo sequencing and database searching. The analysis 
starts with inference of short sequence tags (partial sequences) from 
MS/MS spectra, followed by an error-tolerant database search: that is, 
a search that allows one or more mismatches between the sequence 
of the peptide that produced the MS/MS spectrum and the database 
sequence. First pioneered in ref. 15, this approach has been recently 
extended by several groups16,17 (see Table 1). By limiting the search 
space to only those database peptides that contain the sequence tag 
extracted from the spectrum (or one of the several sequence tags, if 
more than one per spectrum is extracted), the database search time can 
be significantly reduced. Hybrid approaches are also potentially very 
powerful for the systematic analysis of post-translationally modified 

peptides, or peptides containing artifactual modifications. Allowing 
all possible types of modifications at all possible sites leads to a combi-
natorial explosion of the database search space and is therefore poorly 
compatible with sequence database searching. The use of sequence 
tags, or related approaches such as look-up peaks18 can reduce the size 
of the space to be searched back to manageable levels.

Statistical assessment of peptide assignments in large-scale 
datasets
Database and spectral matching search tools typically produce a 
peptide match for each input spectrum, some of which may be true 
matches and some false. In some experiments, the best-scoring pep-
tide assignment produced by a database search program is incorrect 
for the majority of searched MS/MS spectra. Some of the reasons for 
the high failure rate are listed in Supplementary Notes. Early on in 
proteomics it was customary to generate a list of ‘high confidence’ 
identifications according to an ad hoc cutoff value of the score pro-
vided by the search engine, often in conjunction with visual inspection 
of peptide assignments to fragment ion spectra by an expert. However, 
the score distributions produced by a search tool depend on a multi-
tude of factors, including the performance of the mass spectrometer, 
data quality, and the size of the database. Thus, application of the same 
thresholds to data from different experiments would result in differ-
ent (and unknown) error rates, making comparison between data-
sets practically impossible. Manual inspection by an expert cannot 
be regarded as viable validation process because it is time-consuming 
and not compatible with the high numbers of fragment ion spectra 
acquired in proteomics, it is subjective, and the results depend on 
the level of expertise of the validating individual. Therefore, modern  
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Ranked list of
peptide matches

Peptide Expectation value
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1    QVSVVDLTNTR 3.3
2    VVEELCTPEGK 2.1
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Figure 1 | Peptide identification by MS/MS database searching. An acquired 
MS/MS spectrum is correlated against theoretical spectra constructed for each 
database peptide that satisfies a certain set of database search parameters 
specified by the user. A scoring scheme is used to measure the degree of 
similarity between the spectra. Candidate peptides are ranked according 
to the computed search score, and the highest scoring peptide sequence is 
selected for further analysis.
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proteomics has gradually moved away from manual inspection of the 
data and ad hoc scoring schemes, and toward probabilistic approaches 
that provide statistical measure of confidences and estimates of error 
rates. See Box 1 and Table 2 for statistical terminology relevant to the 
assessment of database search results.

Recently, several approaches that translate the database search tool 
output scores into probabilities or estimated false discovery rates 
(FDRs)19 have been introduced. These global approaches (as illustrat-
ed in Fig. 2) are concerned with modeling the distribution of search 
scores constructed by taking the top-scoring peptide assignment for 
each experimental spectrum in the whole dataset (‘global distribu-
tion’). This distinguishes them from the expectation value calcula-
tion involving modeling the single-spectrum distribution of scores 
constructed for each experimental spectrum separately from all pep-
tides in the searched sequence database that were scored against that 
particular spectrum. In fact, the global and single-spectrum–based 
approaches are complementary: that is, whole-dataset modeling and 
FDR analysis can be performed using E values in place of the origi-
nal search scores. The global statistical approaches can be broadly 
grouped into two categories: target-decoy searching and empirical 
Bayes approaches.

Target-decoy searching. The methods of the first group rely solely on 
searching target-decoy databases, and compute an optimized cut-off 
score for each dataset. The target-decoy search strategy20 involves two 
steps. In the first step MS/MS spectra are searched against a target 
database of protein sequences augmented with the reversed (or ran-
domized, or shuffled) sequences of the same database. The approach 
assumes that matches to decoy peptide sequences and false matches to 
sequences from the original database follow the same distribution. The 
plausibility of these assumptions is discussed in ref. 20. In the second 
step, peptide assignments are filtered using various score cut-offs, and 
the corresponding FDR for each cut-off is estimated as 2Nd/N, where 

N is the number of peptide matches with scores above the cut-off and 
Nd is the number of matches to decoy sequences among them.

The advantage of this FDR estimation method is that it is simple to 
implement and requires minimal distributional assumptions, which 
makes it easily applicable in a variety of situations. The drawbacks of 
this approach include doubling the database search time. A more fun-
damental issue arises of whether reversing or randomizing sequences 
can provide an accurate assessment of the distribution of false peptide 
matches when many of those are known to be sequences homologous 
to the true peptides rather than completely random sequences.

Empirical Bayes approaches. The methods in the second category are 
exemplified by PeptideProphet21, which employs a so-called empiri-
cal Bayes22 approach that models the distributions of database search 
scores and auxiliary information (see below) observed for all peptide 
assignments in the dataset as a two-component mixture of distribu-
tions representing correct and incorrect identifications. Before that step, 
PeptideProphet combines multiple search score–related parameters (for 
example, the search score itself, Xcorr, and its derivative, ∆Cn score, in 
the case of SEQUEST) into a single score, called discriminant search 
score. The discriminant score coefficients and the functional form of 
the resulting discriminant score distributions are determined for each 
search engine using training datasets. Those distributions are modeled, 
however, anew for each dataset using the expectation-maximization 
algorithm, leading to posterior probabilities of correct identifications 
as inferential indicators. These probabilities are then used to estimate 
the FDR for any minimum probability used as a cut-off. In contrast to 
the target-decoy database search approach, appending decoys is not 
necessary for deriving the distribution of incorrect identifications. 
Furthermore, additional modeling in PeptideProphet results in an 
increase of statistical power compared to threshold-based approaches.

The limitations of PeptideProphet are largely related to the 
parametric assumptions and, to a lesser degree, to the use of fixed  

BOX 1  TERMINOLOGY AND GENERAL STATISTICAL METHODS FOR CONTROLLING 
FALSE DISCOVERY RATE
One can view spectral identification as a process of hypothesis testing in which the hypothesis H0 ‘random chance identification’ is 
tested for each spectrum against the alternative hypothesis Ha ‘correct identification’.
Table 2 summarizes the outcome of identification of m MS/MS spectra. Counts U, V, T and S are unknown and random due to the 
stochastic nature of mass spectra. The total number of incorrectly identified spectra m0 is unknown but fixed. Although V, the number 
of false positive identifications, is unknown, it is possible to estimate or bound various error rates that involve the expected value of V 
(that is, the average value that one would obtain after an infinite repetition of the experiment):

• False positive rate (FPR), or type I error, is a property of a single MS/MS spectrum, and is defined as the probability that a randomly 
matched spectrum is judged correct: FPR = E(V)/m0.

• Family-wise error rate (FWER) is a property of m MS/MS spectra, and is defined as the probability of making at least one incorrect 
identification among all identifications judged correct: that is, FWER = p(V ≥ 1). Example of method controlling FWER: Bonferroni102.

• False discovery rate (FDR) is a property of m MS/MS spectra, and is defined as the expected proportion of incorrect identification 
among all identifications judged correct: that is, FDR = E(V)/R. Examples of methods controlling FDR: step-up19, permutation-
based103, empirical Bayes22,104.

Table 2 | Outcomes of applying a classification rule
No. of matches 
judged incorrect

No. of matches 
judged correct

 
Total

Number of truly incorrect matches U V m0

Number of truly correct matches T S m – m0

Total m – R R m
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coefficients in computing the discriminant search score. These limita-
tions are currently being addressed in several ways. First, the probabi-
listic modeling approach of PeptideProphet and the decoy strategy can 
be combined within a single framework through a semi-supervised 
expectation-maximization algorithm that explicitly incorporates the 
class label available for decoy peptide matches. Second, parametric 
specification of continuous mixture components in the model can 
be relaxed, for example, by using multiple components to model each 
class of peptides, correct and incorrect. These new developments 
result in improved robustness and higher accuracy of computed prob-
abilities even in the case of the most challenging datasets (H. Choi and 
A.I.N., unpublished data).

Which scoring method when? The statistical power of all the iden-
tification procedures is strongly influenced by a number of factors, 
including the discriminative ability of the database search score, the 
quality of the spectra and the size of the database. Although there is 
currently no theory on the optimality of the score, empirical evidence 
suggests that some scores perform better than others in different set-
tings23,24. Combining several search scores produced by the same 
search tool improves the overall performance21,25–28. Several programs 
(for example, TANDEM and SpectrumMill) allow an efficient multi-
step analysis, starting with an enzyme-constrained search, followed by 
a second search for peptides with modifications, nonspecific cleavage 
or missed cleavage sites. The statistical power of the identification pro-
cedure can also indirectly benefit from further processing of MS/MS 
spectra performed before database search29,30, clustering of redundant 
spectra31,32, recognition of spectra produced by cofragmentation of 
two or more peptides33, removal of low quality spectra14,34–37 and 
application of automated charge state determination algorithms38,39. 
Furthermore, improved discrimination can be achieved by combining 
the output from two or more different database search tools40–43 or by 
combining data from multiple consecutive stages of mass spectrom-
etry (for example, MS/MS and MS/MS/MS (MS3))44.

Use of auxiliary information to improve spectral identification
The database search score (or the composite of multiple scores) mea-
suring the degree of similarity between the experimental and theo-
retical spectra represents only one set of discriminant features use-
ful for separating correct from incorrect identifications. Using this 
information alone, it may be difficult to accurately separate true from 
false identifications, even if optimal statistical methods are being used. 
The discrimination can be further improved if auxiliary information 
that may be generated coincidentally in the course of a proteomics 
experiment is also included in the analysis. Such types of information 
include mass accuracy—that is, the difference between the measured 
and calculated mass of the peptide ions (available from the first stage 
of mass spectrometry, MS1)—and peptide separation coordinates, 
for example, retention time45,46 or pI value47–49 (peptide separation 

step). Other useful peptide properties include the number of termini 
consistent with the type of enzymatic cleavage used and the number 
of missed cleavage sites (digestion step). In some cases, additional 
information such as presence of a specific amino acid or sequence 
motif—for example, cysteine in the case of avidin affinity purification 
of peptides containing biotinylated cysteines1, or the sequence motif 
N-X-S/T for peptides containing N-linked glycosylation sites50 (pep-
tide enrichment step)—can be used as further constraints.

These types of auxiliary information provide evidence that can 
be used to incrementally augment the search score(s) generated by 
the search engine. The availability and information content depends 
strongly on the experiment that was carried out to generate the data. 
For example, the contribution of the mass accuracy parameter to dif-
ferentiating true from false identifications depends on the mass accu-
racy of the mass spectrometer used, and the pI value is only useful if 
isoelectric focusing was used as one of the peptide separation tools. 
Although it is possible to take into account auxiliary information in 
the threshold-based approaches46,49,51–53, handling experimental 
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Figure 2 | Statistical analysis of large-scale datasets of peptide assignments. 
In the target-decoy strategy (left), all spectra from the entire experiment 
are searched against a composite target plus decoy database, and then the 
numbers of matches to decoy peptides are used to estimate the false discovery 
rate (FDR) resulting from filtering the data using various score thresholds. 
In the probabilistic mixture-modeling approach (right), the most likely 
distributions among correct (red curve) and incorrect (blue curve) peptide 
assignments are fitted to the observed data (histogram). A probability is 
computed for each peptide assignment in the dataset, which can then be used 
to estimate the FDR.
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variations (for example, a bias in the mass measurement, or inaccu-
rate determination of the pH value in each peptide fraction) can be 
problematic. Application of threshold-based approaches also requires 
datasets of sufficiently large size owing to the need to subdivide pep-
tide assignments into subcategories based on the search score and 
all extra parameters. At the same time, auxiliary information can be 
effectively used in PeptideProphet21,47,54. As it models all data types 
simultaneously, it has the inherent flexibility to detect and correct for 
measurement bias, and to weigh the contributions of the different 
types of information as a function of the experiment in computing 
posterior peptide probabilities.

Inferring protein identifications from spectral identifications
The purpose of most proteomic experiments is not the identification 
of peptides, but the identification of the proteins present in the sample 
before digestion55. Thus, the peptide sequences of the identified frag-
ment ion spectra need to be grouped according to their corresponding 
protein, and the confidence measures need to be recomputed at the 
level of proteins. This process is not straightforward owing to several 
challenges, and it is a likely source of significant errors in the pro-
teomics literature.

The first challenge is related to the fact that many correctly identified 
peptides tend to group into a relatively small number of proteins56. 
This is particularly obvious in the analysis of human serum samples, 
where the dominant peptide identifications come from a dozen of the 
most abundant serum proteins, and the total number of identified 
proteins is typically less than a thousand57. At the same time, incorrect 
spectral identifications match randomly to the much larger number 
of proteins in the searched sequence database (for example, more 
than 40,000 in human IPI database; Box 2). Thus, almost every high- 
scoring incorrect spectral assignment introduces one additional incor-
rect protein identification, resulting in an increase in the false discov-
ery rates when going from the spectral to the protein level.

The second challenge arises because of shared peptides: that is, 
peptides whose sequence is present in more than a single entry in the 
protein sequence database. Such cases most often result from the pres-

ence of homologous proteins, splicing variants or redundant entries 
in the protein sequence database. This problem is particularly serious 
in the case of higher eukaryote organisms55,58. As a result, in shotgun 
proteomics it is often not possible to differentiate between different 
protein isoforms. In general, this is less of a problem when proteins are 
first separated using a multidimensional protein separation technique 
(for example, using two-dimensional gels), where additional informa-
tion such as the molecular weight of the sample proteins can assist 
in the determination of the protein identities. A detailed discussion 
of the difficulties in interpreting the results of shotgun proteomics 
experiments at the protein level can be found in ref. 55.

Most frequently, protein identification is performed by determin-
ing peptide sequence identity in MS/MS spectra as described in the 
previous section, and by grouping peptide sequences into proteins, 
deterministically40,59,60 or probabilistically (for example, by appor-
tioning peptides to proteins with some weights41,55,56). An alterna-
tive approach61 sidesteps the process of spectral identification, and 
combines overlapping uninterpreted MS/MS spectra into longer 
chains, then maps the chains to protein sequences directly. With both 
approaches, combining MS/MS spectra into proteins is often insuffi-
cient for unambiguous protein identification owing to a large number 
of shared peptides, in particular in cases when the protein database 
contains many homologous proteins and isoforms. Thus the issue is 
what it means for a protein to be identified. Some publications report 
all proteins identified with at least one distinct peptide, or select one 
representative protein among isoforms and homologs62. A nomen-
clature based on the parsimony principle (also called Occam’s razor), 
which consists of determining the smallest number of proteins that 
can account for all observed peptides, has been described in ref. 55 and 
provides a consistent and concise way of representing the results of a 
proteomic experiments.

Once peptides are grouped into proteins, the plausibility of the pro-
tein identification is quantified with a score. On one hand, protein 
identifications with low spectral coverage are likely to be spurious. On 
the other hand, the number of identified peptides mapped to a pro-
tein sequence is strongly correlated with length and abundance of the 

BOX 2  SEQUENCE DATABASES
The most commonly used protein sequence databases for searching MS/MS spectra include

1. Entrez Protein database from the US National Center for Biotechnology Information (NCBI)

2. Reference Sequence (RefSeq) database from NCBI

3. UniProt, consisting of Swiss-Prot and its supplement, TrEMBL

4. International Protein Index (IPI) database, maintained by the European Bioinformatics Institute

Databases vary in terms of their completeness, degree of redundancy and quality of sequence annotation. Entrez Protein is the most 
complete database; however, it contains many redundant sequences (partial mRNAs, sequencing errors and so forth), and the entries 
are not as accurately annotated as those in Swiss-Prot or RefSeq. For the six organisms for which it is available, the IPI database 
represents a good balance between completeness and degree of redundancy. It also maintains cross-references to all its source data 
(Ensembl, UniProt, RefSeq), making biological data interpretation easier.

Genomic databases can also be used for MS/MS database searching105,106. This is an attractive option for the identification 
of peptides not yet present in any protein sequence database: for example, previously unidentified alternative splice forms, or 
sequence polymorphisms. The search can be conducted against translated expressed sequence tag (EST) databases, or against the 
DNA sequence translated in all six frames. Alternatively, a database of putative splice forms can be created using computational gene 
prediction models. Searching genomic databases should be practiced with great caution, as accurate translation to protein sequence is 
complicated owing to frame-shifts, incorrectly predicted open reading frames, sequencing errors and so forth. Such searches are also 
computer intensive, although several recent studies describe efficient computational solutions107. Thus, such searches should be done 
using only high quality MS/MS spectra that could not be identified by a normal search against a protein sequence database14.
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protein, and one can hardly expect good peptide coverage in complex 
mixtures, or with experimental designs that enrich for a particular 
class of peptides. Scoring functions attempt to distinguish between 
false and true protein identifications in a number of ways. For exam-
ple, the Bayes rule–based scoring scheme in ProteinProphet includes 
the concept of the number of sibling peptides56. Other approaches are 
based on Poisson distribution–based statistics that take into account 
the protein length62,63 or model the protein abundance as a latent 
variable41.

The final goal of the protein-level analysis is to derive a list of pro-
teins with a controlled FDR. FDR-controlling procedures that are 
analogous to the ones used at the spectral level are frequently used for 
proteins. For example, protein-level FDR can be again estimated using 
the target-decoy strategy20,60, or as a sum of posterior probabilities of 
correct identifications56. In addition, P values can be derived directly 
from the distributional assumptions of protein identification followed 
by Bonferroni adjustment to control family-wise error rate62, a more 
conservative criterion than FDR.

As in the case of spectral-level analysis, the statistical power of pro-
tein identification depends on the scoring function and the method 
used to control FDR. The power can be improved by incorporating 
more information into the scoring function: for example, predicted 
detectability of peptides64 or similarity of quantitative profiles of 
peptides mapped to a same protein. As the level of analysis (MS/MS 
spectra, distinct peptide sequences, proteins, and so forth) and the 
methods used to compute data summaries at each level become more 
complex, proving the appropriateness of data analysis procedures 
becomes more difficult. At the protein level, the ultimate validation 
of the results can be obtained by independent technical and biologi-
cal replication of the experiment using the same or a different (for 
example, targeted) experimental strategy.

Quantitative proteomics
Mass spectrometry is increasingly used for relative or absolute quanti-
fication of peptides and proteins1,65. A typical analysis involves extrac-
tion of quantitative information from mass spectra at various levels 
of summarization, such as MS1 spectrum features (peaks in the MS1 
spectrum characterized by their intensity, m/z value, and the time of 
acquisition of the spectrum), peptide features (that is, groups of iso-
topic mass peaks originating from the same peptide ion), or peptide 
(that is, multiple peptide features corresponding to different charge 
states of the same peptide). The goal of the experiment is to quantify 
changes in the abundance of those features across the samples that 
are being compared, and to provide a maximal list of differentially 
abundant features with a controlled FDR. Quantitative proteomics 
workflows can be generally divided into three categories (Fig. 3): stable 
isotope labeling, spectral counting and spectral feature analysis.

Stable isotope labeling. One commonly used approach is based on 
stable isotope labeling of proteins, in which samples are labeled chem-
ically (for example, in isotope coded affinity tag, ICAT; or isobaric 
tags for relative and absolute quantification, iTRAQ) or metabolically 
(for example, in stable isotope labeling with amino acids in cell cul-
ture, SILAC), mixed together, and digested into peptides1,65 (Fig. 3a). 
Because of the mass shift introduced by the reagent, MS1 spectrum 
features corresponding to the same peptide can be quantified sepa-
rately in the same mass spectrometry run, and their ratio represents 
the relative abundance of the corresponding peptide. Representative 
tools supporting this type of analysis are listed in Table 1. The corre-

spondence between the spectral features representing the same pep-
tide is established through the identification of the peptide sequence 
from acquired MS/MS spectra. In addition to the increased complex-
ity posed by the labeling steps, this workflow is limited by the need to 
acquire and interpret the MS/MS spectra.

Spectral counting. Quantification can also be done without isoto-
pic labeling by means of spectrum counting (from MS/MS data) or 
integrated ion intensities (MS1)62,66–70 (Fig. 3b). In this strategy, the 
samples that are being compared are analyzed in the mass spectrome-
ter separately but using the same data acquisition protocol. A separate 
list of proteins is created for each of the samples, and the lists are then 
compared to find differentially expressed proteins. The protein abun-
dance in each sample is estimated from the number of MS/MS spectra 
identified corresponding to each protein normalized to account for 
protein length or expected number of tryptic peptides. As a variation 
of this strategy, peptide abundance can be determined from the inten-
sity of the corresponding spectrum features. This method suffers from 
inability to quantify low abundance proteins identified from only one 
or two peptides, and in general is less accurate than the methods based 
on stable isotope labeling. Still, the practical utility of this method has 
been demonstrated in a number of applications66–69,71,72.

Spectral feature analysis. The third kind of the workflow is differ-
ent from the first two in that it does not require identification of the 
peptide sequence corresponding to each observed spectrum feature 
before quantification50,73 (Fig. 3c). In this label-free strategy, biological 
samples are analyzed in separate mass spectrometry runs, and the cor-
respondence between spectral features across the runs is established by 
means of computational tools and with at most a minimal amount of 
information from MS/MS spectra50,73–75. This workflow allows anal-
ysis of a large number of spectrum features and allows higher data 
throughput, and is compatible with applications that require profiling 
of multiple biological samples, such as proteomics-based candidate 
biomarker discovery. The drawbacks include increased computational 
complexity owing to the presence of a large number of spurious fea-
tures and noise, and more stringent requirements in robustness and 
reproducibility at various data acquisition steps76,77. Subsequent or 
parallel experiments using, for example, targeted workflow2,78 are 
typically necessary to verify the presence of these features and their 
changes in abundance, and to determine their identity.

Regardless of the workflow used, a typical output consists of a list of 
detected proteins (or spectral features for which the identity may not 
be known) and their absolute or relative abundances across all sam-
ples or runs. The resulting information is similar to the information 
from other high-throughput experiments, such as gene expression 
microarrays. Determining changes in abundance that are significant 
requires statistical methods that take advantage of the large number of 
features to compensate for the small sample size76. A number of such 
methods have been implemented as a part of the computational tools 
that perform quantification. Alternatively, data can be exported to an 
external tool developed more generally in support of high-through-
put data processing; for example, those that are available as a part of 
the Bioconductor project79. Furthermore, the methods described in  
Box 1 can be used to control the FDR in the list of differentially abun-
dant features.

Although data from quantitative proteomic experiments have 
similarities to other data, such as those from gene expression experi-
ments, they present many specific challenges. Proteomic data are more 
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complex than gene expression data owing to the large span of protein 
concentrations, and to the fact that the identities (peptide sequenc-
es) of spectral features are not always known, or may be determined 
incorrectly. Another complication relates to the ambiguity in assigning 
peptides to proteins55. In the case of a shared peptide, its quantifica-

tion may not be a reliable measure of the abundance of any of its 
corresponding proteins. In fact, the procedures for peptide identifi-
cation and quantification are interdependent and complementary, 
and the power of both procedures can be increased by summarizing 
the data at different levels, such as at the level of protein identity. For 
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Figure 3 | Quantitative proteomics workflows. (a) In the stable isotope labeling workflow, proteins are labeled using a light (sample 1, red) or heavy (sample 2, 
yellow) mass tag, mixed, digested into peptides and analyzed using tandem mass spectrometry. Spectral features observed in MS1 data (indicated as black dots in 
the m/z × retention time plots) are identified from the acquired MS/MS spectra. Identified peptides are quantified from the signal intensities of MS1 features, and 
this information is used to infer the identity and relative quantification of their corresponding protein (protein A). Spectral features for which no MS/MS spectrum 
was acquired (blue dots), or for which no high probability peptide assignment was obtained (indicated by X) are not further analyzed. (b) In the spectral counting 
strategy, unlabeled protein samples are analyzed separately using the same protocol as each other, and the relative protein quantification is established by 
comparing the number of MS/MS spectra identified for each protein. (c) In the spectral feature analysis strategy, the analysis starts with alignment of MS1 data from 
different samples, extraction of spectral features and their quantification, all of which is done before the identification step. Spectral features showing differential 
expression are then identified using a targeted MS/MS-based workflow.
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example, shared quantitative profiles of peptides corresponding to the 
same protein increase the confidence in the identification. Conversely, 
observing changes in abundance across different peptides from the 
same protein may suggest the presence of several protein isoforms 
having differential expression55.

Conclusions and outlook
Mass spectrometry–based proteomics, specifically proteome analy-
sis by a shotgun approach, has reached a high level of maturity with 
respect to sample processing, data acquisition and data analysis. 
However, a number of significant challenges remain. They are primar-
ily related to the complexity of proteomes, which has so far precluded 
true proteomic analyses (that is, the analysis of all the components 
of a proteome) and generated partially overlapping datasets from 
identical samples, suggesting poor reproducibility of the technology. 
Secondarily, these challenges are related to the analysis of the informa-
tion contained in proteomic datasets. In combination, these problems 
have created the impression that published proteomic data are at times 
of dubious quality.

It can be expected that incremental improvements of tools and 
methods such as the ones described in this review will further increase 
the quality of published proteomics data. The most significant 
improvements, however, will come from the skilled and systematic 
application of the most advanced available tools. It is encouraging that 
leading journals publishing proteomic studies have recognized this 
fact and started to request that authors follow specific guidelines and 
that the raw data supporting the conclusions of a paper be made acces-
sible. The practical implementation of these guidelines is facilitated by 
the development of data sharing mechanisms such as Tranche (Table 
1) and common file formats (Box 3). We must recognize, however, 
that some of the informatics issues facing shotgun proteomics datasets 
can be completely resolved by neither expert validation nor statistical 
arguments. These include the problem of inferring the identities of 
the proteins, protein isoforms and differentially modified proteins in 
a sample from confidently identified peptides. This and similar prob-
lems, in our opinion, can only be rigorously solved by the develop-
ment of alternative proteomic workflows.

Two such alternatives are becoming apparent. The first, referred to 
as top-down proteomics, is focused on the analysis of intact proteins 
rather than peptides and therefore has the potential to resolve popula-
tions of proteins into their components80–82. The second alternative 
is based on targeted analysis of specific peptides of high information 

content, termed proteotypic peptides, that collectively represent the 
proteome, thus eliminating to a large extent the redundancy of cur-
rent methods2,64,83. Although substantial progress has been achieved 
in both directions, significant technology development, including 
development of new algorithms and analysis tools, remains before 
the routine implementation of these technologies.

Note: Supplementary information is available on the Nature Methods website.
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