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De Novo Repeat Classification and
Fragment Assembly
Paul A. Pevzner,1 Haixu Tang,1 and Glenn Tesler2,3

1Department of Computer Science and Engineering and 2Department of Mathematics, University of California, San
Diego,La Jolla, California 92093, USA

Repetitive sequences make up a significant fraction of almost any genome, and an important and still open question
in bioinformatics is how to represent all repeats in DNA sequences. We propose a new approach to repeat
classification that represents all repeats in a genome as a mosaic of sub-repeats. Our key algorithmic idea also leads
to new approaches to multiple alignment and fragment assembly. In particular, we show that our FragmentGluer
assembler improves on Phrap and ARACHNE in assembly of BACs and bacterial genomes.

[The following individuals kindly provided reagents, samples, or unpublished information as indicated in the paper:
D. Kisman, M. Li, B. Ma, and to S.-P. Yang.]

A fundamental and still open question in bioinformatics is how
to represent all repeats in a genomic sequence. In a pioneering
paper, Bao and Eddy (2002) wrote, “The problem of automated
repeat sequence family classification is inherently messy and ill-
defined and does not appear to be amenable to a clean algorith-
mic attack.” One of the difficulties in repeat classification is that
many repeats represent mosaics of sub-repeats (Bailey et al.
2002). Different combinations of sub-repeats form different re-
peat copies (Fig. 1A), making it difficult to delineate the bound-
aries of sub-repeats (repeat boundary problem) and to represent
the overall repeat structure.

Figure 1A shows a genomic sequence with repeats already
decomposed into sub-repeats as well as a “genomic dot-plot”
representing all local alignments within this sequence. However,
constructing such a decomposition is a nontrivial problem (Bai-
ley et al. 2002) that is often a prerequisite to further repeat clas-
sification and analysis. In this paper, we address the problem of
deriving the mosaic repeat structure from a set of pairwise simi-
larities. Although this problem is easy to solve for the toy ex-
ample in Figure 1A, gaps, poorly defined alignment endpoints,
and inconsistencies in local alignments make it rather difficult
for real genomic sequences.

The mosaic structure of repeats is best revealed by the de
Bruijn graph (de Bruijn 1946), and in this paper we advocate use
of these graphs for repeat representation. However, the de Bruijn
graph represents repeat families as mosaics of “perfect” (error-
free) sub-repeats, whereas repeat families in DNA sequences are
mosaics of sub-repeats that typically include mismatches and
gaps. Unfortunately, the de Bruijn graph is not defined for such
approximate similarities, and therefore repeat representation in
DNA sequences remains, indeed, messy and ill defined. In this
paper, we generalize the notion of the de Bruijn graph for im-
perfect repeats and provide a well-defined algorithmic solution
for the repeat representation problem. For an arbitrary set of
pairwise alignments �, we introduce a new graph (called the
A-Bruijn graph) that generalizes the de Bruijn graph. The appli-
cations of A-Bruijn graphs in bioinformatics extend well beyond
repeat classification and include multiple alignments and frag-
ment assembly.

Repeat classification is a multifaceted problem that covers

many biological tasks, ranging from characterization of mobile
elements to analysis of mosaic structure of segmental duplica-
tions. The solution of all these problems often starts from defining
the boundaries of “elementary repeats”4 (the repeat representa-
tion problem), which is the focus of this paper. Many other as-
pects of repeat classification (like characterization of repeat sub-
families or further analysis of sub-repeats with the goal to iden-
tify the transposable elements) remain outside the scope of this
paper. The repeat representation problem is not limited to repeat
analysis; in fact, fragment assemblers implicitly face a similar
problem while assembling repetitive regions. However, in the
past there was little overlap between fragment assembly and re-
peat classification research despite the fact that these two prob-
lems are computationally very similar. In this paper, we establish
the connection between fragment assembly and repeat classifi-
cation and show that they both can be viewed as special cases of
our A-Bruijn graph approach.

The best known programs for repeat annotation are Repeat-
Masker (A.F.A. Smit and P. Green, unpubl.) and MaskerAid (Be-
dell et al. 2000), which use precompiled repeat libraries to find
copies of known repeat families represented in RepBase. How-
ever, the repeat libraries have to be manually compiled for any
new genome because they are genome-specific. De novo compi-
lation of the RepeatMasker libraries remains a challenging bioin-
formatics problem.

A very useful approach to repeat analysis is to simply list all
pairs of repeated regions. RepeatMatch (Delcher et al. 1999) and
REPuter (Kurtz et al. 2000, 2001) are efficient computational
tools that can find repeats even in very long genomic sequences.
However, their approach (based on pairwise alignments) does
not provide a compact overview or summary of the repeat fami-
lies in the genome. On the other hand, construction of multiple
(rather than pairwise) alignments of repeats is a difficult and still

3Corresponding author.
E-MAIL gptesler@math.ucsd.edu; FAX (858) 534-7029.
Article and publication are at http://www.genome.org/cgi/doi/10.1101/
gr.2395204.

4The concept of an “elementary repeat,” although important, was never rig-
orously defined in the recent papers on repeat analysis (Volfovsky et al. 2001;
Bailey et al. 2002; Bao and Eddy 2002). Although it is well defined for perfectly
conserved repeats (e.g., as maximal simple paths of multiplicity >1 in the de
Bruijn graph), the imperfectly conserved repeats defy simple definitions. “El-
ementary repeats” are defined in this paper as maximal simple paths of mul-
tiplicity >1 in the A-Bruijn graph. This definition is not perfect either, but we
believe that it fits the spirit of Bailey et al. (2002). However, in many biological
applications, this concept needs to be adjusted (e.g., by introducing appro-
priate thresholds that remove low-multiplicity edges from A-Bruijn graphs) to
account for high-multiplicity mobile elements, fractured repeats, and other
biological complications.
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unsolved problem. Moreover, even if this problem were solved,
repeat family classification would remain an open problem: Dif-
ferent copies of a repeat often have different lengths and have
mosaics of sub-repeats not adequately represented in a multiple
alignment (Volfovsky et al. 2001; Bao and Eddy 2002; Lee et al.
2002).

Figure 2 illustrates the idea of our approach. By gluing

points together, repeats in a DNA sequence transform a genomic
sequence into the A-Bruijn graph described below.

Repeats are caused by an evolutionary process, and an im-
portant goal of repeat classification is to reveal the evolutionary
relationships between different copies of repeats. Figure 1B shows
an imaginary evolutionary process leading to a “genome” with
four repeat copies. The duplication process creates an intricate
structure of sub-repeats in this genome (shown by several colors),
and the question arises how to represent this structure. The mul-
tiple alignment approach would represent all four repeats by sub-
repeat C—the only one that is present in all four copies. There-
fore, the consensus repeat representation erases important evo-
lutionary relationships between different repeat copies. A more
general approach would be to represent each repeat as a mosaic
(tangle) of sub-repeats (Fig. 1C), but it is not clear how to define
and efficiently construct this representation.

Figure 3A is an illustration of this mosaic repeat organiza-
tion for a BAC from human Chromosome Y (GenBank ID:
AC006983) with a relatively simple repeat structure. This BAC
has several repeats formed by four sub-repeats: a red one of (con-
sensus) length 140 with multiplicity 3, a blue one of length 628
with multiplicity 4, a green one of length 1185 with multiplicity
3, and a brown one of length 381 with multiplicity 2. These
lengths are the consensus lengths; each individual segment’s
length may vary slightly. We emphasize that the partition of
repeats into sub-repeats shown in Figure 3A is not immediately
apparent, and the goal of repeat classification tools is to reveal
this partition. REPuter outputs three repeat “pairs” (Fig. 3B),
whereas RepeatFinder and RECON each outputs a single repeat
family represented by three repeat copies (note that the Repeat-
Finder classification differs from the RECON classification). All
these programs fail to reveal the mosaic structure formed by red,
blue, green, and brown sub-repeats and to correctly identify the
maximum multiplicity in this case (4, as defined by the multi-
plicity of the blue sub-repeat).5 RepeatGluer uses a graph repre-
sentation (Fig. 3C,D) that reveals the mosaic structure of sub-
repeats and correctly identifies all multiplicities. One can visual-
ize the graph in Figure 3D as the result of “gluing” of all sub-
repeats of the same color. This “gluing” is easy to do when the
sub-repeat structure is known in advance. We describe an algo-
rithm for generating such graphs (and thus revealing the mosaic
structure of repeats) without knowing the mosaic structure of
repeats in advance.

Figure 4A illustrates how the process in Figure 1B material-
izes in larger genomes. It represents the structure of a 14-copy
transposase IS30 repeat family in the Neisseria meningitidis ge-
nome formed by eight sub-repeats of various lengths (every re-
peat copy may include one to four sub-repeats). Figure 4A illus-
trates a complicated evolutionary history of duplications with
widely varying (rather than fixed) duplication endpoints. Each
duplication may produce a longer or shorter version of a repeat
and eventually gives rise to new sub-repeats.

Figure 4B shows a summary of all 19 long repeats in the N.
meningitidis genome. The most complicated 20-copy repeat in the
N. meningitidis genome consists of 37 sub-repeats. In many bac-
terial genomes, a series of duplication events has created a rather
complex mosaic of sub-repeats, and decoding the evolutionary
history of duplications remains an open problem. Repeats in eu-

5We are not criticizing other repeat classification programs here: They were
designed with the primary goal of characterization of high-multiplicity mobile
elements rather than the explicit representation of mosaic structure of sub-
repeats. The goal of this example is to illustrate that the problem of mosaic
repeat representation raised by Bailey et al. (2002) is not adequately addressed
by the existing software tools. We also remark that our approach reveals mo-
bile elements as well (as high-multiplicity edges/paths in A-Bruijn graphs).

Figure 1 (A) Genomic dot-plot of an imaginary sequence with repeats
containing sub-repeats. How many repeats are really present? The color-
ing shows the repeats from which it was constructed. In a real sequence,
we would not know the sub-repeat structure and thus we would not be
able to color the dot-plot. Also, because the repeats would not be perfect,
there would be gaps, substitutions, and indels distorting each diagonal.
In certain applications, there would be reverse diagonals, corresponding
to alignments with opposite strands. (B) An imaginary evolutionary pro-
cess leading from a repeat-free genome to the genome in A with four
repeat copies. Each step duplicates a region and inserts it elsewhere. (C)
Gluing repeated regions leads to the repeat graph of the final genome.
Deleting the multiplicity 1 edges (shown dotted) in this graph leaves a
single component, called a tangle or repeat. It consists of five edges B, C,
D, F, G (shown solid) called sub-repeats. Every new duplication in B
creates a more and more complicated tangle describing an evolving re-
peat structure. The graph structure of this tangle documents the evolu-
tionary history of duplications.

Figure 2 (A) A hypothetical DNA sequence with unique regions A, B, C,
D, E and repeats X (appearing twice as X1 and X2) and Y (appearing
twice as Y1 and Y2). (B) Same sequence, drawn differently to prepare for
gluing of repeats. (C) Glue together repeats.
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karyotic genomes are a few orders of magnitude more compli-
cated, and their classification is a challenging problem with im-
portant applications in evolutionary studies. In particular, we are
unaware of another algorithm that would automatically generate
a summary of all sub-repeats in a bacterial genome similar to the
one presented in Figure 4 or the mosaic representation of seg-
mental duplications in the human genome (Bailey et al. 2002).

The early single linkage clustering ap-
proaches to repeat classification (Agarwal
and States 1994; Kurtz et al. 2000) start from
finding pairwise similarities and use cluster-
ing to group similar sequences together. Al-
though finding pairwise similarities can be
done efficiently, clustering of these similari-
ties presents a serious problem because local
sequence alignments do not typically corre-
spond to the biological boundaries of a re-
peat (Bao and Eddy 2002). Volfovsky et al.
(2001) and Bao and Eddy (2002) recently
developed new heuristic algorithms for de
novo repeat classification that perform well
in practice (RepeatFinder and RECON).
However, these approaches lack the gener-
ality of the de Bruijn approach, and our goal
is to develop an efficient repeat classifica-
tion tool that would match the power of the
de Bruijn approach.

The use of the de Bruijn graphs in com-
putational molecular biology goes back to
the late 1980s (Pevzner 1989). Idury and
Waterman (1995), Pevzner et al. (2001),
Shamir and Tsur (2001), Heber et al. (2002),

Peer et al. (2002), Li and Waterman (2003), Zhang and Waterman
(2003), and Bocker (2003) further applied de Bruijn graphs to
fragment assembly, resequencing with DNA arrays, EST analysis,
and computational mass spectrometry. The de Bruijn graph rep-
resents every l-mer in a genomic sequence as a vertex and con-
nects two vertices by a directed edge if they correspond to a pair
of consecutive (overlapping) l-mers in the genome (see the books

Figure 3 Mosaic repeat organization of BAC from human Chromosome Y. For purposes of
illustration, only sufficiently long and very conservative repeats are shown. (A) Partitioning of BAC
into 15 segments (numbers shown underneath) with approximate lengths of the segments shown
on top. Each dashed black line represents a unique region. Each color represents a different repeat
region, and occurs multiple times. (B) Repeat pairs constructed by REPuter are just the numeric
ranges shown on the first line. These correspond to our division into sub-repeats, shown as colored
segments on the second line, but REPuter does not identify the four sub-repeats. (C) Repeat
multigraph. The edges with labels 1, 2, …, 15 form a path through this graph corresponding to the
sequence in A. (D) Repeat graph, with repeated regions collapsed together. The repeat graph
reveals the presence of four sub-repeats in this BAC as edges with multiplicity >1.

Figure 4 RepeatGluer representation of a 14-copy transposase IS30 repeat family in the N. meningitidis genome as a mosaic of eight sub-repeats >30
bp (shown by bold edges). The similarity matrix A is constructed based on a 90% similarity threshold and minimum repeat length 400. (A) Transposase
IS30 family tangle (with adjacent edges) in the repeat graph. Every repeat copy corresponds to a path from a source sI to a sink tI. Edge label 130(2)
indicates the length of the sub-repeat (130 nt) and its multiplicity (2). (B) Summary of all 19 repeat families (>400 bp with 90% similarity threshold)
produced by RepeatGluer in the N. meningitidis genome. (C) Simplified tangle corresponding to the most common Alu repeat family in the first 1 Mb
of human Chromosome X. Because the real tangle (even for 1 Mb sequence, let alone the entire genome) is too complicated, we removed all edges
with multiplicities smaller than 3. This Alu repeat is broken into four sub-repeats with multiplicities ranging from 116 to 214. The multiplicities of every
sub-repeat vary along the length of sub-repeat because many Alu repeats are incomplete versions of the canonical Alu (e.g., the multiplicity of the
sub-repeat of length 218 varies from 151 to 214).
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Gusfield 1997 or Pevzner 2000 for more details). The multiplicity
of this edge is the number of such l-mer pairs. The genomic
sequence corresponds to an Eulerian path in the resulting mul-
tigraph. “Tangles” in this graph (Pevzner et al. 2001) describe the
mosaic structure of sub-repeats.

Although de Bruijn graphs were very successful in many
applications outside bioinformatics (including coding theory,
network design, optimal routing, the NASA Galileo project, etc.),
all these applications refer to the representation of “perfect” re-
peats, and it is not clear how to adjust the powerful de Bruijn
approach (or suffix tree approach) to the case of approximate
repeats. As a result, until recently, de Bruijn graphs were of little
use in the analysis of real repeat families with many mismatches
and gaps.6 Below, we generalize the notion of the de Bruijn graph
to work with imperfect repeats and introduce the concept of the
A-Bruijn graph, defined for an arbitrary collection of alignments
�. The A-Bruijn graphs are equivalent to the de Bruijn graphs in
the special case that � is the collection of all perfect similarities
of length l (l-mers).

Based on the notion of A-Bruijn graphs, we developed the
RepeatGluer algorithm (available from http://nbcr.sdsc.edu/
euler/) to find all sub-repeats in a genomic sequence. For every
sub-repeat, RepeatGluer identifies the consensus sequence as well
as the number of copies. Using this classification, it forms a new
sequence (called the consensus of S) that is a copy of the genomic
sequence S with each sub-repeat substituted by its consensus se-
quence. Such a consensus sequence can be viewed as a repeat
masking tool that allows one to mask all sub-repeats with mul-
tiplicity larger than a predefined threshold.7 In addition, Repeat-
Gluer outputs “tangle graphs” that describe repeats as mosaics
of sub-repeats. Below we introduce the A-Bruijn graphs and de-
scribe their applications for repeat analysis and fragment assem-
bly. Our extensive benchmarking (http://nbcr.sdsc.edu/euler/
benchmarking) on BACs and bacterial genomes implies that a
new fragment assembler based on the A-Bruijn graph approach
outperforms Phrap and ARACHNE, which are currently perceived
as among the best fragment assembly tools.

METHODS

A-Bruijn Graphs
Let S be a genomic sequence of length n and A = (aij) be a binary
n � n “similarity matrix” representing the set � of all significant
local pairwise alignments between regions from S. The matrix A
is defined as aij = 1 if and only if the positions i and j are aligned
in at least one of the pairwise alignments and aij = 0 otherwise
(note that insertions and deletions are not recorded in A). Matrix
A represents an “adjacency matrix” of a graph (called the A-
graph) on n vertices 1, …, n (vertices i and j are connected iff
aij = 1). Let V be the set of connected components of this graph
and let vi ∈ V be the connected component containing vertex i
(1 � i � n). The A-Bruijn graph G(V, E) is defined as the multi-
graph on the vertex set V with (n � 1) directed edges (vi, vi + 1) for
1 � i < n. One can view the A-Bruijn graph as the Eulerian path
obtained from the path (1, …, n) after contracting each con-

nected component into a single vertex (Figs. 5 and 6). Vertices v1

and vn are called the source and sink.
When the matrix A corresponds to all starting positions of

perfect (error-free) alignments of length l within a genome, the
A-Bruijn graph corresponds to the classical de Bruijn graph (with
minor technical modifications). However, the A-Bruijn graph is
well defined for any collection of alignments �. This generaliza-
tion, although very powerful, comes with a trade-off—A-Bruijn
graphs may become very complicated and difficult to analyze
because of numerous short cycles caused by gaps and inconsis-
tencies in pairwise alignments (Fig. 7).

The A-Bruijn graphs can be viewed as weighted graphs with
the weight (multiplicity) of an edge between two vertices equal to
the number of edges connecting these vertices. For example, in
Figure 6A, there are two edges from the first a to c, which could
be viewed as a single edge of weight 2. A cycle in a graph is called
short if it has less than girth edges, where girth is a parameter.
There are two types of short cycles in the A-Bruijn graphs: whirls
and bulges. Whirls are short, oriented cycles (i.e., all edges of the
whirl are oriented the same way), whereas bulges are short cycles
that contain both forward and reverse edges. A gap of length g in
a pairwise alignment typically creates a bulge of length g + 2 in
the A-Bruijn graph (Fig. 6A). Whirls are caused by inconsistencies
(see Morgenstern et al. 1996) in pairwise alignments (Fig. 6B).
Bulges and whirls may further aggregate into networks of bulges/
whirls that complicate the analysis of the A-Bruijn graph (as com-
pared with the de Bruijn graph) and hide the underlying repeat
structure. The de Bruijn graphs often can be simplified by col-
lapsing every simple path (a maximal directed path in the graph
satisfying the condition that all its internal vertices have one
incoming and one outgoing edge) into a single edge. Such col-
lapsing does not help much in the case of A-Bruijn graphs with
numerous bulges and whirls (Fig. 7). To produce a sensible repeat
classification, one has to remove whirls and bulges. Such removal
may sacrifice the fine details of some repeats in favor of revealing
the mosaic structure shared by different repeat copies.

Cleaning Up Whirls and Bulges
Figure 6B presents a set of inconsistent pairwise alignments that
cannot be combined into a three-way multiple alignment (see

6Pevzner et al. (2001) introduced an error-correction procedure that mimics
de Bruijn graphs for nearly identical repeats (repeats that are 98%–99% simi-
lar), a small step toward a generalization of the original de Bruijn approach.
However, extending this approach beyond nearly identical repeats remains an
open problem. Our construction of repeat graphs (below) is very different and
more general.
7Although the A-Bruijn graphs may be very complicated for highly repetitive
genomes, they are often broken into simple paths if one removes all low-
multiplicity edges. These paths (formed by high-multiplicity edges) typically
correspond to mobile elements studied in Bao and Eddy (2002).

Figure 5 (A) Construction of the A-graph from the sequence
…at…act…acat by applying three pairwise alignments (B) a–t versus
act, (C) act versus acat, and (D) a–t versus acat. (D) The A-graph
consists of the eight nodes plus the seven thick, black edges created from
the alignments; the colored edges are shown to indicate the relation of
the nodes to the sequence, but they are not part of the A-graph. (E) Each
of these alignments serves as “gluing instructions” that transform the
sequence into the A-Bruijn graph on four vertices; the colored edges are
in the A-Bruijn graph, although the coloring itself is not.
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Morgenstern et al. 1996 for more details on inconsistent pairwise
alignments). Inconsistent pairwise alignments often can be
transformed into consistent ones by either changing the posi-
tions of gaps or removing some matches from the alignments.8

Inconsistencies in pairwise alignments result in whirls in
A-Bruijn graphs and present a major challenge in repeat analysis.
A straightforward whirl removal may alter the consensus repeat
sequence because some whirls may represent well-conserved
parts of a repeat. We now describe an approach that eliminates
inconsistencies from the alignments � rather than removing en-
tire whirls.

For a vertex v, let P(v) be the set of positions in the con-
nected component of the A-graph that was merged into v in the
process of the A-Bruijn graph construction. A vertex v is called

composite if P(v) contains two closely lo-
cated (within distance girth) genomic posi-
tions.

Whirls may correspond either to in-
consistencies in alignments or to very short
tandem repeats. For the sake of simplicity,
we assume that such short tandem repeats
are not included in the alignments �.9 In
this case, every composite vertex v indicates
a potential inconsistency within the align-
ments � and implies that some edges
within the connected component on the set
of positions P(v) have to be removed to
make � consistent [i.e., aij should be
changed from 1 to 0 for some positions i
and j from P(v)]. However, deciding which
edges have to be removed to produce a con-
sistent set of pairwise alignments is a non-
trivial problem. The simplest solution is to
delete all edges within connected compo-
nents of A-graphs corresponding to com-
posite vertices. However, this solution may
cause the RepeatGluer algorithm to deviate
from the consensus repeat sequence in fa-
vor of a randomly chosen (and not neces-
sarily representative) copy of a repeat. Be-
low we describe a better approach based on
splitting composite vertices (Fig. 8A,B).

Define a “split edge” as an edge of
maximal multiplicity m among all edges
connecting composite and noncomposite
vertices in the A-Bruijn graph. Let v be the
composite vertex incident to this edge and
P(v) be the set of positions corresponding to
v. A split edge of multiplicity m corresponds
to m pairs of consecutive genomic posi-
tions; let M be the set of m positions within
P(v) defined by this edge (note m < |P(v)|).
The splitting procedure removes all edges
connecting the positions from M with the
positions from P(v)�M within connected
component v, thus splitting v into at least
two vertices. The matrix A is changed ac-
cordingly by setting aij = 0 for every i ∈ M
and j ∈ P(v)�M. This ensures that at least one
of the newly created vertices is noncompos-
ite. The iterative splitting procedure con-

verges to a graph without composite vertices.
A bulge may be destroyed by removing any of its edges. We

argue that the best way to destroy a bulge is to remove one of its
low-multiplicity edges because high-multiplicity edges typically
connect the most conserved positions in the repeat. In reality,
the situation is significantly more complicated, because bulges
are not isolated but form complex networks of bulges. This mo-
tivates the Maximum Subgraph with Large Girth (MSLG) Prob-
lem.

The MSLG Problem aims to remove bulges from the graph
and amounts to finding a maximum weight sub-graph in the
graph (i.e., a collection of edges of maximum total weight) that
does not contain short cycles (cycles of length less than a param-
eter girth). The MSLG Problem with parameter girth = � is the

8For example, inconsistent pairwise alignments in Figure 6B can be made
consistent by moving the gap in the alignment of at and acat from positions
1–2 to positions 2–3.

9Short tandem repeats deleted during whirl elimination can be easily added to
the repeat graphs.

Figure 6 Construction of A-Bruijn graphs from (A) consistent pairwise alignments and (B) incon-
sistent pairwise alignments, for the genomic sequence …at…act…acat… with a repeat repre-
sented by three copies: at, act, acat. In the A-graphs, the thick, black edges connect vertices
according to the adjacency matrix A. In the A-Bruijn graph, the colored edges show how the
sequence threads through the vertices; they are also shown in the A-graph but technically are not
part of it. Gaps in pairwise alignments create bulges in the A-Bruijn graph; for example, the third
alignment in example A creates a bulge on vertices c, a, and t consisting of three edges (c, a), (a,
t), and (c, t). Inconsistencies in pairwise alignments create whirls; for example, a blue whirl
a → c → a in B. (C) A-graph and A-Bruijn graphs of a mismatch in the genomic sequence
…acat…acgt….
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well-known and easy to solve Maximum Spanning Tree Problem
(Cormen et al. 1989). However, for an arbitrary girth, the MSLG
Problem is far from easy (S. Skiena, unpubl.); below we propose
an approximation algorithm that produces good results (Fig. 8C).
The bulge removal algorithm uses an optimal solution of the
Maximum Spanning Tree Problem to arrive at an approximate
solution of the MSLG Problem.

The algorithm finds a maximum spanning tree T in the
A-Bruijn graph and analyzes the remaining edges in the graph in
order of decreasing multiplicities. An edge is added to the graph
if and only if it does not form a short cycle with already present
edges; otherwise, it is deleted from the graph. Because bulge re-
moval solves the shortest cycle problem at every iteration, it may
appear to be rather time-consuming (A-Bruijn graphs contain
millions of vertices even for bacterial genomes). However, for a
typical genome, only a tiny fraction of edges is added to the
graph while most edges are deleted efficiently because they form
bulges with the tree T.

RepeatGluer Algorithm
The input of the RepeatGluer algorithm is the genomic sequence
S of length n, the n � n similarity matrix A, and the parameter
girth. The output is the classification of repeats (as described by
tangles in repeat graphs) and the consensus sequence of S. In
addition to whirl elimination and bulge removal, the algorithm
includes other important steps (erosion, zigzag path straighten-
ing, and threading) that are discussed below. After performing
these steps, every simple path in the resulting graph can be fur-
ther collapsed into a single edge, resulting in the “repeat graph.”
The multiplicity of an edge in the repeat graph is defined as the
multiplicity of the corresponding simple path. Every nonrepeti-
tive region in the genome corresponds to an edge of multiplicity
1 (a “nonrepetitive edge”) in the repeat graph, whereas repetitive
regions correspond to edges of multiplicity >1 (sub-repeats in the
genome). Repeat graphs provide a solution of the “repeat bound-
ary problem” posed by Bao and Eddy (2002; Fig. 4A). If one de-
letes the nonrepetitive edges from the repeat graph, it gets bro-
ken into connected components called tangles (Pevzner et al.
2001). Tangles provide a concise representation of all repeats in a
genome and specify the mosaic of sub-repeats forming a given
repeat. Every edge within a tangle represents a sub-repeat, and
every valid path in the tangle represents a sequence of sub-
repeats forming a given repeat.10

RepeatGluer Algorithm

1. Construct the A-Bruijn graph from matrix A.
2. Eliminate whirls in the A-Bruijn graph by splitting the com-

posed vertices (i.e., vertices that contain close positions) and
modifying A accordingly.

3. Remove bulges from the A-Bruijn graph by constructing a
maximum spanning tree and adding edges of the A-Bruijn

graph (in decreasing order of multiplicity) that do not form
“short” cycles with already present edges.

4. Perform girth iterations of the erosion procedure in the graph
by removing all leaves (except source and sink) in every itera-
tion.

5. Straighten zigzag paths in the graph.
6. Thread the genomic sequence S through the graph, and form

the consensus sequence of S.
7. Form the repeat graph by collapsing simple paths in the re-

sulting graph. The multiplicity and the consensus sequence
for an edge in the repeat graph are defined as the multiplicity
and consensus sequence of the corresponding simple path.

8. Output repeat families as tangles in the repeat graph. Every
tangle is a collection of edges (sub-repeats) with correspond-
ing consensus sequences.

Erosion
Although the graph obtained after bulge removal does not con-
tain short cycles, it still may contain many small tree-like sub-
graphs (remains of the bulges) that complicate further analysis of
this graph (Fig. 8D). To delete the remains of the bulges, we apply
the erosion procedure, which removes all leaves (vertices of total
degree 1) from the graph except the source and the sink. The
erosion procedure is repeated several times (the number is deter-
mined by the maximal gap allowed in the alignments �) to re-
move the remains of all bulges from the graph.

Zigzag Paths and Consensus Sequences of Sub-Repeats
The graph generated after the erosion procedure typically con-
sists of a small number of long simple paths. The question is how
to define the consensus nucleotide for every vertex in the result-
ing graph. Every vertex v in the A-Bruijn graph is associated with
its set of genomic positions P(v). We define a “consensus” nucleo-
tide of v as the most frequent nucleotide at these positions (the
nucleotides at these different positions may differ because of mis-
matches within different copies of repeats). The hope is that the
sequence of consensus nucleotides along a simple path in the
resulting graph spells out the consensus sequence of the sub-
repeat corresponding to this path.

10RepeatGluer classifies repeat families in a single DNA strand. To account for
both strands and for inverted repeats, one has to concatenate both DNA
strands into a single sequence S.

Figure 7 A repeat region in an A-Bruijn graph in which alignment
inconsistencies have caused a whirl and a network of bulges.

Figure 8 (A) Initial A-Bruijn graph (weighted graph representation in-
stead of multigraph). (B) Whirl elimination. (C) Bulge removal. (D) Ero-
sion. (E) Zigzag path straightening.
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However, the graph generated after the erosion procedure is
a directed graph, and some of the simple paths in this graph may
include both forward and reverse edges (zigzag paths). Although
such paths are rare for highly conserved repeat families, less con-
served repeat families may create complex networks of bulges in
the A-Bruijn graph and lead to zigzag paths. We straighten every
zigzag path from the start vertex s to the terminal vertex t by first
computing index(v) for every intermediate vertex v on this path
as the difference between the number of forward and reverse
edges in the sub-path from the start vertex s to v. The straight-
ened path (Fig. 8E) is defined as the path on the set of indices
ranging from 0 to index(t). The set of genomic positions assigned
to the vertex i on the straightened path is defined as the union of
P(v) over all vertices v with index(v) = i. The consensus nucleotide
of vertex i on the straightened path is defined as the most fre-
quent nucleotide at these positions.

Threading the Genomic Sequence Through the Graph
The genomic sequence corresponds to an Eulerian path in the
A-Bruijn graph. Some vertices of the A-Bruijn graph survive the
bulge removal and erosion procedures whereas others are de-
leted, thus breaking the Eulerian path into segments. We attempt
to “thread” this broken path through the resulting graph by re-
pairing gaps between consecutive surviving segments.

Let v1, …, vk be an arbitrary sequence of vertices in a directed
graph G. Path(G, v1, …, vk) is defined as a path in G composed
from the (k � 1) shortest directed paths between every pair of
consecutive vertices vi and vi + 1 for 1 � i < k. Path(G, v1, …, vk) is
not uniquely defined in case there are multiple shortest paths for
some pairs of vertices vi and vi + 1. However, in our applications,
this path is usually uniquely defined because the distances be-
tween consecutive vertices vi and vi + 1 are typically short and G
does not have bulges.

Because every vertex v of the A-Bruijn graph G is associated
with a set of genomic positions P(v), one can label positions
in the genomic sequence S by vertices of the graph G [a position
i is labeled by vertex v iff i ∈ P(v)]. Some positions in S may
remain unlabeled because the erosion procedure deleted
some vertices from the original A-Bruijn graph. However, the
labels of positions along the sequence S define an (ordered)
sequence of vertices v1, …, vk. The path Path(G, v1, …, vk) is called
the threading of genomic sequence S through the graph G.
We define the “maximum threading span” as the maximum
length of shortest paths between vi and vi + 1 (1 � i < k) and re-
mark that the maximum threading span for real genomes is typi-
cally small.

Threading defines a “consensus path” in G that spells out
the consensus of genomic sequence S with all sub-repeats in S
substituted by their consensus sequences. Threading also defines
the multiplicity of every simple path p in G as the number of
times the consensus path traverses p.

Timing
RepeatGluer is a polynomial-time algorithm that is very fast in
practice: Under the assumption that girth and the maximum
threading span are bounded, it runs in linear time (assuming the
size of the input is defined by the number of 1s in the matrix A).
RepeatGluer typically takes <10 min to generate a summary of
repeats in a bacterial genome similar to that in Figure 4B (not
counting the step that generates the similarity matrix A).11 In

fact, the most time-consuming part of any approach to repeat
classification is hidden in the “pairwise similarities” step that
precedes the RepeatGluer algorithm.

To illustrate the complexity of the problem, Figure 4C shows
the greatly simplified tangle of the most common repeat in the
first 1 Mb of human Chromosome X, representing (not surpris-
ingly) Alu elements and their interactions with other repeats.
Figure 4C shows several sub-repeats with length ranging from 3
to 278 bp and with multiplicities ranging from 3 to 30 (the com-
plex structure of some Alu elements was also discussed in Perl et
al. 2000 and Bao and Eddy 2002). These sub-repeats either rep-
resent common extensions of canonical Alu repeats or other re-
peats that are often found in conjunction with Alu repeats. Al-
though these sub-repeats are not as frequent as the major Alu
sub-repeats, a simple extrapolation implies that each of them
may be present in at least 1% of all Alu repeats, resulting in tens
of thousands of occurrences in the whole human genome. There-
fore, careful analysis of these sub-repeats is important for studies
of repeat evolution.12

Multiple Alignments
Given t sequences S1, …, St of total length n and t(t � 1)/2 pair-
wise alignments between these sequences, one can concatenate
S1, …, St into a single sequence S of length n and compose the
n � n similarity matrix A from t(t � 1)/2 pairwise alignments.
The only difference between the A-Bruijn graph of multiple se-
quences S1, …, St and the A-Bruijn graph of a single sequence S is
that edge (vi, vi + 1) is removed from the A-Bruijn graph of mul-
tiple sequences if positions i and (i + 1) in S correspond to the last
and the first positions in the consecutive sequences Sk and Sk + 1.
Therefore, the A-Bruijn graph may have up to t sources and t
sinks.

Our approach to multiple alignment13 follows the spirit of
the recent pioneering work by Lee et al. (2002), who were the first
to ask the provocative question, “Should multiple alignment be
linear?” Most multiple alignment algorithms are based on pro-
gressive application of pairwise alignments; CLUSTALW
(Thompson et al. 1994) is an example of very efficient software
based on this approach. However, Thompson et al. (1994) high-
lighted some problems with progressive multiple alignments,
most importantly, dependence on the order of pairwise align-
ments. Lee et al. (2002) highlighted an even more troublesome
aspect of the classical notion of multiple alignment: It assumes
that all regions of all sequences are homologous over the entire
length. The problems with this assumption are well known; in
fact, experienced CLUSTALW users clip the sequences before
alignment to remove nonhomologous parts.

11We emphasize that highly repetitive sequences correspond to a similarity
matrix with a large number of 1s, which may be quadratic in the length of the
sequence. Although it does not present a problem for genomes under study,
it may present a problem for longer genomes. A possible approach to reducing

the running time in this case is to limit the number of 1s for each column/row.
Such filtering of 1s in the similarity matrix has to be done with caution to
ensure that all copies of a mobile element are “glued together” with high
probability (e.g., all copies of a perfect m-copy repeat can be glued with
m � 1 1s instead of m2 1s). Also, blocks of adjacent 1s are represented as
position and length. Another approach (that is equivalent to the “repeat mask-
ing” procedure used in many WGS assemblers) is to simply glue together all
predefined high-multiplicity repeats at the preprocessing stage.
12If one removes low-multiplicity edges from the graph in Figure 4C, the
resulting path on four bold edges will correspond to the consensus Alu repeat.
Other transposable elements can be extracted from the A-Bruijn graphs by
applying different thresholds depending on the multiplicity of the transposable
element (applications of RepeatGluer for finding transposable elements will be
described elsewhere).
13Multiple alignment is not a focus of this paper, and the goal of this section
is simply to introduce the construction that is used in the follow-up fragment
assembly section (we view fragment assembly as multiple alignment of reads).
The applications of RepeatGluer for multiple alignment of proteins with
shuffled domains will be described elsewhere.
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Lee et al. (2002) addressed this problem by introducing the
notion of partial order graphs of multiple alignments and design-
ing a new Partial Order Alignment (POA) multiple alignment
algorithm. POA outputs graphs that are similar to the tangles
produced by our approach. However, POA suffers from the same
order dependency as CLUSTALW, whereas our A-Bruijn graph
approach is order-independent. In addition, the approach in Lee
et al. (2002) is not suitable for proteins with shuffled domain
structure (no cycles in the partial order graphs), whereas our ap-
proach handles this case as well.

Constructing A-Bruijn Graphs Without the
Similarity Matrix
The construction of the A-Bruijn graph assumes that the genomic
sequence S and the matrix A are given. A surprising and use-
ful property of the A-Bruijn graph is that it often can be con-
structed from alignments of substrings of S without knowledge
of the entire sequence S and matrix A. The key idea here is that
if reads “cover” the entire genome, then “gluing” of reads pro-
duces the same A-Bruijn graph as “gluing” of genomic sequences.
The order in which the reads are subjected to such gluing (mul-
tiple alignment of reads) does not affect the resulting A-Bruijn
graph.

A set of substrings {S1, …, St} of a genomic sequence S is
called a “covering” set if for every pair of consecutive positions in
S there exists a substring Si (1 � i � t) containing these positions.
Let S be an (unknown) genomic sequence of an (unknown)
length with an (unknown) alignment matrix A (we assume that
aii = 1 for all 1 � i � n). Let S1, …, St be a covering set of strings for
S, and � be the collection of t(t � 1)/2 sub-matrices of A for every
pair of substrings Si and Sj. Every such |Si| � |Sj| sub-matrix is a
snapshot of a “small” area of matrix A (|Si| is the length of the
string Si). The question is whether one can reconstruct the A-
Bruijn graph from these snapshots rather than from the entire
matrix A.

We emphasize that neither coordinates of the strings S1, …,
St, nor their ordering in the sequence S is known. However, one
can prove that the A-Bruijn graph of sequence S and the A�-Bruijn
graph of sequence S� coincide, where S� is a concatenation of
S1, …, St (in any order) and A� is the corresponding block matrix,
comprised of the matrices in �. Indeed, the condition aii = 1
ensures that all replicas of node i in different substrings are glued
together in A�. The covering condition ensures that all nodes and
edges produced by S occur at least once in S� and that all addi-
tional gluings specified by A are also specified in A�. Therefore,
the A-Bruijn graph of sequence S and the A�-Bruijn of any col-
lection of its covering substrings concatenated in an arbitrary
order are the same. An important implication of this fact is that
RepeatGluer leads to a new and efficient fragment assembly al-
gorithm.14

To assemble reads S1, …, St into a genomic sequence, one
concatenates them (in any order) to form a sequence S� of length

n�, composes the set of all pairwise alignments between reads
into an n�’ � n� similarity matrix A�, and constructs the A�-Bruijn
graph of reads S1, …, St. Below we describe a modification of the
RepeatGluer algorithm for fragment assembly.

Fragment Assembly
After Myers et al. (2000) proved that large genomes can be as-
sembled in the WGS approach, there was an explosion of new
fragment assemblers (Pevzner et al. 2001; Aparicio et al. 2002;
Batzoglou et al. 2002; Wang et al. 2002; Mullikin and Ning 2003).
Surprisingly enough, although these assemblers were successful
in assembling large genomes, Phrap (Green 1994) remains the
dominant BAC assembly tool.

BAC sequencing becomes particularly important when
the genomic projects move into the finishing stage. “Extreme
fragment assembly” (like assembly of the highly repetitive
Y-chromosome) is an open problem: Many BACs and bac-
terial genomes remain unassembled or assembled with likely
errors. The accuracy of the recently released WGS assemblers
as compared with Phrap remains unclear when it comes to
assembly of BACs or bacterial genomes. Moreover, there are some
problems with recent assemblies of mammalian genomes, and
revealing comparative strengths and weaknesses of WGS assem-
blers may lead to better quality assembly of mammalian ge-
nomes.

Many difficult-to-assemble BACs are comparable in com-
plexity to bacterial genomes and require significant finishing ef-
forts. Although Phrap makes assembly errors for long and repeti-
tive genomes, it is an excellent tool for assembling low-coverage
nonrepetitive regions and using low-quality reads (Yang 2002).15

In contrast, the genome-scale assemblers outperform Phrap in
assembling highly repetitive regions but discard low-quality
reads and read ends to ensure that the assembly is error-free. For
example, the Celera assembler (Myers et al. 2000) carefully trims
reads to ensure that the remaining portions are at least 98% ac-
curate. Such trimming significantly reduces the coverage and
leads to an increased number of contigs as compared with Phrap,
which carefully analyzes Phred quality values and meticulously
works with untrimmed read ends. This observation implies that
the best WGS assemblers are not necessarily the best BAC assem-
blers.

We recently developed the EULER assembler (available at
http://nbcr.sdsc.edu/euler), which has proved to be very accu-
rate in handling high-quality reads in highly repetitive regions
(Pevzner et al. 2001). However, as with other recently developed
assemblers, EULER produced more contigs than Phrap when as-
sembling low-coverage regions and low-quality reads. Our goal is
therefore to build an accurate assembler that combines EULER’s
accuracy in analyzing repeats with Phrap’s ability to handle low-
coverage regions, low-quality reads, and read ends.16 Fragment-
Gluer does not remove low-quality reads and does not trim low-
quality read ends, yet still maintains high accuracy of assemblies.
It also uses less memory than the original EULER (by eliminating
the huge hash tables), thus overcoming a major bottleneck in
applying EULER to larger genomes.

14The informed reader may notice parallels between our A-Bruijn graph ap-
proach to fragment assembly and two earlier approaches pioneered by Idury
and Waterman (1995) and Myers (1995). Although the earlier algorithms look
very different, both implicitly tried to develop the idea of the repeat graph.
Myers tried doing this by collapsing the overlap graph at the level of read
(∼500 bp) resolution, whereas Idury and Waterman tried simplifying the de
Bruijn graph at the level of l-mer resolution. Our key contribution is the A-
Bruijn graph construction that deals with fragment assembly at the level of
single-nucleotide resolution. This increased granularity alleviates challenging
algorithmic problems that we faced trying to design an efficient assembler for
low-coverage regions and low-quality reads/read ends.

15Low-quality reads can be defined as reads with fewer than 100 positions with
Phred quality values above 15.
16It may sound like a simple integration problem, but it turned out to be a very
difficult task that required development of a new idea for fragment assembly
(our FragmentGluer algorithm, implemented in EULER+). The difficulty is that
it is unclear how the algorithmic ideas used in the recent WGS assemblers can
be adjusted for working with low-coverage and low-quality sequencing data
(like read ends).
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The input of FragmentGluer is a set of reads {S1, …, St}, a set
of pairwise alignments between some of the t(t � 1)/2 pairs of
reads, a parameter girth, and a set of “mate-pairs” (pairs of reads)
with corresponding “mate-pair distances.” FragmentGluer as-
sembles the reads into a set of contigs and classifies repeats in the
process of fragment assembly.

FragmentGluer Algorithm

0a. Identify and remove chimeric reads from {S1, …, St}.
0b. Concatenate the remaining reads and their reverse comple-

ments into a sequence of length n and compose the n � n
similarity matrix A from the pairwise alignments of reads.

1. Construct the A-Bruijn graph of sequences S1, …, St from
the matrix A.

2. Eliminate whirls in the A-Bruijn graph by splitting the com-
posed vertices, and modify the matrix A accordingly.

3. Remove bulges from the A-Bruijn graph by constructing a
maximum spanning forest and adding edges of the A-Bruijn
graph (in decreasing order of multiplicities) that do not
form “short” cycles with already present edges.

4. Perform girth iterations of the erosion procedure in the
graph by removing all leaves in every iteration.

4a. Recover sources and sinks by adding, for every leaf, a long-
est path of removed vertices attached to the leaf.

5. Straighten zigzag paths in the graph.
6. Thread each read through the graph and define the cover-

age of a vertex in the graph as the number of reads that are
threaded through this vertex. Define coverage of simple
paths as the average coverage of their vertices.

7. Form the repeat graph by collapsing simple paths in the
graph. The consensus sequence of an edge in the repeat
graph is defined as the consensus sequence of the corre-
sponding simple path. The multiplicity of an edge in the
repeat graph is defined by the EULER Copy Number algo-
rithm (Pevzner and Tang 2001).

8. Output repeat families as tangles in the repeat graph. Every
tangle is a collection of edges (sub-repeats) with corre-
sponding consensus sequences.

9. Transform mate-pairs into mate-paths in the graph ob-
tained after step 6, and perform equivalent transformations
on the resulting set of mate-paths (Pevzner and Tang 2001).

10. Define contigs as consensus sequences of simple paths in
the resulting graph. Assemble the resulting contigs into
scaffolds by the EULER Scaffolding algorithm (Pevzner and
Tang 2001).

The FragmentGluer algorithm addresses the following complica-
tions of the assembly problem:

Identification of Chimeric Reads (Step 0a)
Huang (1992, 1996) and Green (1994) were the first to develop
efficient algorithms for chimeric read identification. Our new
approach is influenced by these ideas and is based on a modifi-
cation of the first four steps of the RepeatGluer algorithm (to be
described elsewhere).

Analyzing Reads From Both DNA Strands (Step 0b)
We double the set of reads by adding the reverse complement of
every read to the pool of all reads. Thus, for every vertex in the
A-Bruijn graph, there is a complementary vertex (inverted repeats

may merge some of these pairs of vertices into a single vertex). At
every step of further analysis, to preserve strand symmetry, we
analyze both vertices of such pairs at the same time.

Protecting Sources and Sinks From Erosion (Step 4a)
The set of reads typically does not cover the genomic sequence,
thus creating gaps in the coverage and generating many gap-
induced sources and sinks in A-Bruijn graphs. These gap-induced
sources and sinks have to be protected against the erosion pro-
cedure.

Finding Multiplicities of Repeats (Step 7)
Although high coverage usually correlates with high repeat mul-
tiplicity, the attempts to accurately derive multiplicities from
coverage alone failed at the genomic scale. To address this com-
plication, we use the EULER Copy Number algorithm (Pevzner
and Tang 2001) to derive multiplicities of edges in the repeat
graphs.

Analyzing Mate-Pairs and Spurious Similarities in Matrix A (Steps 9, 10)
To assemble reads from low-coverage regions, one has to take
into account short alignments between read ends. Such short
overlaps may either indicate connections in low-coverage re-
gions or spurious similarities that further tangle the A-Bruijn
graph. Equivalent transformations with mate-pair data untangle
the A-Bruijn graph and allow one to distinguish between these
two situations (see Pevzner and Tang 2001 for details).

RESULTS AND DISCUSSION

Benchmarking
How accurate are the (finished) sequence of the human genome
and the (unfinished) sequence of the mouse genome? How
many highly repetitive BACs (e.g., BACs from the Y-
chromosome) or bacterial genomes deposited in GenBank have
assembly errors? To answer these questions, one should first an-
swer this question: “What is the accuracy of the assemblers used
in these projects?” Unfortunately, this question remains unan-
swered because only limited benchmarking of these assembly
tools has been published so far (Pevzner et al. 2001; Pop et al.
2002, 2004; Yang 2002). Few biologists realize that the mouse
and rat genomic WGS assemblies are likely to have thousands of
assembly errors resulting in “misjoint” segments and collapsed
repeats. Mouse and rat genomic sequences reveal a surprisingly
large number of microrearrangements (as compared with hu-
man) for species that diverged just 14 million years ago, an
indication that these genomes may be assembled with some er-
rors. Moreover, the rate of microrearrangements in the rat lin-
eage is three times higher than in the mouse lineage, thus point-
ing to potential misassemblies in the rat genome (Bourque et al.
2004). Such misassemblies may disrupt genes, disconnect genes
and regulatory regions, and lead to other serious annotation
problems.

The recent assemblies of the mouse and rat genomes are
triumphs of the WGS approach. However, there is no doubt
that these genomes have many assembly errors, and it remains
unclear how to correct these errors in the future. It is now
clear that finishing procedures are much more expensive than
generating the shotgun reads even for bacterial, let alone
mammalian, genomes. Because no mammalian WGS project has
been finished yet, we can only speculate that the cost of such
efforts may be prohibitive. The question then arises whether
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there is any way to improve the accuracy of the WGS assemblies
in silico.

The surprising thing is that both the old (CAP, Phrap, and
TIGR), and the new (ARACHNE, Celera, and Phusion) assemblers
had rather limited benchmarking in a rigorous academic setting.
We argue that benchmarking on accurately finished BACs and
bacterial genomes may reveal the comparative strengths of dif-
ferent assemblers. If an assembler has weaknesses in assembling
bacterial genomes and BACs, there is no reason to believe that
these weaknesses do not propagate to longer genomes. We there-
fore chose Phrap and Arachne (which are the most widely used
assemblers today) for a rigorous benchmarking study of BAC and
bacterial assemblies. We developed a benchmarking software
suite (that, in particular includes all BACs from human Chromo-
some 20) and conducted the largest comparative test of fragment
assemblers so far.

Our benchmarking results for three publicly available
benchmarking samples are available at the Web site http://
nbcr.sdsc.edu/euler/benchmarking. The WUSTL sample was de-
signed by S.P. Yang to ensure that BACs are free from misassem-
bly artifacts. The Sanger Center sample consists of all reads in
human Chromosome 20 (organized in a BAC-by-BAC fashion),
prepared by Jim Mullikin. The TIGR sample of bacterial genomes
was designed by Mihai Pop (Pop et al. 2004).

The Sanger Center sample describes benchmarking of 518
BACs from human Chromosome 20. For this sample, Phrap
misassembled 37 contigs, ARACHNE misassembled 17, and
EULER+ misassembled 7. EULER+ also had the least number of
missing repeat copies (four), ahead of Phrap (five) and Arachne
(nine). The average number of contigs per clone was the least for
EULER+ (6.2) and Phrap (6.8), with ARACHNE producing signifi-
cantly more contigs (13.8), thus making it difficult to use
ARACHNE in high-volume BAC sequencing. Coverage produced
by all three programs was comparable (Phrap produced slightly
higher coverage than EULER+ and ARACHNE).

The analysis of the TIGR sample indicates that as soon as
the number of repeats increases, Phrap becomes unaccept-
able, producing a large number of “difficult-to-fix” assem-
bly errors. In contrast, both ARACHNE and EULER+ withstand
this increase in repeats (no assembly errors), with EULER+ still
producing a significantly smaller number of contigs than
ARACHNE.

EULER+ represents a significant improvement as compared
with our previous EULER as seen from benchmarking of EULER
in Yang (2002) and benchmarking of EULER+ at http://nbcr.sdsc.
edu/euler/benchmarking on the same sample. We observed that
the repeat graphs are less fragmented in EULER+ as compared
with EULER, because local alignments (used in EULER+) better
glue the repeat graph than l-mers (used in EULER). For BACs and
bacterial genomes, the core structure of the repeat tangles re-
mains roughly the same, but is somewhat simplified in EULER+;
slight differences between repeat copies cause less branching
within a tangle in EULER+ than in EULER. Generating the repeat
graphs for larger, highly repetitive genomes remains a challeng-
ing algorithmic problem.
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Genome Research 14: 2221–2234 (2004)

Genome sequence of Haloarcula marismortui: A halophilic archaeon from the Dead Sea
Nitin S. Baliga, Richard Bonneau, Marc T. Facciotti, Min Pan, Gustavo Glusman, Eric W. Deutsch,
Paul Shannon, Yulun Chiu, Rueyhung Sting Weng, Rueichi Richie Gan, Pingliang Hung, Shailesh V. Date,
Edward Marcotte, Leroy Hood, and Wailap Victor Ng

The sequence data from this study were submitted to GenBank under accession nos. AY596290–AY596298,
not AY59290–AY59298. The authors apologize for any confusion these typos may have caused.

Genome Research 14: 1786–1796 (2004)

De novo repeat classification and fragment assembly
Paul A. Pevzner, Haixu Tang, and Glenn Tesler

Pavel A. Pevzner’s name was inadvertently misspelled in the above article. We apologize for any confusion
this may have caused.

Genome Research 13: 875–882 (2003)

Genomic gene clustering analysis of pathways in eukaryotes
Jennifer M. Lee and Erik L.L. Sonnhammer

The authors have discovered an error in part of the analysis of pathways in S. cerevisiae described in Table
1 and wish to correct the data. The corrected table is reprinted below. The authors apologize for any
inconvenience this error may have caused other investigators in the field.

Genome Research 14: 2279–2286 (2004)

Codon usage bias from tRNA’s point of view: Redundancy, specialization, and efficient
decoding for translation optimization
Eduardo P.C. Rocha

In the first paragraph of the first column on page 2281 and in Figure 1, there is a typo in the definition of
ENCdif. The formula should read:

ENCdif = �(ENC�RP � ENC�All)/ENC�All

Thus, positive values of ENCdif indicate codon usage bias in ribosomal proteins as mentioned throughout
the text.

The authors apologize for any confusion this may have caused.

Table 1. Pathways Analyzed and Percentage Showing Significant Clustering in
Unmerged and Merged Data Sets

Organism
# Pathways

analyzed # Genes
% Significant

unmerged data
% Significant
merged data

% in
random data

H. sapiens 98 975 78% 65% 11%
C. elegans 86 516 74% 58% 11%
D. melanogaster 85 484 50% 30% 12%
A. thaliana 79 318 60% 43% 11%
S. cerevisiae 89 682 35% 20% 10%

The percent significant refers to pathways in which the score is more than 3* (3rd quartile �
median) + median. The same analysis was carried out on randomized pathways where genes were
picked randomly from all genes, using the merged data.
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