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ABSTRACT

Motivation: In a liquid chromatography–mass spectrometry (LC–MS)-

based expressional proteomics, multiple samples from different

groups are analyzed in parallel. It is necessary to develop a datamining

system to perform peak quantification, peak alignment and data quality

assurance.

Results:Wehave developed an algorithm for spectrumdeconvolution.

A two-step alignment algorithm is proposed for recognizing peaks

generated by the same peptide but detected in different samples.

The quality of LC–MSdata is evaluated using statistical tests and align-

ment quality tests.

Availability: Xalign software is available upon request from the

author.

Contact: zhang100@purdue.edu

INTRODUCTION

Proteomics was initially envisioned as a technique to globally and

simultaneously characterize all components in a proteome. In a

typical liquid chromatography–mass spectrometry (LC–MS)-

based protein expression profiling experiment, multiple samples

collected from different patients are analyzed in parallel

(Diamandis, 2004). Each sample is digested into peptides and

subjected to multi-dimensional liquid chromatography for separa-

tion. Each peptide fraction is then analyzed on an LC–MS system.

Ideally, the same molecules detected in the same LC–MS platform

should have the same retention time, molecular weight and signal

intensity. However, this is not the case due to experimental vari-

ations (Wang et al., 2003). It is very important to recognize peak

variation in the same type of molecule, but from different samples,

from millions of LC–MS peaks, and to compare them.

Spectral deconvolution, peak alignment and data quality assur-

ance are common tasks in data pre-processing. Several methods

have been developed to quantify peaks from LC–MS data (Li

et al., 2003; MacCoss et al., 2003; Zhang et al., 2005). Peak align-

ment recognizes peaks of the same type of molecule occurring in

different samples from peaks detected during the course of an

experiment (Torgrip et al., 2003; Yu et al., 2004). This paper reports

an LC–MS data pre-processing method for a bottom-up proteomics

approach in which peaks from peptide profiles are analyzed.

The objective of the work described here is to develop a method

to (1) study the quality of the LC–MS results and to (2) align the

LC–MS peaks for further statistical analysis.

MATERIALS AND METHODS

The experimental method of this work is identical to the method described in

Zhang et al. (2005). Briefly, serum albumin and human serum were indi-

vidually digested with enzyme trypsin. The tryptic digest was then aliquoted

into two groups. Each group was labeled with succinimidyl-(1H3)-acetate

and succinimidyl-(2H3)-acetate, respectively. The light and heavy labeled

peptide mixtures were then combined. Aliquots of 5 ml of the combined light

and heavy labeled peptide mixtures were injected and acquired in positive

ion mode by LC–MS using a Waters CapLC HPLC instrument and a Waters

QTOF micro mass spectrometer. Microcapillary liquid chromatography was

operated at 250 nl/min using a 360 mm o.d. · 75 mm i.d. microcapillary

column from New Objective Inc. (Woburn, MA), self-packed to 10 cm in

length with 10 mm C18 from YMC (Kyoto, Japan).

Methods and algorithms

The following sections present the algorithms for the proposed pre-

processing LC–MS data. These algorithms include spectral deconvolution,

data quality assurance and data alignment. These algorithms have been

implemented in software Xalign using C++.

Spectral deconvolution Spectral deconvolution was performed using a

modified algorithm reported by Zhang et al. (2005). The method uses chem-

ical noise filtering, charge state fitting and de-isotoping to improve analysis

of complex peptide samples. Spectral noise levels were initially determined

based on peak density, and then adjusted using estimated peptide peak profile

information. Any peak with intensity less than that of the adjusted noise level

was filtered out. The rest of the peaks were further validated at the chro-

matographic level.

Overlapping peptide signals in mass spectra were deconvoluted using a

correlation with modeled peptide isotopic peak profiles. There are two major

steps associated with deconvoluting peptide signals. One is ion charge state

recognition; the other is correlation of experimentally measured isotopic

peak clusters with theoretically predicted isotopic peak profiles. The initial

charge assignment relies on the spacing of peaks in the mass-to-charge ratio

(m/z) dimension. Peak intensities were used in a subsequent step to address

the potential of overlapping signals from multiple peptides using isotopic

peak profile information. The isotopic peak profiles for peptides were

generated in silico from a protein database producing reference model

distributions.

Peak alignment We have designed a gross-alignment algorithm to

address systematic retention time shift. In the gross alignment, all possible

significant peaks were first identified. A significant peak refers to a peak�To whom correspondence should be addressed.
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that is present in every sample and is the most intense peak in a certain m/z

range (mi� «m, mi + «m) and retention time range (ti� «t, ti + «t), where mi is

m/z, ti is retention time, «m is user-provided m/z variation and «t is user-

provided retention time drift. During the course of finding significant peaks

in each sample, an intensity weighted average peak is calculated using

Equations (1) and (2).

Mj ¼ SIi‚ jMi‚ j=SIi‚ j ð1Þ

Tj ¼ SIi‚ jTi‚ j=SIi‚ j ð2Þ

where Ii,j, Mi,j and Ti,j are the peak intensity, m/z, and retention time of the

significant peak j in sample i, respectively. Mj and Tj are the intensity

weighted m/z and retention time of the averaged peak of the corresponding

significant peak j. The intensity and retention time of each average peak were

used to search for a significant peak in the subsequent sample. The procedure

for significant peak selection is as follows.

(1) Selection of a sample with a minimum number of peaks as a reference

sample, and sorting of all peaks in ascending order of retention time.

(2) Determination of the unprocessed peak with minimum retention time

value (tmin) in the reference sample. The most intense peak in retention

time range (tmin, tmin+ «t) is selected as a significant peak Si,j. All peaks

with retention time less than tmin + «t are recorded as processed peaks.

(3) Determination of all peaks in the next sample whose m/z and retention

time fall into (Mj � «m, Mj + «m) and (Tj � «t, Tj + «t), respectively.

Selection of the most intense peak as the significant peak in the current

sample and recalculateTj andMj using Equations (1) and (2). If there is

not a corresponding peak found in the current sample, all significant

peaks related with peak Si,j will be removed and the program moves to

Step 2.

(4) Repeat Step 3 until all samples are processed.

(5) Repeat Steps 2–4 until all peaks in the reference sample are processed.

After identifying all significant peaks, the retention time median mj is

calculated to each significant peak j. An absolute value of retention time

difference between Ti,j and mj is calculated, where Ti,j is the retention time of

j-th significant peak of sample i. For each sample, the retention time dif-

ference of each significant peak is summed together using Equation (3),

where Di is the summed retention time difference of sample i. The median

sample is then defined as a sample that has the minimum sum of retention

time difference.

Di ¼
Xj

j¼1

jTi‚ j � mjj ð3Þ

The final step in the gross-alignment procedure is to align all peaks

detected in each sample to the peaks in the median sample. During this
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Fig. 1. Gross-alignment of LC–MS peak lists generated from the BSA experiments. Injection 9 was chosen as the median sample. (A) Retention time difference

between all significant peaks in injection 1 and their corresponding peaks in the median sample. (B) Retention time difference between all significant peaks in

injection 8 and their corresponding peaks in the median sample. (C) Retention time adjustment of injection 1 based on the retention time difference of all

significant peaks in injection 1 and the median sample. (D) Retention time adjustment of injection 8 based on the retention time difference of significant peaks in

injection 8 and the median sample.
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process, the retention time difference between the significant peaks of each

sample and the corresponding significant peaks of the median sample will be

used to minimize the overall retention time difference between each LC–MS

experiment and the LC–MS evaluation of the median sample. It is very likely

that some peaks selected as significant peaks are false-positives, which

introduces a large retention time difference. It is necessary to filter these

peaks out before adjusting the overall peak retention time. For this purpose,

we sorted all significant peaks in each sample in ascending order of retention

time and grouped data points into multiple groups. Each group contains a

certain number of data points. From these, a median data point is found for

each group. The retention time difference of each median data point is the

median of retention time differences of all data points in that group. Con-

sequently, we only retain the median data points while all others are ignored.

Then, the retention times of the retained peaks in each sample are fitted with

the retention time of the corresponding peaks in the median sample using a

robust estimation. The concept of robust estimation in this instance refers to

a statistical estimator that is insensitive to small departures from the ideal-

ized assumptions for which the estimator is optimized. M-estimates, using

maximum likelihood by minimizing the mean absolute deviation, are applied

in this work to find the idealized straight-line fit (Press et al., 2002).

The parameters derived from the significant peak fitting are then applied

to the remaining peaks to systematically shift their retention time toward the

median sample.

After gross alignment, a micro alignment is used to identify peaks of the

same molecule but in different LC–MS datasets. The procedure for the micro

alignment is as follows:

(1) A sample that has the lowest number of unprocessed peaks is defined as

the base sample. It is assumed that a peak could be detected in the rest of

the samples if that peak can be detected in the base sample.

(2) Starting with the peak having the minimum m/z in the base sample, all

peaks that overlap each other within a user-defined retention time and

m/z window are selected. The most intense peak in the selected peak

cluster is defined as a local base peak.

(3) All peaks in the second sample that overlap with the local base peak in

m/z and retention time are selected.

(4) Discrete convolution is used to find the peak in the second sample that

correlates with the current local base peak. A convolution is an integral

that expresses the amount of overlap of one function s as it is shifted

over another function h. Assuming both s(t) and h(t) are digital func-

tions with a sampling interval of unity, the convolution operation is

defined as

y tð Þ ¼ sk * hk ¼
Xþ1

k¼�1
skhj�k j ¼ 1‚2‚3‚ . . . ð4Þ

The convolution is implemented as follows: all peaks in the base

sample that overlap with the local base peak are defined as function

s while the peak cluster selected from the second sample is defined as

function h. The best match between s and h is defined as a match that

gives the maximum value of y(t). If there are multiple choices for the

best match, the most symmetric match is defined as the best match. The

peak in the second sample that matches the local base peak is con-

sidered as the corresponding peak in the second sample and is aligned

to the base peak. It is also marked as a processed peak and removed

from the second sample.

(5) The algorithm moves to the next sample. Processes 3 and 4 are

repeated until all samples are examined using the current local base

peak.

(6) The current local base peak is updated by repeating Step 2. The

updated local base peak has a different m/z value. The Steps 3–5

are repeated.

(7) If all peaks in the base sample are processed, the algorithm moves to

Step 1 to find the next base sample, and Steps 2–6 are repeated.

Quality assurance For quality assurance purposes, the main factors of

LC–MS data are peak retention time and m/z. Therefore, the two-

dimensional Kolmgorov–Smirnov (K–S) test can be applied to study the

peak distribution in retention time and m/z plane, where each given peak can

be represented as (ti, mi). Each peak actually separates the plane into four

quadrants (t> ti, m>mi), (t < ti, m>mi), (t < ti, m<mi) and (t> ti, m<mi). An

integrated probability in each of these four natural quadrants around a given

point can be calculated. The statistic D of K–S test is taken to be the

maximum difference (ranging both over data points and over quadrants)

of the corresponding integrated probabilities (Press et al., 2002).

The number of peaks detected in an LC–MS experiment can be affected

by many factors, such as preparation of the sample, the amount of sample

loaded, etc. Therefore, the number of peaks detected is also essential for

evaluating experimental quality. During K–S test and peak number test,

Sprent’s equation (Sheskin, 2000) was used to find statistical outliers:

jXi �Mj=MAD >Max ð5Þ

where Xi is any score being evaluated with respect to whether it is an outlier,

and M is the median of the scores in the sample. MAD is the median absolute

deviation and Max is the critical value that the result to the left of the

inequality must exceed in order to conclude that the value Xi is an outlier.

The value Max is set as 5.0, which is extremely likely to identify scores that

deviate from the mean by more than three standard deviations.

After peak alignment, the number of aligned peaks is studied to ensure the

quality of the LC–MS data. The test was done by (1) selecting aligned peaks
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Fig. 2. Sample alignment results between two samples. (A) Alignment of

peak lists generated from injections 1 and 9 in BSA experiments. (B) Align-

ment of peak lists generated from samples 1 and 2 in serum experiments.
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that were detected in >80% of samples, (2) counting the number of aligned

peaks in each sample and (3) using Sprent’s equation to detect samples

containing a significantly low number of aligned peaks.

RESULTS AND DISCUSSION

All raw MS spectra were subjected for spectrum deconvolution

(Zhang et al., 2005). Then, the peak lists generated from all

BSA and serum experiments were aligned, respectively, assuming

that the retention time drift was <0.5 min and m/z variation was

<0.1 Da.

Alignment

There are two major steps during gross alignment: finding signific-

ant peaks and adjusting the overall retention time drift of all sam-

ples. The method used to find all significant peaks is biased to

the reference sample, which contains the minimum number of

peaks. A peak in the reference sample is considered the most intense

peak, though it may not be the most intense peak in the other

samples. However, the purpose of using the local intense peak is

to increase the chance of finding peaks detected in all other

samples. The peak intensity information will not be used to adjust

overall retention time drift between LC–MS experiments. On the

other hand, it is very typical that a few groups of samples are

analyzed in comparative proteomics or metabolomics such as wild-

type samples and disease samples. The profiles of the majority of

the peaks in these two groups are similar. Only a few peaks (poten-

tial biomarkers) may have significant peak intensity differences.

Figure 1 shows a gross-alignment result of BSA experiments

where the same BSA digest was injected onto the LC–MS system

10 times. Figure 1A depicts the retention time differences between

each significant peak of injection 1 and its corresponding peaks

in the median sample (injection 9). Figure 1B displays the

same information between signification peaks of injection 8 and

injection 9. The injection 1 experiment was performed �9 h before

injection 9, while the injection 8 experiment was performed imme-

diately before injection 9. It is apparent that there was a systematic

retention time drift between two LC–MS experiments. In most

cases, this type of drift is linear and can be corrected by a linear

regression. It should be noted that some false-positive results

could be introduced as significant peaks due to the method used

to search these peaks. These false-positive results were greatly

reduced by calculating the median value of every five data points.

The median values were then used for robust estimation. The

straight lines in Figure 1A and B are regression results from the

robust estimation.
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Fig. 3. Alignment statistics of the BSA and serum experiments. The x-axis refers to the number of injections/samples in which a peak had been detected, and also

shows its alignment with corresponding peaks in the other injections/samples. (A) Average peak intensity distribution of BSA experiments. (B) Peak number

distribution of the BSA experiments. (C) Average peak intensity distribution of serum experiments. (D) Peak number distribution of the serum experiments.
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After robust estimation, the retention time of each peak in all

samples was adjusted using the results of robust estimation.

Figure 1C and D show the effectiveness of the gross alignment

for injections 1 and 8, respectively. The straight line in each

graph is a guideline showing retention time with zero retention

time adjustment. The small figures in the bottom right show results

of retention times between 34.6 and 35.2 min.

Following the gross alignment, micro alignment aligns all sam-

ples to the median sample. A total of 20 680 peaks were perfectly

aligned from the BSA experiments, while 42 080 peaks were per-

fectly aligned from the serum experiments. A perfect alignment

refers to a peak that was not only detected in each sample, but

also aligned in each sample. Figure 2 displays alignment results

of two randomly selected samples from BSA experiments (Fig. 2A)

and serum experiments (Fig. 2B). Some peaks with larger intensity

variations have been manually verified. The correlation coefficients

indicate that there were some experimental variations in peak

intensity, though the BSA experiments have less intensity variation

than the serum experiments. The straight lines fitted by linear

regression indicate that the overall peak intensities between two

samples were slightly different. A peak intensity normalization

method needs to be applied to make all samples comparable for

further statistical analysis.

In order to evaluate the alignment results, the average peak

intensity of each serial of aligned peaks was calculated, and

the number of peaks in each aligned peak serial was counted.

Figure 3A and B contains alignment results of the BSA experiments.

The frequency refers to the number of injections from which a peak

has been detected and aligned. Ideally, any peak detected in one

injection should also be detected in the other nine injections because

the samples were identical. However, due to experimental variation,

this is not always the case. Although the majority of peaks were

detected in all 10 injections, a fair number of peaks were detected in

only one or two injections (Fig. 3A). It is likely that these are

random peaks generated by the analysis system. Fortunately,

these peaks can be differentiated from the true peptide peaks

since most of these peaks are much less intense than the other

peaks in the spectra (Fig. 3A). A similar observation can also be

found in serum experiments (Fig. 3C and D).

The alignment method reported here uses user-estimated reten-

tion time drift and m/z variation as the base for alignment. This may

cause a problem if the retention time drift and m/z variation pro-

vided by the user are less than the experimental variations. There-

fore, some peaks with larger retention time drift or m/z variation

will not be aligned. The software provides a simple mechanism to

evaluate the alignment table in such a way as to take consider this.

This was done as follows.

(1) All peaks (Pi) aligned in >90% of samples were found, and all

the samples (S1) that do not have Pi were recorded.
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(2) All peaks (Qi) aligned in <10% of samples were found, and all

of the samples (S2) that have Qi were recorded.

(3) The Qi list was searched to see whether there were some peaks

(Ri) that have the same charge state and isotope label as the

peaks in the Pi list.

(4) The retention time difference and m/z difference between

each peak in the Ri list and the corresponding peaks in the

Pi list were calculated. If both the retention time difference

and m/z difference are less than two times the user provided

value, a message is sent to the user to verify the estimated

retention time drift and m/z variation.

Quality assurance

Data quality assurance was performed before and after peak align-

ment. Figure 4A depicts K–S test results of the BSA experiments.

Injection 10 (sample ID 10) was chosen as a reference sample

because the peak distribution of injection 10 has the greatest sim-

ilarity to the remaining 9 samples. The peak distribution of the other

9 samples was then compared with the peak distribution of injec-

tion 10. Although there was not any injection detected as a signi-

ficant outlier in the K–S test (Fig. 4A) and peak number test (Fig. 4B),

experimental variations do exist. Generally, <10% of peak number

variation can be observed (Fig. 4B). This number may be reduced by

filtering peaks based on the signal-to-noise ratio. However, it is not

favorable to remove peaks in order to increase the dynamic range of

the analytical system.

In order to check the data quality in terms of alignment, the

number of aligned peaks in each sample was counted. Of these,

each aligned peak must be detected in >80% of the total number of

samples. Figure 5 shows the results from the BSA experiments

(Fig. 5A) and the serum experiments (Fig. 5B). These figures illus-

trate that serum samples have a larger variation in aligned peaks.

This is primarily due to the increased sample complexity.

In most cases, the quality assurance measures the technical vari-

ations caused by the analytical system. Therefore, the evaluation of

quality assurance is only used to flag the quality of a dataset and not

to determine whether a sample gave rise to a questionable dataset

unworthy of further statistical analysis. One reason for this utiliza-

tion is that all quality control methods reported here focus on peak

distribution, retention time drift and m/z variation. As long as the

data-mining algorithm such as peak alignment can correctly adjust

these variations, the sample dataset may still have some values.

The other reason is that biological variation can be larger than

technical variation. It is common for scientists to use a ratio of

2.0 as a cutoff value, together with a probability value, to determine

whether a change is meaningful. This cutoff value is much higher

than the intensity variation caused by the analytical system.

The peak intensity variation arising from this analysis system is

typically <30% (without normalization) in the case of BSA multiple

injection experiments. Therefore, it is commonly accepted that a

sample with large technical variation can still provide useful bio-

logical information. It is our practice that the decision to remove a

sample from the experimental dataset will be made during the

statistical analysis.

CONCLUSIONS

We presented a method of pre-processing LC–MS-based proteo-

mics data. A spectral deconvolution method processes LC–MS

spectra to the level of a peptide ion. The two-step alignment algo-

rithm provides reliable alignment results. The gross alignment

adjusts the overall retention time drift between samples, while

the micro alignment focuses on the local complexity and aligns

peaks together. Data quality assurance is performed at several dif-

ferent steps. We provide a K–S test, a peak number test and an

alignment quality test. The combination of these tests provides a

reliable quality assurance system for LC–MS experimental data.

This method can also be used to analyze metabolomics data.
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