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ABSTRACT

Motivation: With the availability of large-scale, high-density single-

nucleotide polymorphism markers and information on haplotype struc-

tures and frequencies, a great challenge is how to take advantage of

haplotype information in the association mapping of complex diseases

in case–control studies.

Results:We present a novel approach for association mapping based

on directly mining haplotypes (i.e. phased genotype pairs) produced

from case–control data or case–parent data via a density-based clus-

teringalgorithm,whichcanbeapplied towhole-genomescreensaswell

as candidate-gene studies in small genomic regions. The method dir-

ectly explores the sharing of haplotype segments in affected individuals

that are rarely present in normal individuals. The measure of sharing

between two haplotypes is defined by a new similarity metric that com-

bines the length of the shared segments and the number of common

alleles around any marker position of the haplotypes, which is robust

against recent mutations/genotype errors and recombination events.

The effectiveness of the approach is demonstrated by using both simu-

lated datasets and real datasets. The results show that the algorithm is

accurate for different population models and for different disease mod-

els, even for genes with small effects, and it outperforms some recently

developed methods.

Availability: The software, HapMiner, and Supplementary materials

are available on the authors’ website at http://vorlon.case.edu/~jxl175/

HapMiner.html

Contact: jingli@eecs.case.edu

1 INTRODUCTION

Disease gene mapping refers to the localization of heritable muta-

tions that contribute to the risk of diseases and has been the primary

focus in genetic epidemiology for decades. Many statistical meth-

ods have been developed for gene mapping with the aid of molecu-

lar markers and have been successfully applied to the identification

of a substantial number of Mendelian diseases. However, most

common diseases are complex diseases and the power of many

existing methods (e.g. linkage analysis) is low since each gene

may only have a small effect. Risch and Merikangas (1996) pro-

posed that for genes with moderate or small effect, the association

studies may provide higher power than linkage analysis. With the

advance of technology, and dramatically decreasing genotyping

cost, large-scale whole-genome association studies using single-

nucleotide polymorphisms (SNPs) are now feasible. However, sim-

ple association analysis using x2 on each SNP for case–control data

might not be able to give a reliable result. Recent experimental

studies (Daly et al., 2001; Gabriel et al., 2002) over large genomic

regions have shown that the human genome contains long segments

with high linkage disequilibrium and limited haplotype diversity,

suggesting the use of haplotype information for association studies.

As a matter of fact, some new statistical methods, e.g. McPeek and

Strahs (1999); Tzeng et al. (2003) among others, have already been

proposed to take advantage of the haplotype information directly.

But these model-based methods were mainly for candidate gene

studies. Intensive computational demands prohibit them from

whole-genome association analyses.

Furthermore, for complex disease, the disease mutations only

increase the risk of being affected, but not every individual carrying

the disease mutations will be affected (low or moderate pen-

etrances). Moreover, not every affected individual carries the dis-

ease susceptibility (DS) genes/alleles (known as phenocopies). For a

case–control study, neither the degree of penetrance nor the rate of

phenocopy is known in advance. While most methods assume

incomplete penetrance, very few existing methods could deal

with data of high phenocopies. We address the problem of gene

association mapping of complex diseases and develop a novel algo-

rithmic approach using haplotypes (i.e. phased genotype pair of

each individual). The key assumption underlying haplotype map-

ping is the non-random association of alleles in disease haplotypes

around the disease genes. The haplotypes from cases are expected to

be more similar than haplotypes from controls in regions near the

disease genes. Several recent papers have proposed to use clustering

techniques for haplotype mapping. Liu et al. (2001) assigned hap-

lotypes into clusters representing allele heterogeneity (i.e. multiple

functional alleles that might be from different ancestral haplotypes)

and employed the Markov chain Monte Carlo method (McMC) for

parameter estimations within a Bayesian framework, but their

method could not incorporate locus heterogeneity. Molitor et al.
(2003) modeled haplotype risks using clusters and employed a

probit model, but their method does not take phenocopies into

consideration. Both methods were developed mainly for haplotype

fine mapping and could not scale up for whole-genome screens very

well. Durrant et al. (2004) adopted a logistic-regression model�To whom correspondence should be addressed.
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applicable to whole-genome screens using sliding windows, but

they had to assume Hardy–Weinberg equilibrium and a multiplic-

ative disease model for convincing the likelihood calculation. The

effects of violations of these assumptions are unpredictable in gen-

eral. Inspired by data mining techniques, Toivonen et al. (2000)
proposed a non-parametric method for haplotype mapping called

HPM (haplotype pattern mining). The authors examined the hap-

lotype patterns in cases and in controls and utilized the pattern

frequencies as the prediction of disease gene locations. As a

model-free method, HPM has the appealing properties that it

does not require any assumption on the inheritance patterns and

has good localization power, even when the number of phenocopies

is large. However, methods based on HPM also have some limita-

tions. First, by allowing ‘don’t care’ symbols in a haplotype pattern,

many haplotypes have been counted multiple times. The effect of

this duplicate counting is unknown. Second, the frequency of iden-

tified haplotype patterns is closely related to the sample size, and the

statistical significance of the predicted gene location using such

frequency information cannot be assessed. Finally, in the experi-

mental results, Toivonen et al. (2000) showed that the prediction

accuracy may deteriorate with dense (e.g. SNP) markers, which is

undesirable and greatly limits the utility of the method. We reason

that disease susceptibility gene-embedded haplotypes, especially

mutants of recent origin, tend to be close to each other due to linkage

disequilibrium, while other haplotypes can be regarded as random

noise sampled from the haplotype space. As illustrated in Figure 1,

around the DS gene region, it is expected that haplotypes from

affected individuals should share segments from the common ances-

tral haplotype where the mutation occurred in the past. Based on this

logic, a new algorithmic approach for haplotype mapping is pro-

posed in this paper that utilizes a clustering algorithm. The effect-

iveness of the approach depends on the similarity measure of

haplotype fragments used in the clustering algorithm. We propose

a new haplotype similarity measure that is a generalization of sev-

eral haplotype similarity measures currently used in the literature. It

captures the sharing of haplotype segments due to historical

recombination events as demonstrated by Figure 1 and also incor-

porates the recent mutations/genotype errors. Extensive experi-

mental results on real data as well as on simulated data show the

algorithm are robust with respect to disease models and population

history and outperforms some recently developed methods. The rest

of this paper is organized as follows. The details of the algorithm are

presented in the next section, followed by the test results. We con-

clude the paper with some discussion of possible future directions.

2 METHODS

The proposed approach works as follows. The input to the algorithm consists

of phased genotypes (haplotype pairs) for each individual. Such information

can be inferred computationally from genotypes based on information of

family members (Kruglyak and Lander, 1998; Li and Jiang, 2004) for case–

parent data, or some population models (Stephens et al., 2001; Niu et al.,

2002) for case–control data. For case–control data, we use the disease status

of each individual to label both of its haplotypes. For case–parent data,

transmitted haplotypes can be labelled as case haplotypes and untransmitted

haplotypes as controls. The algorithm scans each marker one by one. For

each marker position, a haplotype segment with certain length centered at the

position will be considered. The segment length is an input parameter

defined by the user based on marker interval distances, and should not be

determined before hand. Clusters are identified based on some similarity/

distance measure via a density-based clustering algorithm. The Pearson x2-

statistic or Z-score, which are equivalent as shown in Fienberg (1977), based
on a contingency table derived from the numbers of case haplotypes and

control haplotypes in a cluster can be used as an indicator of the degree of

association between the cluster and disease. Both measures can also be used

as association/independence test statistics, properly adjusted (e.g. using

Bonferroni correction) for multiple tests. A statistical significance threshold

can be chosen independent of the sample size and all findings that exceed the

threshold will be reported. The algorithm is summarized in Figure 2 with the

details to follow shortly.

2.1 A general haplotype (dis)similarity measure

The effectiveness of the algorithm depends on the similarity meas-

ure of haplotype fragments used in the clustering algorithm. We

propose a new haplotype similarity measure that generalizes several

haplotype similarity measures in the literature. The similarity of two

haplotype segments (consisting of markers that are not necessarily

SNPs) is defined with respect to a particular marker locus. Suppose

Fig. 2. A pseudo-code of the HapMiner algorithm.

Fig. 1. An illustration of the rationale of linkage disequilibrium mapping by

mining the shared haplotype segments. Suppose that there were four common

haplotypes in a genomic region in the past, represented by different colors on

the left. Assume that a functional mutation occurred on a particular haplotype

(the first haplotype in the figure). After some generations, the haplotypes

of the current population are just a mixture of the common haplotypes

with recombinations and mutations (mutations not shown in the figure). It

is expected that the haplotypes from affected individuals might share some

segments from the common ancestral haplotypes in the area where the

functional mutation occurred, as shown on the right.

LD mapping via a clustering algorithm
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that we focus on a marker at locus 0, with loci 1, 2, . . . , r on one side
and �1,�2, . . . ,�l on the other side. Assume that the genetic/

physical distance from any locus to locus 0 is known and denoted

as xk, where� l� k� r. A haplotype h spanning this region is just an
(l + 1 + r)-dimensional vector and the k-th dimension of h, denoted
as h(k), is the allele at locus k. For a pair of haplotypes hi, hj, we

define the similarity score of hi, hj with respect to locus 0 as:

si‚ j ¼
Xr

k¼�1

w1ðxkÞIðhiðkÞ‚hjðkÞÞ þ
Xr0

k¼�l0
k 6¼0

w2ðxkÞ‚ ð1Þ

where I(a, b) ¼ 1 if alleles a and b are the same, and I(a, b) ¼ 0

otherwise. The indices � l0 and r0 are two boundary loci such that

the two haplotypes hi, hj are identical between these two loci and

different at both locus �l0 � 1 and locus r0 + 1. When l ¼ 0/r ¼ 0,

the locus under consideration is the leftmost/rightmost one. The

weights w1 and w2 are two non-increasing functions so that the

measure on each locus is weighted according to the distance

from locus 0. The choices of the weights w1 and w2 will be discussed

shortly.

The first summation in Equation (1) is a weighted measure of the

number of alleles in common between haplotypes hi and hj in the

region, which can be thought of as Hamming similarity. The

remaining summations form a weighted measure of the longest

continuous interval of matching alleles around locus 0, which

has some resemblance to the notion of a longest common substring

(Gusfield, 1997). Our definition is quite flexible and generalizes

several similarity measures used in the literature (Tzeng et al.,
2003; Molitor et al., 2003). For instance, by setting w1 ¼ 1 and

w2 ¼ 0, the measure becomes the counting measure described in

Tzeng et al. (2003). The length measure in the same article can be

achieved by setting w1 ¼ 0 and w2 ¼ 1. This definition of haplotype

similarity is more powerful than the above two specialized measures

and can be used for different types of markers by choosing appro-

priate weighting functions. It has the strengths of both specialized

measures mentioned above. That is, it is robust against recent mar-

ker mutations and genotyping/haplotyping errors, and it also appre-

hends partial sharing from a common ancestral haplotype due to

historical recombination events.

The requirement for both weighting functions w1 and w2 is that

they must be non-increasing functions. It can be exponentially,

quadratically, or linearly decreasing, or constant. It can also be a

discrete function with its values defined only at marker positions.

The user has the freedom of choosing the weighting function

depending on the marker density of the input data. Noticing that

si,i ¼ sj,j, a distance metric between haplotypes hi and hj at marker

locus 0 can be defined as follows:

di‚ j ¼
si‚ i � si‚ j

si‚ i
¼ sj‚ j � si‚ j

sj‚ j
: ð2Þ

The distance is normalized to the interval [0, 1] so it will not

increase with the length of haplotypes. An example showed in

Table 1 illustrates the concept. The similarities/distances of haplo-

type pairs (h1 and h2, h3 and h4) of length 11 centered at position 0

are calculated according to different weight functions. If we take

w1 ¼ 1 and w2 ¼ 1, which means each SNP has the same weight

regardless of its distance from the reference SNP at position 0, the

number of common SNPs from the region is seven for both pairs.

But the number of intervals within the shared marker segments

around locus 0 is four (number of shared markers �1) for the

first pair and is two for the second pair. We believe that the first

pair is more similar than the second pair because we have more

confidence that the shared segments may be from a common

ancestor if its length is longer. The Hamming similarity alone

cannot capture such difference that may actually correspond to

historical recombination events. A similarity definition based

solely on the longest common segment length is not robust either.

For example, it is possible that for the first pair of haplotypes

(h1 and h2), the segments from position �5 to positions 2 were

from the same ancestral haplotype and there was a historical

recombination between positions 2 and 3. The two haplotypes differ

at position�3 only because of a point mutation of h2 at position�3,

or it may be due to a genotyping error. In this case, the ‘longest

common segment length’ definition will underestimate the sharing

of h1 and h2 from their common ancestral haplotype. The proposed

similarity definition captures the notion of shared ancestral haplo-

type segments and it is also robust to point mutation, genotyping

errors and historical recombinations. Even if we take constant value

for two weight functions, the proposed definition actually gives

more weight towards the region around marker 0, which is a desir-

able property since the measure is with respect to locus 0. The

similarities/distances of one haplotype pair are different if we are

talking about different reference markers. This feature enables us to

provide a score for each marker position even though we are using

haplotype information. The weight functions provide further flex-

ibility that enables users to take into consideration marker interval

distances. The definition of the normalized distance both provides

a standardized measure for different segment length and may

actually further differentiate signal from noise by coupling with

the two weight functions. For example, the difference of the sim-

ilarities of the two pairs is the same (11 � 9 ¼ 8.9 � 6.9) under two

weighting schemes, but the difference of their distances is different

(0.572 � 0.477 < 0.540 � 0.407).

The distance definition can be further extended. For instance,

missing alleles can be handled directly in the calculation of the

similarity measure by taking all the missing alleles as a new distinct

allele. To consider gene–gene interactions, a distance for two loci

can be defined as the average of pairwise distances at each locus.

This way the proposed algorithm could automatically consider

multiple DS loci simultaneously.

Table 1. An illustrative example for the definition of haplotype similarity,

where hi, 1 � i � 4 are haplotypes of length 11, w1 and w2 are the weighting

functions

Positions w1 ¼ w2 ¼ 1 w1 ¼ w2 ¼ 1 � 0.1d

. . . �1 0 1 . . . S (21) D S (15) D

h1 1 1 1 2 2 1 1 2 2 2 1

h2 1 1 2 2 2 1 1 2 1 1 2 11 0.477 8.9 0.407

h3 1 1 2 1 2 1 1 2 2 2 1

h4 1 1 1 2 2 1 1 1 2 1 1 9 0.572 6.9 0.540

The similarities (S) and distances (D) are calculated with respect tomarker 0 (themiddle

marker in this example) and d represents the marker positions away from position 0.

The numbers in parentheses adjacent to ‘S’ are the similarity scores for two identical

haplotype segments (i.e. the maximum scores w.r.t. the parameters).

J.Li and T.Jiang
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2.2 A density-based clustering algorithm

Clustering is a powerful tool for mining massive data. Traditional

clustering algorithms fall into two categories: partitioning clustering

or hierarchical clustering methods (Han and Kamber, 2000). For

large datasets with high level noise, there is an increasing interest

in a third type of clustering algorithms called density-based

algorithms. The density-based algorithms are based on the notion

of local density. High density areas form clusters and low density

areas may be due to random noise. In the haplotype association

mapping setup, we are interested in identifying haplotype clusters

that are strongly associated with the disease under study. The goal is

not to partition all the haplotypes into certain clusters. Neither do we

try to build a cladogram because of the difficulty of reconstructing

the evolutionary relationship for all haplotypes. Instead, we believe

that haplotypes from affected individuals are expected to be more

similar at the disease gene location than those from controls which

are assumed to be random samples. We do not expect control hap-

lotypes to form any clusters except by chance. A difficulty lies in the

fact that, due to the existence of allele and/or locus heterogeneity

and phenocopies, some haplotypes from affected individuals do not

necessarily form a cluster. This is also a main reason why a gene

mapping method using case–control data would likely fail in reality

if it assumes, explicitly or implicitly, that all or at least most affected

individuals do have the same disease mutations. We take the prob-

lem of finding strongly disease associated haplotype clusters as the

problem of finding clusters from data with noisy background. It has

been shown that density-based clustering algorithms are capable of

and effective in identifying meaning clusters from large datasets

with high level of noise in many domains (Ester et al., 1996;
Hinneburg and Keim, 1998; Ankerst et al., 1999). So we use the

concept of density-based clusters and adopt an algorithm called

DBSCAN (Ester et al., 1996) with minor modifications. The idea

of assigning haplotypes to clusters for gene mapping is promising

and has been explored by many researchers (Liu et al., 2001;

Molitor et al., 2003; Durrant et al., 2004). Both Liu et al. (2001)
and Molitor et al. (2003) partitioned haplotypes into clusters.

Each cluster corresponds to a founder haplotype or is associated

with a particular risk. Statistical models were then built to infer the

parameters. Durrant et al. (2004) built a cladogram for all haplo-

types using a hierarchical clustering algorithm and employed a

logistic-regression model to find the most significant partition.

Our algorithm is much flexible and much efficient, and it is capable

of dealing with large datasets with high level of phenocopies.

Comprehensive comparisons with the method in Durrant et al.
(2004) on all diallelic datasets, as well as some other methods

(Toivonen et al., 2000; Liu et al., 2001; Molitor et al., 2003),
will be presented in Section 3.

In order to keep the paper self-contained, we briefly introduce the

DBSCAN algorithm in the context of haplotype mapping. There are

two input parameters for DBSCAN. One is the radius of the inter-

ested neighborhood e and the other is a density threshold MinPts.

A haplotype is called a core haplotype if there are more than MinPts

haplotypes in its e neighborhood. The haplotypes in the e neigh-

borhood are directly reachable from the core haplotype and a hap-

lotype is reachable from a core haplotype if there is a chain of core

haplotypes between these two haplotypes where each is directly

reachable from the preceding one. Two haplotypes are density-

connected if there is a core haplotype such that both haplotypes

are reachable from it. A density-based cluster of haplotypes is a set

of density-connected haplotypes with maximal density-reachability.

All the above definitions are with respect to the two parameters e

and MinPts. DBSCAN examines every haplotype and starts to con-

struct a cluster once a core haplotype is found. It then iteratively

collects directly reachable haplotypes from a core haplotype,

merging clusters when necessary. The process terminates when

all haplotypes have been examined. The clusters are then output

and the haplotypes that do not belong to any cluster are regarded as

noise. More details can be found in Ester et al. (1996).

2.3 Score of the degree of association

For each marker position, our algorithm will take the haplotype

segments around the marker and calculate the pairwise haplotype

distances according to the distance measure. The DBSCAN algo-

rithm is then applied on the distance matrix to identify clusters.

A score for each marker will be calculated as follows. We measure

the degree of association between a haplotype cluster and the dis-

ease of interest using Z-score (or x2-value). Suppose that we are

given m case haplotypes and n control haplotypes. Let m0 and n0

denote the numbers of case and control haplotypes in a cluster,

respectively. A 2 · 2 contingency table can be constructed and

the Z-score of the cluster is defined as follows:

Z ¼ m0=m � n0=nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m0þn0

mþn ð1� m0þn0

mþn Þð1=m þ 1=nÞ
q : ð3Þ

It represents the weighted difference of relative frequencies of the

case and control haplotypes in a cluster and follows approximately a

normal distribution if we assume haplotypes randomly occur in the

cluster. A large Z-score means strong association between the clus-

ter (actually, the haplotypes within the cluster) and the disease since

many case haplotypes share the genomic region. We may also use

the value of x2 based on the table to indicate the degree of asso-

ciation. At each marker position, there may be multiple clusters,

possibly due to allele heterogeneity. In general, the cluster with the

highest score is taken as the prediction for each marker. The algo-

rithm can be naturally modeled by taking multiple clusters at each

position if their scores are significant. The score is regarded as the

point estimation of each marker locus and a consensus haplotype

pattern (by taking the majority allele at each position) or a haplotype

profile (thedistributionof alleles at eachposition) basedon the cluster

can be used as disease-associated pattern centered at the locus.

2.4 Permutation tests

The significant level of the prediction can be measured by the

P-value of the x2 or Z-score, properly adjusted using Bonferroni

correction for multiple tests. As a model-free method, it is more

appropriate to obtain an empirical P-value using a permutation test.

A permutation test can be easily performed by shuffling the pheno-

types among all the haplotypes. By randomly shuffling the disease

labels, it is expected that associations between haplotypes and the

trait are broken. The association mapping analysis will be per-

formed on each shuffled dataset and the values of the interested

statistic will be recorded. Then, the process will be iterated for a

sufficiently large number of times to mimic the distribution of the

original data. The proportion of the datasets whose statistic values

are equal to or better than the statistic of the original dataset is

LD mapping via a clustering algorithm
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regarded as the experimental P-value. The proposed method using

permutation test is so computationally efficient that it can be done

for whole-genome screens.

2.5 False positives due to population structure

It is well known that for case–control data, association can be due to

some factors other than linkage such as population substructures.

Special care must be taken when recruiting samples for such case–

control studies. However, our algorithm can also be applied to data

with family members, such as the case–parent design, for which the

population structure is not a problem. When population structure is

problematic, one can also combine the Genomic Control method by

Devlin and Roeder (1999) with the proposed algorithm and use the

variance inflation factor l to adjust the statistic score. See Devlin

and Roeder (1999) for details.

2.6 HapMiner, the computer program

The overall time complexity of the algorithm is O(MN2), where M is

the total number of marker loci and N is the sample size which is at

most thousands in most real datasets. We have implemented the

algorithm in a computer program called HapMiner. The executable

code on Windows and Linux can be downloaded from the authors’

website. Extensive tests have been performed using HapMiner on

simulated datasets as well as real datasets and will be discussed

below.

3 RESULTS

3.1 The test datasets

Two different sets of simulated data were tested. The first dataset

(dataset I) was generated in a previous paper by Toivonen et al.
(2000) in their studies of the HPM method, and the second dataset

(dataset II) was generated by us using an approach similar to that in

a recent paper by Zollner and Pritchard (2005). The two simulated

datasets differ in many ways. Dataset I mimicked an isolated popu-

lation with an exponential growth rate while dataset II had a con-

stant population size. The scope of interested regions was different.

One was at the whole-genome level and the other was a candidate

gene study. The disease models and the sampling strategies were

different. Dataset I simulated a dominant disease but with high

phenocopy rates and dataset II simulated a disease with incomplete

penetrance. Due to the page limitation, results on dataset II are

provided as supplementary materials.

More specifically, dataset I corresponds to a recently founded,

relatively isolated founder subpopulation that grew from the initial

size of 300 to �100 000 individuals in 500 years. The region con-

sidered was at the chromosome level with genetic length of 100 cM.

Both microsatellite markers and SNP markers were simulated.

Markers were evenly spaced along the chromosome with interval

lengths of 1 and 1/3 cM for microsatellite markers and SNP mark-

ers, respectively. A dominant disease was modeled, with a large

number of phenocopies. The proportion of mutation-carrying chro-

mosomes from all the case chromosomes, denoted by A, is 2.5, 5.0,
7.5 or 10.0% corresponding to overall relative risks (of first-degree

relatives) l ¼ 1.2, 1.7, 2.7, 4.1, respectively. Mutations were not

modeled directly but compensated by introducing missing alleles

randomly. A detailed description of the simulation procedure can be

found in the paper by Toivonen et al. (2000).
In addition, we tested HapMiner on three real datasets concerning

different types of diseases. The first real dataset was originally

reported by Kerem et al. (1989) in the study of the fine-mapping

of Cystic Fibrosis (CF) gene and has been used by many investig-

ators in testing their methods. The second real dataset concerning

the localization of Friedreich Ataxia (FA) gene was reported in Liu

et al. (2001) and reanalyzed by Molitor et al. (2003). The third

dataset consisting of affected sib-pair families with type 1 diabetes

(T1D) is from Herr et al. (2000). Detailed information and analyt-

ical results on the three real datasets will be discussed shortly.

3.2 Comparisons with other algorithms

We have made comprehensive comparisons with the program

CLADHC, a most recently developed method by Durrant et al.
(2004) that also uses a clustering algorithm, and the x2-test using

single marker. Due to the limitation of CLADHC, only datasets with

diallelic markers were used for the comparison. Independent data-

sets (dataset I) from Toivonen et al. (2000) were taken to minimize

the bias in evaluating different methods. Unfortunately, the program

HPM from the same paper is not available to us. We only compared

our results with those by HPM in their original paper. Prediction

results on real datasets were also compared with those by different

methods (Liu et al., 2001; Molitor et al., 2003; Kerem et al., 1989).

3.3 Results on dataset I: whole genome screen

3.3.1 HapMiner parameters There are five parameters that need

be specified by the user, namely, the haplotype segment length and

two weighting functions used in the calculation of pairwise haplo-

type segment similarities, and the radius e and density threshold

(a) (b) (c)

Fig. 3. The Z-score distribution for a dataset with haplotype segment lengths 5 (a) and 7 (b). The prediction accuracy on 100 datasets (c).

J.Li and T.Jiang
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MinPts required by the DBSCAN algorithm. Figure 3a and b show a

typical Z-score distribution map for a dataset with two different

haplotype segment lengths, i.e. 5 and 7 markers, respectively. The

x-coordinate represents the marker positions and the y-coordinate
represents the corresponding score for each marker. The vertical

line indicates the location of the functional allele, while in this case

it is halfway between markers 5 and 6. The predicted gene location

is at marker 5 for both length parameters, with Z-scores of 4.63 and
3.86, respectively. As expected, with the increase of the segment

length, the score profile tends to be smoother. But the scores near the

signal region were rather strong no matter which value we took and

only noise was averaged out. The numbers of the haplotypes in the

identified clusters are 24 and 18, respectively, for the two parameter

values, which are close to the number of true case haplotypes (i.e.

haplotype with mutated alleles) since there are 200 haplotypes that

were labeled as case and the fraction of mutation-carrying chromo-

somes, denoted as A, is 10%. Such information on phenocopies was

not known to HapMiner in advance. Most of the haplotypes in the

clusters are core haplotypes, which means that the haplotypes in the

clusters are very similar to each other. The consensus patterns are

the same in the overlapped region for the two different values of

haplotype segment length, which also implies the robustness of

HapMiner with respect to this parameter. For the remaining tests

on dataset I, we took the lengths of haplotype segments the same as

those in Toivonen et al. (2000), which were 7 and 21 markers for

microsatellite markers and SNP markers, respectively. We took

simple linear functions with flat tails for both weights since the

markers were evenly spaced. (The functions are depicted in Sup-

plementary Figure 1.) There are two ways to set the radius e in

HapMiner. The first method is to specify its value directly. Since the

pairwise distances are within the range [0, 1], one can specify the

radius to be any value from this range. The other way to set e is to

choose a percentile according to the distribution of all pairwise

distances. We took the first method in this study. To set the

value of MinPts, we first calculated the number of neighbors for

every haplotype based on e and chose MinPts based on the user-

specified percentile parameter. Experiments on three different e

values (i.e. 0.1, 0.2 and 0.3) and three different MinPts values

(i.e. 15, 25 and 35%) indicated that HapMiner performed consist-

ently well around the DS locus across different parameters (data not

shown). We thus fixed e to be 0.2 and the percentile for MinPts to be

25% for the remaining tests.

3.3.2 Prediction accuracy Figure 3c shows the predicted loca-

tions (y-axis) and true locations (x-axis) on 100 datasets with 200

case haplotypes and 200 control haplotypes for each dataset. All the

parameters were using their default values as specified in the pre-

vious subsection. The accuracy was high for most datasets even

though�90% of case haplotypes did not contain the mutation allele.

The success was mainly due to the concept of density-based clus-

tering algorithms, which allow noisy inputs. Traditional partitioning

algorithms like k-means could not correctly identify the cluster

associated with the disease given such a noisy dataset (data not

shown). And it is almost impossible for any method to correctly

reconstruct the genealogy of the samples (which is the goal of

hierarchical algorithms), given the complexity of the evolutionary

history.

We further investigated the power of HapMiner under different

phenocopy rates (1 � A), different sample sizes, and increasing

marker density, and with missing values. We compared our results

with those reported by Toivonen et al. (2000) using their HPM

program. The results are illustrated in Figure 4a–d. In the figure,

the x-coordinate represents the distance from the true gene position

and the y-coordinate represents the average fraction (power) of the

predictions that were within the distance on 100 datasets. As expec-

ted, the prediction accuracy increased with the increasing of A and

the increasing of sample sizes. For a sample size of 200 cases and

200 controls (Fig. 4a), the prediction errors were small for A ¼ 10%,

7.5% (i.e. relative risk l ¼ 4.1, 2.7. But the errors increased rapidly

when A ¼ 5% (l ¼ 1.7) and neither methods (HapMiner and HPM)

could successfully predict gene locations when A dropped to 2.5%

(l¼ 1.2).With a sample size of 400 cases and 400 controls (Fig. 4b),

the accuracy was greatly improved for all the values of A. For
instance, with A ¼ 10%, all the prediction errors were <4.5 cM.

Even with A ¼ 5%, >80% of the prediction errors were within 4 cM.

The results were better than those by HPM. Only�85% of the HPM

results achieve the same accuracy for A ¼ 10%, as shown in

Figure 2b of Toivonen et al. (2000), and the performance of

HPM did not necessarily improve when the value of A increased,

as illustrated in Figures 2 and 4 of Toivonen et al. (2000). HapMiner

demonstrated great advantage in dealing with phenocopies.

With the advance of genotyping technology, more SNP markers

will be available for whole-genome association studies of common

diseases using case–control data in the near future. For any gene

mapping method, it is desirable to see the performance of the

method improve with denser markers. Indeed, HapMiner performed

better on SNP markers than it on microsatellite markers. For

instance, with A ¼ 10%, 98% of the predicted errors were <5 cM

and 81% of the predicted errors were >2 cM for SNP markers

(Fig. 4c) and the results for microsatellite markers (Fig. 4a) were

94 and 73%, respectively. Another factor that affects the accuracy

is the number of missing alleles of the input data. In reality, most

datasets contain a substantial number of missing alleles. There are

also ambiguities while inferring haplotypes from genotypes using

computational approaches. To test how HapMiner performs under

such a realistic situation, we examined HapMiner on the SNP data-

sets by randomly removing 12.5% alleles that counted for missing

and phase-unknown positions. The missing alleles were imputed

simply based on allele frequencies before running HapMiner.

The results (Fig. 4d) were quite satisfactory considering the

small sample size (200) and high number of phenocopies. For

example, with A ¼ 10%, >80% of the predictions had errors <5 cM.

3.3.3 Significance of the predictions To assess the significance

of a prediction, a permutation test was performed for 1000 itera-

tions. Figure 4e and f illustrates the permutation test results on every

marker position using the same two datasets as in Figure 3 of

Toivonen et al. (2000). The solid black line represents the predicted
Z-scores for all the markers and the dashed black line underneath

shows the empirical P-values of the predictions. The predicted gene
location for the first dataset was within 0.2 cM of the true gene

location represented by the vertical line in Figure 4e and the empir-

ical P-value <0.001. For the second dataset, where the signal

was much weaker, the predicted error was 1 cM and the empirical

P-value was 0.019. While it is a common approach to use the

permutation test as a way to assess the significance of the prediction,

it seems inappropriate to take the position with the minimum empir-

ical P-value as the predicted gene location itself, as in Toivonen
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et al. (2000). Unlike the normal P-value of a statistic, the position

with the minimum empirical P-value might not have the highest

statistic (Z-score, or x2-value in our case). In such a case, it is not

clear why one should take the position with the minimum P-value as
the prediction.

3.3.4 HapMiner, CLADHC and x2-test We further compared

HapMiner, CLADHC and the simple x2 on the SNP dataset with

different levels of phenocopies (A ¼ 10%, 7.5%, 5%, l ¼ 1.7,

2.7, 4.1 in terms of relative risks. The case A ¼ 2.5% was dropped

since no methods were significantly better than random guesses).

Both haplotype-based approaches achieved much higher power

(defined as the proportion of the predicted locations are within

one half of the segment length from the true locations, used by

CLADHC) and returned more accurate results than the simple

x2-test (Fig. 4g–i, Table 2). HapMiner is more robust against

noisy data than CLADHC. For A ¼ 10% (Fig. 4g), HapMiner

and CLADHC reported similar results for two different values

of haplotype segment lengths tested, and HapMiner was slightly

better than CLADHC in terms of the root mean squared error rate

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 4. The results on dataset I. The effects ofA on prediction accuracy using sample sizes of 200 individuals (a) and 400 individuals (b). The prediction accuracy

using the SNP dataset with complete data (c) and with missing data (d) for sample sizes of 200 individuals. Permutation test results (e and f) on the same two

datasets as in Toivonen et al. (2000). The comparisons of three algorithms using different As and different segment lengths (g, h and i).
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(the square root of the average squared errors across 100 runs,

Table 2). With the increase of the phenocopies, HapMiner achieved

much higher power than CLADHC using the same segment lengths

(Fig. 4h for A ¼ 7.5%, Fig. 4i for A ¼ 5% and Table 2). The two

haplotype segment lengths were taken since CLADHC could not

deal with segment lengths longer than 10 markers. All other para-

meters for both programs took their default values.

3.4 Results on real datasets

3.4.1 The CF dataset We applied the algorithm to a widely

studied real dataset originally reported by Kerem et al. (1989) in
the study of the fine-mapping of the CF gene. The dataset contains

94 affected haplotypes and 92 normal haplotypes with 23 RFLP

markers each. It is known that a certain founder mutation DF508

between markers 17 and 18, �0.88 cM away from the first marker,

accounts for 67% of the disease chromosomes. The result of our

prediction is illustrated in Figure 5a. For comparisons, all three

methods use the adjusted significant levels. The x-coordinate rep-

resents the marker positions and the y-coordinate represents the

significant levels. The overall significant level P for the whole

region was 0.05. The value (yi,j) at marker i for method j was defined
as yi,j ¼ (�log(pi,j))� (�log(p)/nj), where pi,j is the significant value

of method j at position i (both HapMiner and the single SNP method

use the x2-test with 1 df; CLADHC uses the likelihood ratio test)

and nj is the number of total multiple tests over the region for

method j (CLADHC has two levels of multiple tests, so the number

is different from the number of SNPs). So in Figure 5a, a marker

with a positive value means it is significant at the 0.05 level. Our

predicted disease location is at marker 18 (0.89 cM away from the

first marker) with much higher significant level than it by the simple

x2-test. CLADHC with the same segment length 7 output two

markers with very similar significant levels while the distance

between the two markers is 0.125 cM. In terms of point estimation,

our prediction is better than the point estimation (0.8698 cM away

from the first marker) in Molitor et al. (2003) which took the mode

of posterior distribution as the disease gene location. No point

estimation was given by Liu et al. (2001) and they only reported

the 95% confidence interval was around [0.82, 0.93]. The cluster

identified by HapMiner consists of 63 haplotypes and 60 of them

were from the 94 disease chromosomes, which is very close to the

total number of disease chromosomes that had the DS mutation. The

majority of the two sets overlapped. The haplotype segment length

parameter was set to be 7 markers in Figure 5a, and the exactly

same set of chromosomes and similar profile were obtained by

HapMiner when using segment length of 5 (data not shown). For

the analysis on the three real datasets, all other parameters took the

default values as those in the dataset II, namely, w1 ¼ w2 ¼ e�10x,

e ¼ 0.2, and the percentile for MinPts is 0.25. CLADHC could not

handle multiallelic data so we only output the results by HapMiner

for the remaining two datasets using their Z-score profiles.

3.4.2 The FA dataset We further applied the algorithm to the

second real dataset concerning the localization of Friedreich Ataxia

(FA) gene reported in Liu et al. (2001) and reanalyzed by Molitor

et al. (2003). Our data contains 54 disease haplotypes and 69 control
haplotypes with 12 microsatellite markers spanning a region of

15 cM. The gene is located between the fifth and sixth markers.

More details about the data can be found in Liu et al. (2001).
HapMiner predicted the gene position on the fifth marker as

shown in Figure 5b, with a Z-score of 6.03. The haplotype segment

length parameter was set to be 7 and a similar result was obtained for

segment length 5. The most informative cluster identified consists

of 25 disease haplotypes where the biggest cluster identified in Liu

et al. (2001) contained 33 haplotypes. We obtained three other small

clusters as found in Liu et al. (2001) that may be due to allele

heterogeneity. The sizes of our clusters were smaller than those

of the clusters in Liu et al. (2001) mainly because our parameters

were chosen in such a way that the algorithm could detect pheno-

copies more effectively. No point estimation or confident interval

were given in Liu et al. (2001). Again, the point estimation was

(a) (b) (c)

Fig. 5. Point estimations on real datasets: significant levels adjusted by multiple testing on CF data (a), and the Z-scores on FA data (b) and T1D data (c).

Table 2. Comparisons of three methods in terms of the root mean squared

error rate for different As

A ¼ 10% A ¼ 7.5% A ¼ 5%

SegLen 7 9 7 9 7 9

HapMiner 6.37 5.81 20.71 18.08 34.34 31.84

Cladhc 7.97 6.81 28.19 27.40 36.19 37.10

Single 35.25 38.55 34.67
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much better than the results in Molitor et al. (2003) where the

prediction was 2 markers (0.25 cM) away from the true location.

3.4.3 The T1D dataset We have also tested HapMiner on the

third real dataset, consisting of affected sib-pair families with type 1

diabetes (T1D) obtained from Herr et al. (2000). The T1D dataset

consists of 385 affected sib-pair families each with 2 parents and

2 affected children. There are a total of 25 microsatellite markers

spanning a 14 Mb region on chromosome 6 including the entire

HLA complex, with known type 1 diabetes-susceptibility locus. The

haplotypes were inferred from the genotype data using the integer

linear programming (ILP) algorithm of the PedPhase program by

Li and Jiang (2004). Only 89 families were taken from all 385

families since the other families missed the genotypes of all mem-

bers in at least one locus. For each family, a haplotype from the four

parental haplotypes was assigned as a case haplotype if it appears in

any of the two affected children. Otherwise it was selected as a

control haplotype. There were totally 213 case haplotypes and 143

control haplotypes. The length of a haplotype segment was set

to be 5. The results (Fig. 5c) show that HapMiner could find the

DS gene location at marker D6S2444 with a Z-score of 3.72. The

location is the same as those identified by TDT (Transmission

Disequilibrium Test) type of tests in Herr et al. (2000), while

HapMiner only used a much smaller subset of the total data. The

associated cluster has 32 haplotypes and only 3 are from control

haplotypes. The number of core haplotypes is 27 and the consensus

haplotype pattern is 61429.

4 DISCUSSION

We have described a model-free haplotype association mapping

method and proposed a new haplotype similarity measure. The

program, HapMiner, is well suited for gene fine mapping and effi-

cient for whole-genome screens. Results on two simulated datasets

and three real datasets have illustrated that HapMiner could predict

DS gene locations with high accuracy under various situations with

realistic sample sizes, and it has a better performance than some

recently developed approaches. Simulations based on the dataset

from the literature show that it is effective even for data containing

a high rate of phenocopies (corresponding to small relative risks).

We have tested HapMiner under two evolutionary models and it

performed consistently well regardless of the population history.

The simulations and the real datasets consisted of dominant, recess-

ive and complex diseases, and HapMiner was able to successfully

identify the DS gene locations for all the cases. It requires no prior

information about the evolutionary history (genealogy of haplo-

types) or inheritance patterns of the diseases. Extensive tests have

also demonstrated the robustness of HapMiner on the selection of

different parameters.

The framework can easily handle diseases with multiple founder

mutations per locus since HapMiner could report all clusters that are

significant at each marker locus as we did on the FA dataset. It can

also handle diseases with multiple genes and gene–gene interactions

by modifying the similarity measure to account for different

haplotype segments. The significance level of the prediction is

evaluated by carrying out permutation tests. The properties of

the proposed statistics (Z-score or x2) under different assumptions

will be investigated. It is also possible to incorporate statist-

ical techniques for studying false discovery rates (Storey and

Tibshirani, 2003) into our genome-wide association mapping stud-

ies. For false positive due to population structure, one can also

incorporate the genomic control method to the proposed framework.

The method presented here assumes that the haplotype pair

of each individual is available, which in general can be inferred

by computational methods based on genotype data. A possible

extension is to take into consideration the ambiguity of the inferred

haplotypes as well as the dependence of the two haplotypes from the

same individual. An alternative to the use of inferred haplotypes is

to calculate similarity/distance based on genotype vectors directly.

For instance, similarity of two genotype vectors can be measured

based on the number of identical alleles at each marker. But our

preliminary results on genotype vectors have shown it cannot pro-

vide accurate predictions in most cases. We will systematically

investigate how the predictions will be affected while using inferred

haplotypes from various sources by different algorithms.

The notion of density-based clusters is crucial to the prediction

accuracy when data contain high level noise such as phenocopies

and incomplete penetrances. It also alleviates the mislabeling prob-

lem of haplotypes, i.e. for case–control data, it is possible that only

one of the two case haplotypes from an affected individual contains

the disease mutation, while we label both of them as case haplo-

types. A limitation of the DBSCAN algorithm is that it could not

automatically determine the density of the input data. In the current

implementation, we have to rely on the user to supply the para-

meters. Although we have shown that the algorithm is robust against

a broad range of parameters, it is still difficult to argue what is

the optimal value for each parameter. The two parameters (e and

MinPts) depend on the level and the patten of LD near the disease

locus, which is generated by many forces such as recombination

rate and distribution, population structure, the age of the disease

mutation, genetic drift, etc. Detail characterization of the relation-

ship between the parameters and those factors is difficult. Never-

theless, one possible extension to the current framework is to

automatically estimate the density of the input data. For example,

the density around a data point can be evaluated by looking at the

distance distribution from this data point to all other data points.

Another possible direction is to incorporate model-based clustering

algorithms, which assumes that different clusters correspond to

different distributions (Fraley and Raftery, 2002). Then the problem

of finding appropriate threshold values is just the standard model

selection and parameter estimation problem.

In addition to complex diseases, many continuously distributed

quantitative traits are of primary clinical and health significance.

Examples of such quantitative traits are blood pressure, cholesterol

level, obesity, and bone mineral density, etc. In many cases, the

disease status of an individual is actually defined based on some

threshold value of a particular quantitative trait. Quantitative values

can actually provide much more detailed information than the dis-

ease status only. The approach proposed here can be extended to

quantitative trait association mapping by defining a new score. The

idea is to identify clusters first according to haplotype similarities

and to evaluate the mean differences of the trait values of those in a

cluster and those not in the cluster. Additional work will be done to

investigate the feasibility of quantitative trait mapping using the

framework.

In summary, results on datasets from various sources demonstrate

the high accuracy and great flexibility of the proposed method.

HapMiner will be a useful tool for LD mapping and complement

the existing model-based statistical methods.

J.Li and T.Jiang
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