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Understanding how genetic variants influence cellular-level processes
is an important step toward understanding how they influence important
organismal-level traits, or “phenotypes,” including human disease suscepti-
bility. To this end, scientists are undertaking large-scale genetic association
studies that aim to identify genetic variants associated with molecular and
cellular phenotypes, such as gene expression, transcription factor binding,
or chromatin accessibility. These studies use high-throughput sequencing as-
says (e.g., RNA-seq, ChIP-seq, DNase-seq) to obtain high-resolution data
on how the traits vary along the genome in each sample. However, typical
association analyses fail to exploit these high-resolution measurements, in-
stead aggregating the data at coarser resolutions, such as genes, or windows
of fixed length. Here we develop and apply statistical methods that better ex-
ploit the high-resolution data. The key idea is to treat the sequence data as
measuring an underlying “function” that varies along the genome, and then,
building on wavelet-based methods for functional data analysis, test for asso-
ciation between genetic variants and the underlying function. Applying these
methods to identify genetic variants associated with chromatin accessibil-
ity (dsQTLs), we find that they identify substantially more associations than
a simpler window-based analysis, and in total we identify 772 novel dsQTLs
not identified by the original analysis.

1. Introduction. Genetic association studies aim to understand the function
of genetic variants by associating them with observable traits, or “phenotypes.”
Although many association studies have focused on organismal-level phenotypes,
such as human disease [e.g., WTCCC (2007)], association studies also provide a
powerful tool for studying molecular-level phenotypes, such as gene expression
[Cheung et al. (2010), Montgomery et al. (2010), Pickrell et al. (2010)], transcrip-
tion factor binding [Karczewski et al. (2013), Kasowski et al. (2010)] and chro-
matin accessibility [Degner et al. (2012)]. Measurement of many molecular phe-
notypes has been recently transformed by the advent of cheap high-throughput
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sequencing technology, and corresponding experimental protocols (RNA-seq:
[Marioni et al. (2008), Mortazavi et al. (2008), Wang et al. (2008)], ChIP-seq:
[Barski et al. (2007), Johnson et al. (2007), Mikkelsen et al. (2007)], DNase-seq:
[Boyle et al. (2008), Hesselberth et al. (2009)]), which provide high-resolution
measurements across the whole genome. However, typical analyses fail to exploit
these high-resolution measurements, instead aggregating the data at coarser reso-
lutions, such as genes, or windows of fixed length.

In this paper we develop and apply association analysis methods that better
exploit high-resolution measurements from high-throughput sequencing assays.
We specifically focus on identifying genetic variants that are associated with an
epigenetic phenomenon known as chromatin accessibility, measured using DNase-
seq [Boyle et al. (2008), Degner et al. (2012)], both described in more detail below.
However, the same or similar ideas could also be applied to association analyses
of other high-throughput sequencing measurements.

Conceptually, the key idea is to treat the data from high-throughput sequencing
assays as noisy measurements of an underlying “function” (in this case, chromatin
accessibility) that varies along the genome. We then adapt methods from func-
tional data analysis, based on wavelets, to develop a test for association between
a covariate of interest (in this case, a genotype) and the shape of the underlying
function. We also provide methods to estimate the shape of the genotype effect,
which can help in understanding the potential mechanisms underlying the identi-
fied associations.

In outline, our methods first transform the data using a wavelet transform, and
then model associations in the transformed space rather than the original data
space. This approach makes modeling easier because we expect the effect of geno-
type on phenotype to exhibit a spatial structure in the original space, which corre-
sponds to a sparse structure in the transformed space, and sparsity is relatively easy
to model. Here we are borrowing ideas that have been developed, more generally,
in the “functional mixed models” work of Morris and Carroll (2006), Morris et al.
(2008), Zhu, Brown and Morris (2011). In particular, Morris et al. (2008) presented
a framework for identifying locations within a region that show significant effects
of covariates. Other relevant work on wavelet methods for regression analysis of
functional data include Abramovich and Angelini (2006), Antoniadis and Sapati-
nas (2007), Fan and Lin (1998), Yang and Nie (2008), Zhao and Wu (2008). Pre-
vious applications of wavelet-based methods in genomics include Clement et al.
(2012), Day et al. (2007), Mitra and Song (2012), Spencer et al. (2006), Wu et al.
(2010), Zhang et al. (2008). Our main contributions are to embed the wavelet-
based methods into a framework for association testing that is computationally
tractable for large-scale genetic association analyses that involve hundreds of thou-
sands of tests, and to demonstrate the practical potential of these methods for as-
sociating genetic variants with sequence-based molecular phenotypes.
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2. Background.

2.1. DNase-seq and chromatin accessibility. In brief, DNase-seq is an exper-
imental protocol that measures the accessibility, or openness, of chromatin along
the genome. Chromatin consists of both the DNA that makes up the genome and
the proteins that package it within the cell nucleus. Accessibility is important be-
cause it is associated with biological function, and DNase-seq has been a useful
tool for detecting functional elements of the genome [Boyle et al. (2008)]. Chro-
matin accessibility at any given location will vary from cell to cell, and although
single-cell experiments are on the horizon, almost all current experiments provide
average measurements over a population of cells, usually from the same individual.

The key step in the DNase-seq protocol is the use of an enzyme called DNase I
to selectively cut the DNA at locations where the chromatin is accessible. There is
a quantitative aspect to this selection: other things being equal, locations where the
chromatin is more accessible will tend to be cut more often. The locations of these
cut points are revealed by sequencing the ends of the resulting fragments of DNA,
and mapping the sequences (the “reads”) back to the genome. The resulting data
are then conveniently summarized by the counts, cb, of the number of cut points at
each base in the genome (for humans, b ≈ 1, . . . ,3 × 109). (Note that cb denotes
the number of reads that start at base b, rather than the number of reads that cover
base b, so each read is counted only once.) In analyses these counts are usually
standardized to account for the total number of sequence reads generated for each
sample, so we here use db = cb/S where S is the total number of mapped reads in
the experiment. Although the process is subject to considerable technical variation
and other confounding factors, higher values of db generally correspond to higher
accessibility of base b. (Technically, the DNase-seq protocol actually measures
“DNase I sensitivity,” or sensitivity to cutting by the DNase I enzyme, which is a
proxy for chromatin accessibility. For simplicity, we ignore this distinction here.)

A typical experiment will produce millions of sequence reads per sample, and
these will be concentrated in the relatively small proportion of the genome that is
most “accessible.” Thus, db = 0 for most bases b, but some regions will show sub-
stantial counts at each base. Further, where it exists, accessibility tends to extend
over hundreds of bases and, more generally, d tends to exhibit local spatial auto-
correlation (“spatial structure”). One important goal of our methods is to account
for this structure in the analysis.

Here we consider data from Degner et al. (2012), who collected DNase-seq data
on samples from 70 different human individuals, for whom extensive genome-wide
genetic data are also available. By correlating the DNase-seq data with the genetic
data, we aim to identify genetic variants associated with chromatin accessibility.
Such genetic variants are referred to as dsQTLs (DNase I sensitivity Quantitative
Trait Loci) by Degner et al. (2012). Identifying genetic variants that are associated
with chromatin accessibility and other molecular phenotypes such as transcrip-
tion factor binding and gene expression, can help provide insights into the mecha-
nisms by which genetic variation influences gene regulation. Indeed, Degner et al.
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(2012) found that many of the dsQTLs they identified were also associated with
gene expression (which is associated with protein production), suggesting that ge-
netic variation affecting transcription factor binding and chromatin accessibility
may explain a substantial proportion of genetic variation in protein production.
Ultimately, by combining these types of data on molecular-level phenotypes, and
integrating them with similar data on organismal level phenotypes, we hope to
understand which genetic variants affect human disease susceptibility, and the bi-
ological mechanisms by which they operate [Nicolae et al. (2010)]. Identifying
dsQTLs, as we do here, is one helpful step toward this larger goal.

2.2. Wavelets. Wavelets are a tool from signal processing that are commonly
used to deal with spatially-structured (or temporally-structured) signals. In this
paper we use the Haar Discrete Wavelet Transform (DWT), and this section pro-
vides a brief intuitive description of the DWT. Further, more formal, background
on wavelets can be found in Mallat (1989).

Let d = (db)
B
b=1 be the standardized counts from a DNase-seq experiment in a

region with a length B assumed to be a power of 2 (B = 2J ). The DWT decom-
poses d into a series of “wavelet coefficients” (WCs), y = (ysl), each of which
summarizes information in d at a different scale (or resolution) s and location l.
At the “zeroth scale” there is a single WC (y01), which is simply the sum of the
elements of d , y01 = ∑

b db. (This “zeroth scale” WC is not truly a WC, but we use
this shorthand here for convenience.) This coefficient summarizes d at the coars-
est possible level, by its sum. At the first scale there is also a single WC (y11),
which contrasts the counts in the first half vs second half of the region. That is,
y11 := ∑

b≤B/2 db − ∑
b>B/2 db (omitting a scaling constant that is usually used to

normalize the WCs, but does not concern us here). This WC can be thought of as
roughly capturing any trend in d across the region. At the second scale there are
two WCs (y21, y22): the first contrasting the first quarter vs the second quarter of
the region; and the second contrasting the third quarter vs the fourth quarter of the
region. This process continues through the scales: at scale s there are 2s−1 WCs
that contrast regions of length 2J−s , and hence capture higher-resolution features
of d .

Since y is a linear transform of d , the DWT can be written as a matrix multipli-
cation: y = Wd where W is known as the DWT matrix. Further, the transform is
one–one, so W is invertible, and d can be obtained from y by the “inverse discrete
wavelet transform” (IDWT), d = W−1y. We exploit this linearity of the IDWT
later to obtain closed-form expressions for posterior mean and variances of effect
sizes in the original scale (see Methods).

Because the WCs are simply a one–one transform of d , y contains exactly the
same information as d . However, WCs have two crucial properties that make them
useful for settings where, as here, d is expected to have a spatial correlation struc-
ture: (i) where values of d may be strongly spatially correlated, the WCs tend to be
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less dependent, referred to as the “whitening” property of the wavelet transform;
(ii) typically, many WCs will be small, with the signal concentrated in a few “big”
WCs. As a result, one can obtain denoised (smoothed) estimates of a signal by ig-
noring or shrinking the smaller WCs (i.e., reducing them toward 0). This is called
“wavelet denoising” [Donoho and Johnstone (1995)]. Here we effectively apply
wavelet denoising to estimate the effect of a genetic variant on a signal, rather than
to the signal itself [see also Morris and Carroll (2006) and Zhu, Brown and Morris
(2011) for example].

3. Methods. Our data consist of DNase-seq data and genotype data at genetic
variants (mostly Single Nucleotide Polymorphisms, or SNPs) across the whole
genome on N individuals, and our goal is to assess whether the DNase-seq data
is associated with the genotype data. In practice, we expect that SNPs affecting
chromatin accessibility will tend to have a relatively local effect, an expectation
supported by results in Degner et al. (2012). Thus, similar to Degner et al. (2012),
we first divide the DNase-seq data into regions (of length B = 1024 in this case;
see Results), and then test each region for association with all nearby SNPs. We
will first describe the test for a single SNP, and then describe how we apply it to
test all nearby SNPs.

Let di denote the vector of DNase-seq count data for individual i (i = 1, . . . ,N ).
Thus, di is a vector of counts of length B = 2J . Let gi denote the genotype data for
individual i at a single SNP of interest, coded as 0, 1, or 2 copies of the minor allele
(so gi ∈ {0,1,2}). Our aim is to assess whether the DNase-seq data is associated
with genotype at this SNP. That is, can we reject the null hypothesis H0 that d is
independent of g?

In outline, our approach is as follows. First, we transform each phenotype vec-
tor di , using the DWT outlined above, to produce a new phenotype vector yi of
wavelet coefficients (WCs). Then, based on simplifying modeling assumptions de-
tailed below, which combine information across WCs into a hierarchical model, we
compute a likelihood-ratio test statistic �̂ testing H0. Finally, since the modeling
assumptions are unlikely to hold exactly in practice, we use permutation to assess
significance of the observed value of �̂.

In more detail, let ysl denote the vector of WCs at scale s and location l, and
let γsl denote a binary indicator for whether ysl is associated with g. The null
hypothesis, H0, is that there is no association between any WC and g, that is,
γsl = 0 for all s and l.

To measure the support for γsl = 1 for a specific s, l, we use a Bayes Factor,

BFsl(y, g) := p(ysl|g, γsl = 1)

p(ysl|g, γsl = 0)
.(3.1)

To compute this Bayes Factor, we use the models and priors from Servin and
Stephens (2007), which are based on assuming a standard normal linear regres-
sion for p(ysl|g, γsl):

yi
sl = μsl + βslg

i + εi
sl with εi

sl ∼ N
(
0, σ 2

sl

)
,(3.2)
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where μsl denotes the mean WC of individuals with gi = 0; βsl denotes the effect
size of g on the WC; and εi

sl is the residual error for sample i. With appropriate
priors on σsl , μsl , βsl given γsl [see Supplementary Material Shim and Stephens
(2015)] the Bayes Factor BFsl has a simple analytic form.

To combine information across scales s and locations l, we build a hierarchical
model for the γsl , assuming

p(γsl = 1|π) = πs,(3.3)

where π = (π0, . . . , πJ ) is a vector of hyperparameters, with πs representing the
proportion of WCs at scale s that are associated with g. Then, assuming indepen-
dence across scales and locations, the likelihood ratio for π , relative to π ≡ 0 (i.e.,
πs = 0 ∀s), is given by

�(π;y,g) := p(y|g,π)

p(y|g,π ≡ 0)
= ∏

s,l

p(ysl|g,πs)

p(ysl|g,πs = 0)
(3.4)

= ∏

s,l

πsp(ysl|g, γsl = 1) + (1 − πs)p(ysl|g, γsl = 0)

p(ysl|g, γsl = 0)
(3.5)

= ∏

s,l

[
πsBFsl + (1 − πs)

]
.(3.6)

Within this hierarchical model, the null H0 holds if π ≡ 0. Thus, to test H0, we
use the likelihood ratio test statistic

�̂(y, g) := �(π̂;y,g),(3.7)

where π̂ denotes the maximum likelihood estimate π̂ := arg max�(π;y,g). This
is easily computed using an EM algorithm.

Our hierarchical model assumes conditional independence of ys,l (and βs,l)
given π across scales and locations. This assumption is partly justified by the
whitening property of the DWT mentioned above; and certainly a corresponding
conditional independence assumption would be entirely inappropriate for the orig-
inal data db due to spatial correlations. Nonetheless, the conditional independence
assumption will not hold exactly in practice. Anticipating this concern, we note
that a primary goal of the hierarchical model is to obtain a test statistic for H0,
whose significance is assessed by permutation (see below), and that the resulting
p-values are valid, in the sense of being uniform under the null hypothesis, regard-
less of the correctness of the modeling assumptions.

3.1. Multiple SNPs and permutation procedure. The statistic �̂(y, g) tests for
association between y (or, equivalently, d) and a single SNP with genotype vec-
tor g. Often one would like to ask, for a given region, whether y (d) is associated
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with any of many nearby SNPs. To assess this for a set of P nearby SNPs, with
genotype vectors given by g1, . . . , gP , we use the test statistic

�̂max := max
p

�̂(y, gp).(3.8)

To assess significance of �̂max, we use permutation. That is, we generate inde-
pendent random permutations ν1, . . . , νM of (1, . . . ,N) and compute

�̂j
max := max

p
�̂

(
y, νj (gp)

)
.(3.9)

Then the p-value associated with �̂max is

p = #{j : �̂j
max ≥ �̂max} + 1

M + 1
.(3.10)

To reduce computation time, we adapted the sequential procedure from Besag and
Clifford (1991), which avoids large numbers of permutations for non-significant
results (see Supplementary Material [Shim and Stephens (2015)]).

3.2. Filtering of low count WCs. Some WCs, particularly those corresponding
to high resolutions, are computed based on very low counts. Indeed, for some WCs,
the majority of individuals have zero counts in the regions being contrasted, and so
have a WC of zero. These WCs effectively have high sampling error and provide
little information on association; however, our model (3.2) does not incorporate
the sampling error, and so these WCs tend to contribute more than they should
to �, effectively adding noise to the test, and reducing power. To address this, we
filter out these “low count” WCs, by setting their BFsl = 1 in equation (3.6) (a BF
of 1 corresponds to no information about association). In results presented here, a
set of WCs {yi

sl}Ni=1 was considered “low count” if the average number of reads
per individual used in their computation was less than L = 2 (i.e., <140 total reads
in our data with 70 individuals). Since this threshold is ad hoc, we empirically as-
sessed sensitivity to choice of threshold L. We found that performance was almost
identical for L ∈ {2,3,5}, and performance dropped slightly for L = 1,10 (see
Supplementary Material [Shim and Stephens (2015)]).

3.3. Quantile transformation to guard against nonnormality. Our model as-
sumes that the residuals in (3.2) are normally distributed. Although such normal
assumptions are often quite robust, large deviations from normality can adversely
affect performance of association tests. Furthermore, in large-scale association
studies involving thousands of phenotypes, occasional large deviations from nor-
mality can arise, and it is impractical to manually check each of the thousands of
phenotypes. To address this, it is common to quantile-transform phenotypes to the
quantiles of a standard normal distribution before testing for associations, an idea
with a long history [van der Waerden (1953)]. Following this idea, in our asso-
ciation tests we transform the vector of WCs, (y1

sl, . . . , y
N
sl ), to the quantiles of a
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standard normal distribution (with ties broken at random—see Supplementary Ma-
terial [Shim and Stephens (2015)]) before computing the Bayes Factor BFsl using
the transformed WCs. This transformation guarantees that, under the null hypothe-
sis (γsl = 0), the normal assumption on the residuals in (3.2) holds. Consequently,
this transformation ensures that the BFs are well behaved under the null, which
is particularly important in association testing applications where, as here, most
effects are null or nearly-null.

Although this quantile transformation is helpful for making tests robust to de-
viations from normality, it can make estimated effects more difficult to interpret.
Therefore, it is usual to report effect size estimates obtained without quantile trans-
formations [e.g., Teslovich et al. (2010)], and we follow this practice here by not
performing the quantile transformation when estimating effect sizes (see below).

3.4. Controlling for confounding factors. In genetic association analyses of
molecular-level phenotypes, power can be substantially increased by controlling
for unmeasured confounding factors [Leek and Storey (2007), Stegle et al. (2010)].
In this setting, this can be achieved by estimating the unmeasured factors by Prin-
cipal Components Analysis, and then regressing out the first few Principal Compo-
nents (PCs) from the phenotypes before testing them for association with genotype
[Degner et al. (2012), Pickrell et al. (2010)]. In our data analysis here we use the
four PCs used by Degner et al. (2012), who chose 4 PCs after comparing results
with 2, 4, and 6 PCs (their Supplementary Figure S11). Specifically, our procedure
is as follows. After quantile transforming each WC to a standard normal distribu-
tion, we correct these transformed WCs by taking the residuals of a standard mul-
tiple linear regression of the WCs on the PCs. Finally, we quantile transform these
residuals to the quantiles of a standard normal distribution and use these quantile-
transformed residuals in the Bayes Factor calculations. Further data normalization
could also be helpful (e.g., GC content correction [Benjamini and Speed (2012),
Pickrell et al. (2010)]), but we do not pursue this here.

3.5. Effect size estimates. Under the above hierarchical model, given π̂ , the
posterior distributions on the effect sizes in the wavelet space, p(βsl|y,g, π̂), are
available in closed form. Specifically, the βsl are a posteriori independent, each
having a distribution that is a mixture of a point mass at zero and a three parameter
version of a t distribution [Jackman (2009)], with density given in Supplementary
Material [Shim and Stephens (2015)].

However, the effects βsl in the wavelet space are not easy to interpret. To obtain
interpretable estimates of the effect of a SNP g, we transform these effects from
the wavelet space back to the data space using the IDWT. To explain, we combine
the B equations of the form (3.2) (corresponding to the B values of s, l) into a
single matrix equation:

Y = M + βg + E,(3.11)
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where Y,M and E are B × N matrices (the WCs, means, and residuals, resp.), β

is a B × 1 matrix of effects, and g is a 1 × N matrix of genotypes. Now recall that
D = W−1Y where W is the DWT matrix, so premultiplying (3.11) by W−1 yields

D = M̃ + αg + Ẽ,(3.12)

where M̃ = W−1M , Ẽ = W−1E and α := W−1β is a B vector of effect sizes in
the original data space.

Thus, the effects in the original space, α, are given by the IDWT of β , which
is a linear function of β . Although the full posterior on α does not have a simple
analytic form, the linear relationship with β yields closed forms for the pointwise
posterior mean and variance of αb for b = 1, . . . ,B (see Supplementary Material
[Shim and Stephens (2015)]). Here we use these posterior summaries to summarize
the posterior distribution on the effects. Other types of posterior inference could
be performed by simulating from the posterior for α (which is easily achieved
by simulating from the posterior of β and applying the IDWT to the simulated
samples).

4. Results.

4.1. The data and previous analysis. We apply our approach to DNase-seq
data from Degner et al. (2012), who also used these data to identify dsQTLs.
We begin with a brief summary of the analysis in Degner et al. (2012). The au-
thors collected DNase-seq data for 70 HapMap Yoruba LCLs, and correlated these
DNase-seq data with a total of about 18.8 million genetic variants (either directly
genotyped or imputed). To do this, they first identified regions of the genome that
had many DNase-seq reads mapping to them, since these are most likely to con-
tain functional regulatory elements and are most amenable to association analysis.
(Regions with no reads are clearly not amenable to association analysis.) Specifi-
cally, they divided the whole genome into non-overlapping 100 bp windows, and
took the top 5% of these windows ranked according to a DNase I sensitivity [see
Supplementary Material of Degner et al. (2012) for definition]. For each sample,
they then counted the number of DNase-seq reads mapping to each window, stan-
dardized these counts by the total number of reads generated for each sample (to
account for different read depths across individuals) and used the resulting stan-
dardized counts as a molecular phenotype for association analyses. For each win-
dow in turn, they tested each nearby SNP for association with the DNase-seq data
using a standard linear regression (after appropriate normalization and controlling
for confounding factors using 4 Principal Components). One analysis tested ev-
ery SNP within 40,000 bases (40 kb) of each window; another tested every SNP
within 2 kb. The first analysis identified 74,656 dsQTLs (FDR = 10%) associ-
ated with 9595 different windows. The second analysis identified 18,899 dsQTLs
(FDR = 10%) associated with 7088 different windows.
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4.2. Our analysis. Degner et al. (2012) observed that typical dsQTLs affect
chromatin accessibility over roughly 200–300 bp. Based on this, we decided to fo-
cus on slightly larger regions of size 1024 bp (i.e., B = 1024) for our wavelet-based
association analyses. From now on we refer to each 1024 bp region as a 1024 bp
“site.” (The wavelet-based approach should be relatively robust to choice of site
size—provided a site is large enough to cover potential signals—since its multi-
scale nature makes it well adapted to detecting signals that affect only part of the
site. In Supplementary Material [Shim and Stephens (2015)] we assess this robust-
ness and find that, indeed, using larger 2048 bp sites identifies more associations
in these data. We also discuss how choice of B involves trade-offs between power,
computation, and localization.) We focus our association analysis on the top 1% of
1024 bp sites with the highest DNase I sensitivity (in total 146,435 sites) selected
as described in Supplementary Material [Shim and Stephens (2015)]. We focus on
the top 1% rather than the top 5% as in Degner et al. (2012) because Degner et al.
(2012) found that the majority of dsQTL are in the top 1% of 100 bp windows with
the highest DNase I sensitivity. For each site, we use our wavelet-based hierarchi-
cal model, plus permutation, described above, to obtain a p-value to test the null
hypothesis, H0: DNase-seq data at the site is unassociated with all nearby SNPs.
Here, we took “nearby” to mean “within 2 kb of the site.”

For comparison, we also implemented a testing approach analogous to the
100 bp window-based approach from Degner et al. (2012). In brief, we divided
each 1024 bp site into ten ∼100 bp windows (nine of 100 bp and one of 124 bp).
For each window we computed a p-value for association of the DNase-seq data
with each nearby SNP using standard linear regression as in Degner et al. (2012).
For this standard linear regression we quantile-normalized the phenotypes and
corrected them for confounding factors using PCA, in the same way as for the
wavelet-based approach (Section 3.4). Then, we take the minimum of all these p-
values (across all nearby SNPs and all 10 windows), Pmin, as a test statistic of H0.
We then assess the significance of Pmin by permutation, in the same way as we
assess significance of our �̂max by permutation (Section 3.1).

4.3. A wavelet-based approach increases power compared to a 100 bp window
approach. To compare our wavelet-based approach with the window-based anal-
yses, we applied both methods to a subset of the data (50,000 randomly selected
1024 bp sites from the 146,435 sites). Each method yields a p-value testing H0
for each site. Using these p-values, we use the qvalue package [Dabney, Storey
and Warnes (2015)] to estimate the False Discovery Rate (FDR) for each method
at a given p-value threshold. We then compare the methods by the number of sig-
nificant sites at a given FDR (more significant sites at a given FDR being better).

Figure 1(a) compares the number of significant sites for each method as the
FDR varies from 0.001 to 0.1. At all levels of the FDR the wavelet-based approach
identifies considerably more significant sites than the 100 bp window approach.



WAVELET-BASED ASSOCIATION ANALYSIS OF FUNCTIONAL DATA 675

FIG. 1. The wavelet-based approach considerably increases power to identify dsQTLs compared
to the 100 bp window-based approach. (a) shows the number of dsQTLs identified by each method
at a given FDR. The black line indicates FDR of 0.05. (b) shows the number of dsQTLs identified by
the wavelet-based approach (Wavelet) and the 100 bp window-based approach (100 bp window) at
FDR of 0.005, 0.01, and 0.02. The number of dsQTLs identified by both approaches is highlighted
by dark green.

For example, at FDR = 0.05 the wavelet-based approach identifies 870 significant
dsQTLs, compared with 572 dsQTLs for the 100 bp window-based approach, an
increase of 52%. Moreover, most dsQTLs detected by the 100 bp window-based
analysis are also identified by the wavelet-based approach [Figure 1(b), 84%, 84%,
and 83% for FDR of 0.005, 0.01, and 0.02, resp.].

To gain insights into commonalities and differences between the methods, we
manually examined effect size estimates for several examples.
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FIG. 2. Example of typical dsQTL found by both methods. The top panel shows average DNase I
cut rates along the site for each genotype class at the most strongly associated SNP (red = reference
homozygotes; blue = heterozygotes; green = non-reference homozygotes). The dark green line indi-
cates the position of the most strongly associated SNP. Purple blocks indicate putative transcription
factor binding sites, identified using the software CENTIPEDE [Pique-Regi et al. (2011)] (with a
name on the top for known motifs). Black vertical lines below the x-axis indicate mappable bases
[see Supplementary Material of Degner et al. (2012) for definition]. The middle panel shows posterior
mean for effect (α) of this SNP (blue), ±3 posterior standard deviations (sky blue). Pink highlights
regions showing strongest signal (zero is outside of mean ± 3 posterior standard deviations). The
bottom panel shows absolute value of t-statistic for each 100 bp window. The most strongly associ-
ated SNP: chr17.10161485 with minor allele frequency (MAF) of 0.39. For wavelet-based approach
log �̂max = 73.09,p < 0.00001. For window-based approach p < 0.00001.

Figure 2 (see also Supplementary Material Figure 1 [Shim and Stephens
(2015)]) shows a typical example of a dsQTL identified by both methods. These
examples show a consistent strong effect across 200–300 bp; consequently, at least
one 100 bp window fully overlaps the affected region, and the window analysis will
successfully identify such examples, provided the effect is sufficiently strong.

In contrast, Figure 3 shows two examples of dsQTLs identified by the wavelet
analysis, but not the window-based analysis. The dsQTL in Figure 3(a) has a strong
effect in a relatively narrow region (the strongest effect estimate in the second pink
region spans < 10 bp). The multi-scale nature of the wavelet approach makes it
well adapted to detect this kind of narrow local feature, whereas the 100 bp win-
dow analysis fails to capture it (t-statistic of the 100 bp window containing the
signal ≈ 2). This illustrates that the window-based approach has limited power
to identify signals that are very strong, but affect a region much smaller than
the window size. The dsQTL in Figure 3(b) has a consistent effect spread over
200–300 bp, qualitatively similar to typical dsQTLs identified by both methods.
However, the effect of this dsQTL is modest, and it fails to be significant in the
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FIG. 3. Examples of dsQTLs found by wavelet-based approach, but not by window-based approach.
Labels and colors are as in Figure 2. (a) illustrates a dsQTL with a strong effect on a narrow region.
The most strongly associated SNP: chr12.6264939 with MAF of 0.32. For wavelet-based approach
log �̂max = 25.97,p < 0.00001. For window-based approach p = 0.05. The two vertical orange
lines indicate positions of two genetic variants that are in high linkage disequilibrium (i.e., highly
correlated) with chr12.6264939. (b) illustrates a dsQTL with modest effect over a larger region.
The most strongly associated SNP: chr10.59495589 with MAF of 0.43. For wavelet-based approach
log �̂max = 14.11,p = 0.0003. For window-based approach p = 0.01. The orange line indicates the
position of genetic variants that is in high linkage disequilibrium with chr10.59495589.

window-based approach. Our explanation for this is that, being based on 100 bp
windows, the window-based approach effectively uses only part (100 bp) of the
signal, whereas the multi-scale nature of the wavelet-based approach allows it
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FIG. 4. Example of dsQTL showing complex pattern of association with DNase I cut rates. La-
bels and colors are as in Figure 2. The most strongly associated SNP: chr2.110329846 with MAF
of 0.43. For wavelet-based approach log �̂max = 22.01,p < 0.00001. For window-based approach
p = 0.23. In this example the most strongly associated SNP is outside of the 1024 bp site.

to adapt to the scale of the signal, and make better use of the whole signal. In
summary, these examples illustrate how the window-based approach is inherently
adapted to identifying effects that have a particular scale (100 bp in this case) and
is suboptimal for effects that occur on either smaller scales [Figure 3(a)] or larger
scales [Figure 3(b)].

Finally, Figure 4 shows a slightly more complex example. This dsQTL shows
different effects in two regions: consistent in direction over about 100 bp and in
opposite directions over about 200 bp. The 100 bp window analysis misses the first
signal because no windows capture the whole signal. The third 100 bp window
fully overlaps with the second signal, but left and right sides of the window have
effects in opposite directions and partially cancel each other out, resulting in a
weak overall association.

In addition to these results based on estimating FDR for real DNase data,
we conducted additional comparisons on several simulated data sets, where the
“true” (null vs alternative) status of each simulated data set is known. In these
comparisons the wavelet-based approach consistently outperformed the window-
based approach (see Section simulation study in Supplementary Material [Shim
and Stephens (2015)]).

4.3.1. Potential mechanism underlying dsQTLs. It is possible that the differ-
ent qualitative patterns of effect evident in the examples in Figures 2–4 correspond
to different functional mechanisms. With current data any discussion of mech-
anism is necessarily somewhat speculative. However, in some cases a putative
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mechanism is clearer than others. In Figure 2, the most strongly associated SNP
(green vertical line on figure) is inside a binding site for CTCF (CCCTC binding
factor), and the effect spans two regions either side of the binding site (each about
100 bp highlighted by pink), with the effect dropping to zero at the binding site
itself. This effect exemplifies typical TF binding patterns, which often exhibit a
distinct drop in DNase cut rates within TF binding sites [Pique-Regi et al. (2011)]
(referred to as the DNase I “footprint”) because the binding of the TF “protects”
the DNA against the cutting action of the DNase I enzyme. The effect estimate in
Figure 3 shows a similar footprint pattern around another CTCF binding site, and
although the most strongly associated SNP is not in the CTCF binding site, an-
other highly associated SNP is in that binding site (orange line; r2 between these
two SNPs is 0.9), and this SNP seems more likely to be the actual functional vari-
ant. Thus, these two examples appear to share a common mechanism by which
chromatin accessibility is related to changes in CTCF binding.

In contrast to these typical footprint patterns, the effect in Figure 3(a) is quite
different, with one narrow region (<10 bp) showing the biggest effect (the second
pink region). The most strongly associated SNP (green line) lies a few hundred
base pairs from this strong effect, but two other SNPs (orange vertical lines) that
show almost identical association strength (r2 > 0.99 with the strongest SNP) lie
closer. One of these SNPs lies in a putative TF binding site that coincides with the
narrow region of strongest effect. It seems plausible that this SNP is the functional
variant influencing chromatin accessibility, and that the changes in chromatin ac-
cessibility in this case are, as for the other examples, related to transcription factor
binding. However, if so, the reason for the effect being concentrated within the
narrow area, rather than distributed around the TF binding site, is unclear.

Finally, the most strongly associated SNP in Figure 4 lies outside of the 1024 bp
window. The effect pattern here includes almost-compensatory increases and de-
creases in chromatin accessibility, suggesting that the dsQTL is associated with
accessibility “shifting” from some locations to others, possibly associated with
rearrangements in nucleosome positioning.

4.4. Shifting windows provide modest gain in power. In some of the examples
we examined (e.g., Figure 4), the 100 bp window approach appeared to miss a sig-
nal because no single window fully overlapped the region affected by the dsQTL.
This suggested that power might be increased by using overlapping, rather than
non-overlapping, windows. To assess this, we modified the 100 bp window ap-
proach to use 19 overlapping windows (the additional 9 windows being obtained
by shifting each of the first nine windows 50 bp to the right). The test statistic for
this modified approach is the minimum p-value across 19 windows, and we as-
sessed significance by permutation as before. We compared this modified 100 bp
window approach to the other two approaches by applying it to the 50,000 sites
and computing the number of significant dsQTLs at a given FDR. As shown in
Figure 1(a), it increases power compared with the non-overlapping windows, but
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remains well short of the wavelet-based approach. Looking at individual exam-
ples, we find the use of overlapping windows helps to identify the dsQTL in Fig-
ure 4 (p-value < 0.00001), as the third 50 bp-shifted window completely captures
the signals that are consistent in direction over about 100 bp (see Supplementary
Material Figure 2 [Shim and Stephens (2015)]). However, it still missed both the
dsQTLs in Figure 3.

4.5. A wavelet-based association analysis of the entire data set. We next ap-
plied the wavelet-based approach to the full data set of 146,435 sites. At an FDR
of 10% this yielded 3176 sites with a dsQTL within 2 kb. Among these, 772 sites
(24%) are newly identified by the wavelet-based approach [i.e., not overlapping
with the 7088 100 bp windows reported as having dsQTLs in 2 kb cis-candidate
region from Degner et al. (2012)].

4.5.1. Many dsQTLs affect expression levels of nearby genes. A key find-
ing of Degner et al. (2012) was that the dsQTLs identified in their analysis were
strongly enriched for being eQTLs, that is, being associated with changes in ex-
pression of at least one nearby gene. Specifically, using expression data on the
same cell lines from Pickrell et al. (2010), they tested their dsQTLs for association
with expression. They found that 16% of their dsQTLs are also significant eQTLs
(FDR = 10%). These represent a very significant (450-fold) enrichment compared
with random expectation. This is important because it suggests that altering chro-
matin accessibility and/or transcription factor binding may be a common mecha-
nism by which genetic variants influence gene expression.

We therefore conducted a similar analysis for our dsQTLs, also using the data
from Pickrell et al. (2010) and applying the methods from Degner et al. (2012)
(see their Supplementary Material for details) to the strongest associated SNP at
each of the 3176 significant sites identified in our analysis. We found that 19%
of dsQTL identified by the wavelet-based approach are also significant eQTLs
(FDR = 10%). Among the 772 novel sites identified by the wavelet method, 15%
were also significant eQTLs. The fact that these enrichments are similar to those
reported in Degner et al. (2012) suggests that the additional dsQTL sites we iden-
tified are likely to be reliable, rather than false positives.

4.5.2. Computation. The computational time to test each site varies consid-
erably among sites—computation scales roughly linearly with the number of
“nearby” SNPs to be tested, the number of unfiltered WCs, and the number of
permutations performed, all of which vary among sites. Analysis of the entire data
set (with maximum number of permutations set to 100,000) took about 4702 CPU
hours (user + system). Because the analysis of each site is independent, the entire
analysis is naively massively parallelizable (on average 1.9 min CPU time for each
site).
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Software and scripts implementing our methods and analyses, and information
on the 3176 dsQTLs reported here, are available at http://stephenslab.uchicago.edu/
software.html.

5. Discussion. We have developed an effective and efficient wavelet-based
method for association analysis of functional data arising from high-throughput
sequencing assays. This method, including permutation-based assessments of sig-
nificance, is computationally tractable for genetic studies involving hundreds of
thousands of tests. We applied our method to identify SNPs associated with chro-
matin accessibility, and illustrated its advantages over a simple window-based ap-
proach. In brief, the main limitation of window-based methods is that they have
a single inherent scale, determined by the length of the window, and while they
are naturally well powered to detect effects that occur on this scale, they are less
well powered for effects that occur on either longer or shorter scales. In contrast,
wavelet-based approaches are naturally “multi-scale,” and hence better suited to
settings where effects vary in their scale (e.g., where some effects are strong, af-
fecting a narrow region, and other effects are modest, affecting a broad region).
Our examples in Figure 3 illustrate the benefits of a multi-scale approach. In addi-
tion, the wavelet-based approach is better adapted to detecting effects that vary in
direction along a region—a situation which may cause effects to “cancel out” in a
window-based analysis (e.g., Figure 4). Overall, our analysis of data from Degner
et al. (2012) identified 772 novel putative dsQTLs not identified by the original
analysis.

In this paper we reported two types of performance comparisons—one based
on simulations (results in Supplementary Material [Shim and Stephens (2015)])
and another based on performance on real data, specifically on the number of find-
ings obtained at a given FDR. Although both comparisons are helpful, we view the
latter as more practically relevant, because it directly reflects the way these types
of methods are applied in practice, and it avoids the impossible task of creating
simulations that reflect all the complexities of experimental data. This empirical
comparison technique is particularly attractive for the kinds of genetic association
analyses performed here, where there are large numbers of approximately indepen-
dent tests on which to assess performance (in our setting, tests of different sites are
typically independent because they typically involve independent genetic variants
as well as different phenotypes). In addition to comparing competing methods,
empirical comparisons like these can also be helpful for comparing analysis ap-
proaches more generally. For example, Degner et al. (2012), Pickrell et al. (2010),
Stegle et al. (2010) and Mangravite et al. (2013) all used empirical comparisons to
decide how many PCs to control for, and here we used them to assess the effects
of altering the “low count threshold” and the size of the site tested. A similar idea
could be used to assess other aspects of the analysis—such as choice of wavelet
basis.

http://stephenslab.uchicago.edu/software.html
http://stephenslab.uchicago.edu/software.html
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Although our methods were motivated primarily by genetic association studies
for sequence-based molecular phenotypes, our approach is more general and could
also test for association between functional data and other covariates, either con-
tinuous or discrete. For example, in a genomics context, it could be used to detect
differences in gene expression (from RNA-seq data) or TF binding (from ChIP-
seq data) measured on two groups (e.g., treatment conditions or cell types). Or it
could be used to associate a functional phenotype, such as chromatin accessibility,
with a continuous covariate, such as “overall” expression of a gene. It could also be
used for genome-wide association studies of functional phenotypes unrelated to se-
quencing. The main current limitation is that sample sizes should not be too small,
since our Bayes Factor calculations, based on normal quantile-transformed data,
will not work well for small samples. We have not experimented to determine ad-
equate sample sizes, but in other settings we have found the quantile-transformed
approach can work for sample sizes as small as 10 (M. Barber and M. Stephens,
unpublished data). We discuss modifying our approach to allow for smaller sample
sizes below.

One of the most common assays now performed by sequencing is RNA-seq,
and particular features of this assay merit special attention. Specifically, because
construction of mRNA effectively involves splicing together small parts of the
gene (the “exons”), a proportion of the reads generated in an RNA-seq experi-
ment will span splice junctions. These reads naturally contain considerable infor-
mation about splicing, but this information is not captured in the information we
use here (the first base to which each read maps). Integrating the information in
splice junction reads with our wavelet-based methods could be useful, but perhaps
challenging. On the other hand, our method is not alone in failing to fully exploit
splice reads, and it also has some strengths that complement existing approaches
to this problem. For example, it is common to use the number of reads mapping
to “known” exons as a phenotype to identifying SNPs that affect splicing [Pickrell
et al. (2010)]. This may work well to identify certain types of effect (e.g., SNPs
that affect whether or not an exon is spliced in), but less well for other effects (e.g.,
extension of an exon beyond its usual boundaries). Because our method consid-
ers the shape of the read profile across the whole gene, without reference to the
“known exons,” it may be more effective at detecting this latter type of effect.

To our knowledge, this is the first genetic association analysis that attempts to
fully exploit high-resolution information from high-throughput sequencing assays.
[While this work was in review, another method aimed at exploiting the high-
resolution information appeared in Frazee et al. (2014).] As such, there are many
opportunities for potential improvements. First, our methods use a normal model
for the (normal quantile-transformed) WCs, and this transformation loses infor-
mation. Particularly, it loses the information that some WCs are based on small
counts, and thus have higher sampling variability than WCs based on larger counts.
Here we partly addressed this issue by filtering out WCs based on low counts, but
a more principled approach may be expected to improve power. Further, as noted
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above, the normal quantile transformation requires moderate sample sizes. Both
these issues could potentially be addressed by modeling the count nature of the se-
quence data directly, and we are currently experimenting with this approach, based
on multi-scale models for inhomogeneous Poisson processes [Kolaczyk (1999),
Timmermann and Nowak (1999)]. Another possibility would be to consider trans-
forms designed to allow wavelets to be applied to Poisson data [Fryzlewicz and
Nason (2004)]. Second, we have here made use of Haar wavelets, and it may be
that other wavelets will perform better. Indeed, the optimal choice of wavelets may
be context-dependent. For example, when applying wavelet denoising to ChIP-seq
data on histone modifications, Zhang et al. (2008) selected a wavelet known as
Coiflet4, arguing that its morphological characteristics are similar to the nucleo-
some peak shape. Our methods here could be directly applied with any choice of
wavelet basis.

Finally, our hierarchical model assumes conditional independence of WCs (and
effect sizes βsl) given π across scales and locations, and this conditional indepen-
dence will not hold exactly in practice. Our approach partly addresses this issue by
assessing significance of a test statistic by permutation, which gives valid p-values
irrespective of whether modeling assumptions are correct. However, our procedure
for estimating the shape of genotype effect still relies on the conditional indepen-
dence assumption and, ultimately, methods that exploit dependencies between the
WCs should perform better. One way to model dependencies is to exploit the tree
structure of WCs (and effect sizes βsl) as described in Crouse, Nowak and Bara-
niuk (1998), and we are currently experimenting with this approach.
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