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Recent advances of microarray expression profiling
demonstrate the power of the high-throughput study
of multiple genes for unravelling disease resistance1

and developmental processes in plants2,3. Also,
proteomics4,5 and metabolomics6 aim at the profiling
of many gene products in parallel. Statistical and
bioinformatical analyses of these profile data reveal

genes and gene regulation events by either
(non)hierarchical cluster analysis7, referenced or
supervised classification approaches8,9 or correlation-
based analyses10. In these genomics approaches, one
typically compares two states, such as mutant versus
wild type1, induced versus uninduced1, or healthy
versus diseased, possibly under multiple conditions1

or over multiple time points10.
Here, we outline a concept for a strategy, coined

‘genetical genomics’, which will allow geneticists to
take more advantage of genomics11. The strategy uses
the genetic variation between related individuals 
in a segregating population and adds the analytical 
tools available for molecular markers to the analysis
of genome-wide expression profile data. In principle,
genetical genomics can generate substantial
additional insight into the function and interrelation
of gene products and gene action from any method 
of expression profiling based on RNA, protein or
metabolites. Although any segregating population 
is suitable, one type of population could have an
advantage over another for practical reasons, such 
as the ease of production and maintenance of a
certain population. Genetical genomics is likely to 
be most straightforward for self-compatible plants
such as Arabidopsis and maize. For such plants, a
large pedigree of segregating F2 and F3 progeny,
recombinant inbred lines (RILs), backcross (BC)
progeny, or near isogenic lines (NILs) can readily be
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Fig. 1. Expression profiling in combination with molecular marker
analysis of a segregating population makes it possible to use
quantitative trail loci (QTL) analysis for identification of influential
genes and gene products. The example shown here and in Figs 2 
and 3 concerns simulated data of both microarray profiling and
molecular marker analysis of a hypothetical segregating
recombinant inbred line (RIL) of Arabidopsis. (a,b) To generate a
segregating population, two Arabidopsis ecotypes are crossed to
generate an F1 offspring (a). One or more F1 plants are self-crossed
for a number of generations to generate a RIL segregating population
(b). In principle, any segregating population is suitable. 

(c,d) To analyse the segregating population, each individual of the
population is used for analysis by microarray profiling (c), and
molecular marker analysis (d). A parent or parental mixture can be
used as control in microarray profiling. Any expression profiling
method is suitable. The analysis does not need to be genome-wide,
although that would add to the reliability of the results obtained. The
molecular marker map should at least consist of about one marker of
any nature [e.g. amplified fragment length polymorphism (AFLP),
single nucleotide polymorphism (SNP), etc.] per about 5–10 cM. The
two possible homozygous states at a marker are labelled by a capital
and a small character. 
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obtained from a cross between two widely separated
inbred lines (Fig. 1a,b). However, the concept can
easily be extended to segregating pedigrees of
laboratory animals, livestock and man.

About a decade ago molecular markers promised 
to revolutionize the unravelling of quantitative traits
into multiple quantitative trait loci (QTLs), and an
elaborate toolbox for statistical QTL mapping is 
now available12,13. The expression profiling of all
individuals in a segregating population (Fig. 1c,d)
makes it possible to treat the expression profile of
each gene in the population as a quantitative trait.
Combined with a genetic map, QTL mapping
methodology allows the multifactorial dissection of
the expression profile of a given RNA (cDNA), protein
or metabolite into its underlying genetic components
and their genetic map positions (Figs 1–3).

In the analysis of expression profile data, the
expression of some genes can turn out to be effectively
qualitative, whereas that of other genes will be
quantitative. A qualitative profile would establish 
a marker in itself (Fig. 2a). If present in sufficient
numbers, such qualitative profiles will immediately
allow the construction of a genetic map. It is
anticipated, however, that due to environmental 
and multigenic variation, the majority of expression
profiles will be quantitative (Fig. 2b–d). By the
appropriate multifactorial analysis of variance, 
such profiles can be resolved into the contributing 
loci on the molecular marker map (Fig. 3a).

A major source of ‘experimental noise’in current
expression profiling is the large variation between
plants of the same genotype, despite well-controlled
environmental conditions3,6,14. In microarray profiling,
the difference in expression level needs to be fourfold 
or larger to be detected reliably3. In a segregating RIL
population of 100 diploid individuals, each allelic state
of each gene is replicated 50-fold, although in different
genetic backgrounds caused by variations of all other
genes. A 50-fold replication will reduce the standard

error of the ‘experimental noise’in profiling data about
sevenfold [√ (replication) = √ (50) =7.1]. Such a reduction
increases the power for the detection of contrasts
considerably and will help the functional interpretation
of profiling data. In view of the current experiences 
with variation between genetically identical plants, 
it is clearly preferable to reduce experimental noise
further by profiling pooled material from several plants
per RILor from several F3 plants per F2, without the
need for more profiling experiments.

In segregating populations, the inherent variation
in genetic background between individuals can give
additional experimental noise due to additive effects
and/or epistatic interactions, but current tools of 
QTL analysis allow filtering out of such experimental
noise12,15. Therefore, the 50-fold replication obtained
by profiling a segregating population (of 100 diploid
progeny) can be about equivalent to the replication 
of the profile of the same genotype.

When the segregating population has been
screened for a phenotypic trait of interest and shows
QTLs for that trait, the combined approach will help
identify the gene(s) responsible for such QTLs. If a
particular phenotype is of interest, the genetics of
segregating populations could be used in more simple
ways, such as in selective genotyping or bulked
segregant analysis12. In such cases, however, the
power of multifactorial analysis is lost. The analysis
zooms in on preselected regions of the genome and
genes with an important influence can be missed.

We predict that genetical genomics will have most
value for the unravelling of genes and gene products
that are involved in metabolic and regulatory (e.g.
developmental) pathways. The principle is illustrated
in Fig. 3. For each gene (cDNA) or gene product
analysed in the segregating population, QTL analysis
will pinpoint the regions of the genome influential 
for its expression. If available, the sequence and
annotation of that genomic region would be helpful
for the identification of the genes involved. Genetical
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Fig. 2. Combined analysis of expression profile and genetic map data
from Fig. 1. Four hypothetical cDNAs are given as example. For each, the
microarray data is plotted in a histogram and analysed in combination
with the molecular marker data, using multifactorial analysis of variance.
The types of allele present for the markers A/a, B/b, D/d and F/f are
differentiated by colour. The distribution of expression for cDNA1 shows
a qualitative expression (a). Consequently, this is a marker in itself. The
distribution of expression of cDNA2 (b) gives a quantitative profile, and
its components can be resolved by grouping the segregating alleles at
the markers A and B. The distribution of expression of cDNA3 (c) also
gives a quantitative profile, but its components cannot be resolved
despite the segregation of the F/f alleles of marker F. The quantitative
expression profile cDNA4 (d) can be resolved based on D/d and F/f. Thus,
marker F contributes to information about other cDNAs, whereas F by
itself is not informative. Standard one-way analysis of variance of the
profile of cDNA2 would distinguish Ab and AB (light shades) from ab and
aB (dark shades), but a two-way analysis of variance is more appropriate
and allows distinction between the four classes ab, aB, Ab and AB. For
cDNA4, the same is true for the classes df, Df, dF and DF. In the case of
cDNA2, there is no epistatic interaction, whereas the position of DF
relative to the other three classes in case of cDNA4 indicates such an
interaction. The multifactorial analysis of variance can easily be extended
to three or more markers. It will allow assessing the significance and the
strength of the actions and interactions of gene products. 
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genomics presents a novel strategy for identifying
such candidate gene(s) by combining the QTL
information from all genes and gene products that are
analysed. It will indicate what portion of the variation
in gene expression maps to the genes themselves (cis-
acting factors), as opposed to other genomic locations
(trans-acting factors). Candidate genes identified by
genetical genomics can involve genes not present in
the microarray, genes with very low expression levels,
or genes with influential expression at a time (long)
before sampling of RNA, protein or metabolite.
Analyses could also allow demonstrating fuzzy or
epigenetic interactions between genes. 

Inevitably, owing to the nature of statistical
analysis, some false positives will be identified.
Obviously, the importance of any candidate gene 
must therefore be validated; for example, with the
experimental toolbox of functional genomics16, such 
as mutation and transformation. The possibility to
detect genes with an important expression in the past
allows the ‘memory’of a pathway to be visualized 
and to contribute to the reconstruction of pathways. 
No such results can ever be expected from current
pairwise or multiple condition expression profiling.

To our knowledge, the whole-genome data
necessary to validate the concept outlined here 
are not yet available in the public domain. Such
data should preferably be generated in a model
species, such as Arabidopsis, for which the 
entire genome sequence is known17, segregating
populations and extensive molecular marker maps
are available, and expression profiling is in place.
We therefore expect that the proposed concept of
genetical genomics can be validated in the near
future. At present, microarray profiling seems 
most appropriate for the whole-genome analysis 
of gene expression2,3, however the appropriate
proteomics4,18,19 and metabolomics6 technologies 
are developing rapidly. In the future, a combination
of the different profiling methods is likely to be 
most informative. Large-scale expression profiling
of segregating populations is at present too
expensive for most laboratories. The added value
outlined above should stimulate the development 
of appropriate and cost-effective analytical and
statistical technologies: the merger of genomics 
and genetics will indeed combine the better of 
two worlds.

http://tig.trends.com 0168–9525/01/$ – see front matter © 2001 Elsevier Science Ltd. All rights reserved.  
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Fig. 3.Pathway reconstruction and pathway ‘memory’. The QTL analyses
of expression data allow deduction of the relationships of the expression
profiled cDNAs. The table (a) gives the hypothetical result of analysing a
few of the expression profile data from Fig. 2. The QTL analysis associates
the individual cDNAs of the array with markers of the genetic map in a
two-way table. Significant differences between the two allelic states of
each marker are shown as an asterisk. Given the entire genome sequence
of Arabidopsis, the genomic position of each cDNA used in the array is
known. The position on the genetic map of each marker (in capital letters)
and of each cDNA (in numbers) on the five chromosomes of Arabidopsis is
given (b). In combination, these data can be used to analyse which genes
influence the expression of other genes and to deduce in what order this
influence is exerted. For example, the expression of a cDNA (cDNA5) is
mapped to the regions of the markers A, B, D and F. The cDNA5 itself is
located close to marker C. The expression of another cDNA (cDNA6) is
mapped to the same four regions, and to two additional regions, C and E.
The likelihood of such a fourfold coincidence is very small. Therefore, this
indicates that cDNA5 and cDNA6 are likely to operate in the same pathway
or network. Because cDNA5 is located in region C and this region has an
influence on the expression of cDNA6, the genes encoding these cDNAs
are likely to act in series (c). This part of the example illustrates how
genetical genomics can reconstruct a step in a pathway or network.
The next step is to scan the four regions A, B, D and F for cDNAs whose

expression maps to the larger subset of these four regions. A relevant
cDNA could map, for instance, to the regions A, B and D. In our example,
the cDNA located in region D (cDNA4) maps to the regions D and F.
Another cDNA (cDNA2) is located in region A and maps to the regions A
and B. Therefore, both cDNA2 and cDNA4 are good candidates for a step in 
the pathway preceding the involvement of cDNA5 and cDNA6. The same
line of reasoning will apply for the next step and concerns the involvement
of cDNA1 and cDNA3. This analysis indicates that cDNA4 is acting on
cDNA5 and cDNA3 is acting on cDNA4 and cDNA5. However, at this point
the possibility that cDNA3 influences both cDNA4 and cDNA5 at the same
time cannot be excluded. The putative direct influence of cDNA3 on
cDNA5 is given by a broken arrow (c). For clarity, not all putative direct
interactions are indicated. There are several special cases to consider in
the example given. There are cDNAs that have no differential allele
expression at the time of sampling (cDNA3,5,6). Other cDNAs map onto
themselves (cDNA1,2,4). Their two alleles apparently have different
expression levels, which can be due to a difference in the promoter region.
A cDNA can also map to a region that appears not to contain a subsequent
candidate gene in the pathway (cDNA6 maps to region E). A reason could
be that the causal cDNA from region E, indicated by the question mark
(b,c), is missing from the array. With genetical genomics we can still detect
and locate this unknown cDNA (e.g. a transcription factor) through the
expression of cDNA6, which it has influenced.
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A theory of evolutionary biology is that aging is
caused by the deterioration of many processes as
selective forces wane in the post-reproductive phase
of life1,2. A corollary of this view is that no single
intervention in the aging process should extend
lifespan because the decline in vitality affects 
many processes. However, research from the past
decade shows that single-gene mutations can have
profound effects on the longevity of laboratory
organisms such as yeast3,4, Caenorhabditis
elegans5–7, Drosophila8,9 and mice10,11. Thus,
molecular geneticists skeptical of the evolutionary
view might deduce that aging is programmed in 
a manner not unlike embryonic development and 
is therefore subject to regulation by single genes. 
Here, I describe a third model that is consistent 
with our studies of Sir2 genes and that reconciles 
the two extreme views. This notion could have
far-reaching implications for strategies of
intervention in the aging process.

In mother cells of Saccharomyces cerevisiae, the
SIR2 gene is a key determinant of lifespan: null
mutations shorten lifespan and an extra copy of SIR2
can extend lifespan12. These effects appear to derive
from the silencing of chromatin in the ribosomal DNA
(rDNA) repeats by Sir2p. This silencing reduces
rDNA gene expression and suppresses recombination
that would generate toxic extrachromosomal rDNA
circles (ERCs)13. The aging in yeast mother cells
results from an asymmetry of cell division, leading 
to the accumulation of ERCs and perhaps other
deleterious molecules.

Aging in C. elegans appears to be fundamentally
different from yeast aging in that the soma of adults
consists solely of post-mitotic cells. Nevertheless, a
SIR2 homolog, sir-2.1, seems to regulate lifespan:
transgenic worms with extra copies of sir-2.1 live
longer14. How does SIR-2.1 regulate aging in 
worms? Genetic analysis indicates that SIR-2.1
probably functions in the insulin signaling 
pathway. Mutations in components of this pathway
reduce signaling and confer longevity15–18. Perhaps
SIR-2.1 normally represses one or more components
of this pathway.

Why are replicative aging in yeast and post-
mitotic aging in worms both regulated by Sir2
genes? An important insight comes from a
consideration of the biochemical activity of 
Sir2 proteins as NAD-dependent protein
deacetylases19–21. As such, Sir2 proteins might 
have the ability to monitor metabolic rate, reflected
by the amount of available NAD, and couple this 
status to regulatory events, such as the silencing of
chromatin22. An important consequence follows from
this model: Sir2 genes might regulate aging in many
different organisms, even though the molecular
events that it controls are disparate (i.e. rDNA
silencing in yeast and insulin signaling in worms).
Thus, even if the molecular causes of aging are
different in different organisms, aging might still 
be controlled by SIR2 deacetylation of histones or,
perhaps, other protein substrates. The common 
role of Sir2 genes would be coordinating the pace 
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One of the holy grails of medicine is the possibility of an increase in lifespan

without a decrease in vitality. However, the causes and processes of human

aging are still unclear. One evolutionary theory is that in the post-reproductive

stage of life, selective forces decline allowing many vital systems to deteriorate.

This suggests that intervention will be difficult, if not impossible. However,

molecular geneticists propose an aging process that is programmed (like 

other developmental processes) and regulated by single genes, meaning that

intervention could be possible. Here, I discuss a way of reconciling these two

views that could have major implications for healthcare.
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