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Abstract: Complex diseases are caused by perturba-
tions of biological networks. Genetic analysis
approaches focused on individual genetic determi-
nants are unlikely to characterize the network archi-
tecture of complex diseases comprehensively.
Network medicine, which applies systems biology
and network science to complex molecular networks
underlying human disease, focuses on identifying
the interacting genes and proteins which lead to dis-
ease pathogenesis. The long biological path between
a genetic risk variant and development of a complex
disease involves a range of biochemical intermedi-
ates, including coding and non-coding RNA, pro-
teins, and metabolites. Transcriptomics, proteomics,
metabolomics, and other -omics technologies have
the potential to provide insights into complex disease
pathogenesis, especially if they are applied within a
network biology framework. Most previous efforts
to relate genetics to -omics data have focused on a
single -omics platform; the next generation of com-
plex disease genetics studies will require integration
of multiple types of -omics data sets in a network
context. Network medicine may also provide insight
into complex disease heterogeneity, serve as the
basis for new disease classifications that reflect
underlying disease pathogenesis, and guide rational
therapeutic and preventive strategies. [Discovery

Medicine 14(75):143-152, August 2012]

Overview of Network Medicine

Most major public health problems, such as coronary
artery disease, diabetes mellitus, stroke, and chronic
obstructive pulmonary disease, are complex diseases,
which are likely influenced by multiple genetic and
environmental factors operating within a developmen-
tal context. Genome-wide association and DNA rese-
quencing studies have identified some susceptibility
loci for complex diseases, but our understanding of the
functional role of these loci in the etiology and patho-
genesis of these conditions remains woefully incom-
plete. In addition to defining the etiological mecha-
nisms for disease, another key challenge in complex
disease genetics is to understand disease heterogeneity.
Transcriptomics, metabolomics, proteomics, and other
-omics technologies have the potential to provide
insights into complex disease pathogenesis and hetero-
geneity, especially if they are applied within a network
biology framework.

Network medicine is the rapidly developing field which
applies systems biology and network science methods
to human disease (Barabasi et al., 2011). Networks can
be used to visualize and analyze a broad range of bio-
logical processes, with nodes in the network represent-
ing a biological entity (e.g., gene, protein, disease) and
edges representing the relationships between entities
(e.g., physical interactions, transcriptional activation,
correlations in gene expression levels). A holistic
approach is used to relate the interactome network -- the
complete set of macromolecular interactions between
genes and their products -- to disease (Vidal et al.,
2012). Single genetic variants are unlikely to explain
complex disease phenotypes, because perturbations of
biological networks, not isolated genes or proteins, con-
fer disease risk. Robustness to perturbation, a key fea-
ture of biological networks, is manifested as persistence
of ‘normal’ network properties, such as average path
length, connectedness, or function, upon removal of
vertices or edges (Newman, 2010), the equivalent of the
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‘knock-out’ experiment for a biological system. Cells
have evolved to be robust to perturbations in order to
withstand the inherent stochastic effects in gene expres-
sion and somatic mutation; cells are buffered to with-
stand these insults (Koonin et al., 2006).

Multiple approaches have been used to define cellular
interactome networks, including capturing reported bio-
logical relationships from the scientific literature, com-
putational predictions of biochemical or physical inter-
actions, and high throughput experimental strategies
(e.g., yeast two-hybrid systems or affinity purifica-
tion/mass spectrometry) of protein-protein interactions
in model organisms (Vidal et al., 2011). Network motifs
are characteristic network patterns or subgraphs associ-
ated with specific biological functions. Vidal and col-
leagues cite multiple lines of evidence that cellular net-
works underlie genotype-phenotype relationships in
human disease (Vidal et al., 2011), including the fol-
lowing: a) global disease networks demonstrate aggre-
gation of disease classifications and co-morbidities,
suggesting that diseases are not independent from one
another; b) prediction of new disease genes from cellu-
lar network models (e.g., genes for ataxia syndromes)
(Lim et al., 2006) provides evidence that this approach
will be more generally successful; and c) network per-
turbations by pathogens may act as surrogates for
human genetic variants by influencing local and global
properties of cellular networks. They point out that net-
work perturbations resulting from genetic variation
may range from complete removal of a key gene (e.g.,
nonsense mutation) to alteration of specific protein
interactions (i.e., ranging from eliminating a key node
or edge of the network, or altering the strength of inter-
action between two or more nodes).

In this review, we will use selected recent examples to
demonstrate the potential utility of network medicine
approaches in human disease. We will do so by empha-
sizing the role of multiple -omics approaches to provide
insights into complex diseases.

Challenges of Complex Disease Genetics 

The recent identification of many common genetic vari-
ants associated with complex diseases using genome-
wide association studies (GWAS) followed an era of
largely irreproducible results from candidate gene case-
control studies in almost every complex disease. GWAS
is still a prominent genetic epidemiological study
design, although exome sequencing has been quite suc-
cessful at identifying causal variants in Mendelian dis-
eases in very small sample sizes (Hoischen et al., 2010;
Ng et al., 2010) , and whole genome sequencing is rap-
idly becoming affordable as a means by which to iden-

tify both rare and common genetic determinants of
complex diseases. Complex disease genetic research
was transformed by the development of low-cost, high-
throughput single nucleotide polymorphism (SNP)
genotyping arrays, which provided reasonably compre-
hensive coverage of common variants in the human
genome and which made GWAS a feasible study
design. Hundreds of genetic variants have now been
associated with complex diseases at stringent levels of
statistical significance (Lander, 2011), using what we
have termed “First Generation Genetic Studies” (Figure
1). Despite these successes, the odds ratios for the iden-
tified genetic determinants have been surprisingly low,
and the percentage of genetic variation explained by
GWAS signals has generally been modest -- most heri-
tability for these traits has remained unexplained
(Manolio et al., 2009). There are several potential
explanations for this missing heritability, including the
role of rare genetic variants and interactions (gene-gene
and gene-environment), which are summarized in Table
1. Yang and colleagues (Yang et al., 2010) argued that
the most likely contributors to the missing heritability
from GWAS are: 1) most genetic determinants of mod-
est effect size have not yet been identified at the strin-
gent statistical significance levels used in GWAS; 2)
causative variants are not in complete linkage disequi-
librium (LD) with the GWAS signals; and 3) causative
variants are more likely to have lower allele frequencies
than ‘normal’ biological variants. Adjusting for these
three factors using quantitative genetic analysis, they
estimated that relatively common variants could
account for nearly all of the heritability for height. Very
large sample sizes will be required to detect large num-
bers of such common variants of modest effect (Park et
al., 2010). For example, GWAS of plasma lipids in
more than 100,000 Caucasian individuals identified 95
loci of genome-wide significance which account for 25-
30% of the genetic variance in these traits (Teslovich et
al., 2010). Nevertheless, much of the genetic variation
for complex diseases remains unexplained, despite
using very large sample sizes in GWAS.

Part of the unexplained genetic variation in complex
diseases likely does relate to the failure to identify the
functional genetic variant or variants within the vast
majority of GWAS loci. Most of these GWAS loci are
found within non-coding regions (Manolio, 2010),
which may contain regulatory elements for nearby or
distant genes. For example, identification of functional
variants in non-coding regions has been reported for
colorectal cancer (Pomerantz et al., 2009), lipoprotein
levels (Musunuru et al., 2011), chronic obstructive pul-
monary disease (COPD) (Zhou et al., 2012), and coro-
nary artery disease (Harismendy et al., 2011). Further
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work will be required to identify such functional vari-
ants. Studying the functional variants in isolation, how-
ever, will likely not provide a complete picture of the
genetic architecture of complex diseases; evaluating
these genetic variants, genes, and gene products within
a network context will be required.

Since determinants of disease phenotypes are so abun-
dant, it is not surprising that genotype-phenotype asso-
ciations have modest effect sizes; transcription, transla-
tion, and post-translational modifications are regulated
processes that affect genotype-phenotype relationships,
along with gene-gene and gene-environment interac-
tions (Loscalzo, 2007). The application of network
approaches in genetics has also been termed “systems

genetics” (Nadeau and Dudley, 2011), with a major
focus on the interactions between genes, known as epis-
tasis. Epistasis is defined by non-additive contributions
of two genetic loci to a phenotype. Despite their likely
great importance, epistatic interactions have been diffi-
cult to identify in genetic studies of complex disease.
Zuk and Lander developed a genetic model that sug-
gested that epistatic effects could account for missing
heritability in complex diseases (Zuk et al., 2012). They
argued that there is not necessarily a large amount of
missing heritability in complex diseases; rather, the
denominator of total narrow sense heritability, which is
based on assuming additive genetic contributions with-
out interactions, is likely wrong. They term this con-
cept, “phantom heritability,” and point out that biologi-

Figure 1. Development of Complex Disease Genetic Studies. First Generation Genetic Studies attempt to relate genet-
ic variants, such as SNPs, directly to a complex disease; these approaches have low power to detect associations and
even lower power to detect gene-gene and gene-environment interactions. Second Generation Genetic Studies assess
for associations between genetic variants and a single type of -omics data, such as transcriptomics, metabolomics, or
proteomics. These studies have provided useful insights into the genetic determinants of these biological intermediate
phenotypes, but relating these findings to disease susceptibility has been more difficult. Third Generation Genetic
Studies, which will require new methodological development, will explore the relationships between genetic variants
and multiple types of -omics data in a network context, potentially with models that address the phenotypic and genet-
ic heterogeneity of complex diseases.
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cal processes often depend on the rate-limiting value of
multiple inputs, which is consistent with a network
medicine perspective. Using a limiting pathway model
in which a trait depends on the rate-limiting value of k
inputs, when k > 1, there can be substantial missing her-
itability. Epistasis is likely common, but very difficult
to detect since effects are small. They point out that the
limiting pathway model may not be correct, but it
shows that phantom heritability can exist. Network
approaches incorporating multiple -omics platforms
have the potential to identify these epistatic effects.

In one of the few examples successfully demonstrating
epistasis in human complex disease, Emily and col-
leagues performed gene-gene interaction tests for seven
complex diseases in the Wellcome Trust Case-Control
Consortium (Emily et al., 2009). Studying 125 billion
SNP pairs with a 500,000 SNP chip is problematic sta-
tistically, since p-values < 10-13 are required for statis-
tical significance; moreover, performing such a large
number of pairwise comparisons is computationally
extremely intensive. They prioritized SNPs based on
the protein-protein interaction network in the STRING
database, and only assessed markers in genes expected
to interact biologically. They found 71,000 potential
protein-protein interactions in STRING, and identified
all SNPs located +/- 100 kb from genes related to those
interactions. They used a likelihood ratio test only for
those 71,000 potential interactions and adjusted for
multiple testing after accounting for nonindependence
of tests -- a less conservative approach than Bonferroni
correction. They found four significant pairwise inter-
actions -- one each for Crohn’s disease, hypertension,
rheumatoid arthritis, and bipolar disorder.

Although human complex disease studies using tradi-

tional genetic approaches have found limited evidence
for epistasis, studies of microorganisms have been
more successful. Hinkley and colleagues studied the
key drug targets for HIV treatment -- the protease and
reverse transcriptase enzymes (Hinkley et al., 2011).
HIV rapidly evolves drug resistance mutations (due to
the high mutation rate and large population size within
an infected individual), but genetic events leading to
resistance have been difficult to identify -- potentially
due to epistasis. For this study, they defined epistasis as
the impact of one genetic variant depending on the
presence/absence of variants elsewhere in the HIV
genome. They assessed replicative capacity of 70,081
clinical HIV isolates exposed to 15 antiviral drugs for
resistance testing using a test vector in which the HIV-
1 envelope gene was replaced by a luciferase expres-
sion cassette, and they sequenced amplification prod-
ucts of protease and reverse transcriptase genes from
these assays to identify nonsynonymous SNPs. They
applied a new statistical approach to assess for epista-
sis: generalized kernel ridge regression to accommo-
date non-normality and large sample size, which penal-
izes against parameters with low explanatory power.
They compared effects of models for replicative capac-
ity with only main effects of nonsynonymous variants
with models also including pairwise epistatic interac-
tions, and they validated results using the Stanford HIV
Drug Resistance Database. A large number of variants
were found, with 1,859 nonsynonymous SNPs in the
protease and reverse transcriptase genes. The model
including epistatic effects had an average of 18.3% bet-
ter predictive power than the model without epistatic
effects. Moreover, amino acid variants predicted to
have large effects on viral fitness in the epistasis model
correlated strongly with high frequency variants in the
Stanford database of HIV patient samples. They found

Table 1. Potential Explanations for Incomplete Genetic Architecture of Complex Diseases.

Explanation Rationale Comments

Common Genetic Variants More common variants are likely to be found
in GWAS with larger sample sizes.

Effect sizes of known GWAS loci may be
underestimated since functional variants have
often not yet been found.

Rare Genetic Variants Resequencing studies (e.g., whole exome,
whole genome) could identify rare genetic
determinants of large effect size.

Limited evidence for rare variants of major
effect in complex diseases accounting for
large amount of genetic variation.

Interactions Gene-gene and gene-environment interactions
are likely important for complex diseases.

Limited evidence for statistical interactions in
complex diseases; network-based approaches
may be helpful to identify these interactions.

Inaccurate Heritability
Estimates

Heritability estimates are typically performed
assuming that gene-gene and gene-environ-
ment interactions are not present.

Limiting pathway model suggests that epista-
sis could account for missing heritability in
complex diseases (Zuk et al., 2012).

Phenotypic and Genetic
Heterogeneity

Most complex diseases are likely syndromes
with multiple potentially overlapping disease
subtypes.

Improvements in phenotyping of complex
diseases will be required to understand genet-
ic architecture.
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that intragenic interaction effects were generally
greater than intergenic effects, and the strongest inter-
actions were between nearby variants within the same
protein structural domain. Limitations of the study
were that only pairwise interactions were considered;
studying higher order interactions dramatically increas-
es the number of parameters that need to be estimated.
This study demonstrated that including environmental
perturbations (e.g., different drug treatments) can be
very helpful in revealing gene-gene interactions.

-Omics Approaches in Network Medicine and
Genetics

The long biological path between a genetic risk variant
and development of a complex disease involves a range
of biochemical intermediates, such as mRNA, proteins,
and metabolites. These intermediate phenotypes, which
can be captured using high throughput assays, have
been used to gain insight into the biological networks
relevant for complex diseases. We will review some
key examples of the application of network approaches
to three major types of -omics data: transcriptomics,
proteomics, and metabolomics. We will also review
genetic studies of single -omics approaches, which we
describe as Second Generation Genetic Studies (Figure
1). These studies have identified genetic influences on
the levels of biological intermediates; however, relating
those genetic determinants of an -omics type to com-
plex disease susceptibility has been less successful.

Transcriptomics

Multiple methods have been used to determine network
structure from gene expression microarray data, includ-
ing Boolean networks, differential equations, and
Bayesian networks (Djebbari and Quackenbush, 2008).
Inferring network structure from gene expression
analyses of human tissues has been challenging for sev-
eral reasons. First, the sample size of assayed tissues is
typically much smaller than the number of analyzed
genes, which limits the identification of an optimal net-
work. Second, some of the most promising methods,
including Bayesian networks (which use directed
acyclic graphs), are computationally extremely inten-
sive. Third, static comparisons between groups are typ-
ically used, although changes in gene expression are
dynamic. Therefore, approaches to limit the network
search space have been developed. For example,
Djebbari and Quackenbush (2008) proposed an
approach to create transcriptomic networks with the
use of seed genes from the literature or from protein-
protein interaction networks. By analyzing leukemia
gene expression data sets, they found that use of prior
network information from the literature or protein-pro-

tein interaction networks improved their ability to iden-
tify gene expression network relationships. To help to
overcome the limitations imposed by small sample
sizes and variable effect sizes, they used a non-para-
metric bootstrapping approach to assess confidence in
their network models.

Gene expression networks of human cells or tissues are
phenomenological, reflecting incomplete modeling and
dynamic observations. They are correlative but not nec-
essarily causal networks (Koonin et al., 2006).
Stochastic effects may also have important effects on
gene expression. Burga and colleagues modeled incom-
plete penetrance in C. elegans and showed that stochas-
tic effects in gene expression of an ancestral gene
duplication and in induction of molecular chaperones
led to differential effects of inherited mutations (Burga
et al., 2011). They used a genetic network interaction
model to demonstrate that if one gene of a partly redun-
dant gene pair is inactivated, the phenotype depends on
the stochastic expression variation of the remaining
gene.

MicroRNA and epigenetic marks such as DNA methy-
lation and histone acetylation are often key regulators
of gene expression. Parikh and colleagues defined a
disease module for pulmonary arterial hypertension
within the macromolecular network based on previous-
ly studied genes and then used this disease module to
identify microRNA species likely to be involved in dis-
ease pathogenesis (Parikh et al., 2012). miR-21 was
identified as a candidate microRNA regulating key pul-
monary arterial hypertension pathways that was vali-
dated in multiple in vitro and in vivo models.

Integrative genomic studies have been widely per-
formed to relate SNPs to gene expression levels. For
example, Small and colleagues studied metabolic syn-
drome, which includes obesity, insulin resistance,
hypertension, type 2 diabetes mellitus, and hyperlipi-
demia (Small et al., 2011). Environmental factors are
clearly important for metabolic syndrome, but compo-
nent phenotypes of this syndrome are highly heritable.
Many GWAS signals have been found for individual
components of the metabolic syndrome, but no genetic
loci were previously found to be key regulators of the
entire syndrome. KLF14 encodes a transcription factor;
SNPs approximately 14 kb upstream from KLF14 had
been previously associated with type 2 diabetes melli-
tus and HDL levels, and a cis-expression quantitative
trait locus (eQTL) influencing KLF14 gene expression
in adipose tissue was reported in that same region.
They performed microarray gene expression analysis in
adipose tissue from 776 female twins, and then per-
formed trans-eQTL analysis between the KLF14 cis-
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eQTL SNP and adipose gene expression levels. SNPs
near the most significant genes from this analysis were
then related to metabolic syndrome phenotypes in a
very large consortium GWAS. Although a single key
KLF14 SNP was not identified and functional studies
were not performed, conditioning trans- associations on
rs4731702 eliminated other significant associations.
They found 10 genes with genome-wide significant
trans-eQTL associations to this KLF14 SNP; 7/10 of
these associations were replicated in gene expression
data from 589 other adipose tissue samples, and 5/10
genome-wide significant trans-eQTL association genes
were associated with a broad range of metabolic syn-
drome traits, including all of the key features of meta-
bolic syndrome. Integration of gene expression and
genetic variation data is clearly important to build path-
ways, but this is a cautionary tale in that such large sam-
ple sizes for gene expression studies were needed in a
relevant tissue type. Every gene in which expression
correlated with disease did not have SNPs associated
with disease phenotypes. It is clearly essential to have
functional variants within the study population to find a
genetic association.

Several studies have performed integrative genomic
analyses within a network context. Barrenas and col-
leagues hypothesized that after defining disease mod-
ules using both the protein-protein interaction network
and differential gene expression data from relevant tis-
sues, modules with the most interconnected disease
genes would have more GWAS disease SNPs (Barrenas
et al., 2012). They used publicly available gene expres-
sion and GWAS data for 13 complex diseases, then
studied their specific disease of interest, seasonal aller-
gic rhinitis. They defined core susceptibility modules as
genes with high interconnectivity; they then created a
disease-specific core susceptibility module for each dis-
ease and a global core susceptibility module for all 13
diseases. They found enrichment of GWAS genes in the
disease-specific core susceptibility modules, while the
group of all differentially expressed genes was not
enriched for GWAS genes. They also found evidence
for susceptibility to multiple complex diseases (a total
of 145 diseases) in the global core susceptibility module
genes derived from their 13 main diseases. Although
they only had gene expression data for 12 seasonal
allergic rhinitis subjects, they found that disease-specif-
ic core susceptibility module genes from this gene
expression network for seasonal allergic rhinitis were
more likely to contain significant GWAS SNPs than
other genes.

Chu and Raby developed a stepwise approach that starts
by building a Gaussian graphical network model based

on gene expression levels, then examines regulation of
specific target genes (Chu et al., 2009). Subsequently,
genetic association testing is performed conditional on
the developed graphical network. They applied this
approach to studying asthma, focusing on the subset of
genes showing variable gene expression across samples
of CD4 positive lymphocytes from asthmatics.
Subsequently, they extended their approach to compare
differences in gene-gene connectivity patterns across
disease states (Chu et al., 2011). Posterior odds ratios
between disease groups give a quantitative measure of
differences in network connectivity. Simulations sug-
gest that specificity is high but sensitivity is not suffi-
cient to detect these differences. A key feature of their
Gaussian graphical model approach is use of partial cor-
relation coefficients, which distinguish direct and indi-
rect interactions.

Proteomics

Studies of proteomics have obvious biological rele-
vance and can provide complementary information to
transcriptomics. However, developing robust, high
throughput proteomic assays has been technically chal-
lenging. New proteomic technology and analytical
approaches, such as selected reaction monitoring (SRM,
a mass spectrometric technique), have been developed
for quantitative proteomic assessment (Brusniak et al.,
2012). Traditional tandem mass spectrometric
approaches require extensive bioinformatic searches to
match peptide fragments against protein databases. At a
recent NIH workshop on proteomics (September, 2011),
it was noted that dynamic aspects of proteins can be
assessed with quantitative measurements of protein lev-
els and determination of post-translational modifica-
tions and splicing effects which alter protein levels
(Vidal et al., 2012). Recently optimized proteomic
approaches have allowed identification of ~10,000 pro-
teins from human cell lines. Multiple peptides for SRM
analysis have been prepared for most human proteins.
Current protein interaction networks are incomplete, but
developing such networks could be a major step for-
ward in understanding disease etiology (Charloteaux et
al., 2011). Static protein interaction maps will need to
be extended to understand dynamic responses to pertur-
bation.

Proteomics has been linked to genetics in several ways.
In some studies, protein levels have been used as phe-
notypes for genetic analysis. Naitza and colleagues used
several protein biomarkers of inflammation, including
IL-6, MCP-1, and C-reactive protein (CRP), as pheno-
types for genome-wide association analysis in Sardinia.
They performed GWAS in 4,694 individuals, with repli-
cation in 1,392 subjects (Naitza et al., 2012). They also
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genotyped the ImmunoChip and MetaboChip in the full
cohort. Not surprisingly, some of the significant associ-
ations to protein levels were within or near the coding
gene for that protein; for example, a SNP in CRP was a
significant determinant of CRP levels. Other associa-
tions recapitulated known biological relationships, such
as the associations of a SNP near CCR2, the receptor for
MCP-1, with MCP-1 levels, and a SNP in the IL-6
receptor gene (IL6R) with IL-6 levels. Other significant
associations that were not in expected regions may
reveal novel biological relationships; for instance, a
SNP near the inducible T-cell co-stimulator ligand
(ICOSLG) and autoimmune regulator (AIRE) genes was
significantly associated with CRP levels.

Another approach for integrating proteomics with
genetics is to use the global network of protein-protein
interactions to limit the genetic search space for associ-
ation studies -- thus reducing the number of statistical
tests performed -- as mentioned above by Emily and
colleagues (Emily et al., 2009). Alternatively, GWAS
(or other types of genetic information) can be used to
assist in defining disease-related network modules
within the protein-protein interaction network. For
example, Jia and colleagues developed dmGWAS, a
dense module searching approach for GWAS in pro-
tein-protein interaction networks (Jia et al., 2011). They
picked the single most significant SNP to represent the
gene in the interaction analysis and used a seed gene-
based approach to build the disease-related network. A
potential advantage of this approach is that it uses all of
the GWAS data, not just the top SNPs from the GWAS.

Metabolomics

Metabolomic studies can provide complementary infor-
mation to other -omics approaches, with high through-
put assay systems now having been developed. In a piv-
otal early investigation, Jeong and colleagues demon-
strated impressive conservation of metabolic network
structure across phylogenetic groups (Jeong et al.,
2000). More recently, Krumsiek and colleagues used a
Gaussian graphical modeling approach to build net-
works from metabolomic data for 151 metabolites in
1,020 KORA Study subjects (Krumsiek et al., 2011).
Network modules related to the seven major metabolite
classes that they measured were identified. Moreover,
they found that known metabolic relationships from
fatty acid biosynthesis were captured in their network
model, suggesting that the metabolomic measurements
accurately reflect the underlying biochemical pathways
which generate the metabolites.

Suhre and colleagues recently reported a GWAS of
metabolomic measurements. They performed

metabolomic profiling of fasting serum for >250
metabolites from 60 biochemical pathways in 2,820
individuals from two European studies (including the
KORA Study) (Suhre et al., 2011). They used existing
genome-wide SNP genotyping data and 37,000 individ-
ual metabolites and metabolite ratios in a screening
stage with log-transformed metabolite values and
adjustment for age, gender, and family structure. They
found 37 loci that were genome-wide significant in
meta-analysis; in 25 loci, effect size per allele was
>10%. At 30 loci, the associated SNP mapped to a pro-
tein biochemically related to the metabolite (e.g., syn-
thesis, degradation). At 15 loci, a SNP in an associated
locus was associated with a complex disease or drug
response. For example, fibrinopeptide A-alpha peptides
were associated with three loci (ABO, ALPL, and
FUT2) -- genes that are functionally linked through
blood groups. Importantly, ABO SNPs are associated
with many complex diseases including venous throm-
boembolism and acute myocardial infarction (Reilly et
al., 2011).

Building Disease Networks from Multiple -Omics
Data

Most efforts to relate genetics to -omics data have
focused on a single -omics platform. Third Generation
Genetics Studies (Figure 1) will require integration of
multiple types of -omics data in a network context. A
positive step in this direction was performed by Guan
and colleagues (Guan et al., 2010); they applied
machine learning techniques to genomic assessments of
gene expression and protein levels in order to identify
genes potentially involved in a disease phenotype. This
approach can create lists of candidate genes and help to
narrow focus to a single gene when there are multiple
genes within a locus of interest. They used support vec-
tor machines to analyze murine functional data and a
Bayesian network approach to create a network of func-
tional relationships among all genes in the mouse, using
protein-protein interactions, phylogenetic profiles, and
gene expression data. From this functional network,
they used two supervised learning approaches to relate
genotype to phenotype -- support vector machine clas-
sification and a summed weight approach -- which was
tested on 1,157 diverse phenotypes. They selected two
genes for bone mineral density (TIMP2 and ABCG8)
that were not found using previous quantitative genetic
approaches (but were supported by gene expression,
physical interaction, and phylogenetic information),
and did functional studies to validate their potential bio-
logical roles.

Ultimately, the comprehensive integration of genetics
with multiple -omics approaches will be essential. Chen
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and colleagues performed multiple -omics analysis lon-
gitudinally in a single individual, including whole
genome DNA sequencing as well as genomic, tran-
scriptomic, proteomic, metabolomic, and autoantibody
profiling in what they label an integrative personal
-omics profile (iPOP) (Chen et al., 2012). This individ-
ual had two viral infections and developed type 2 dia-
betes mellitus during more than one year of close obser-
vation. Whole genome sequencing revealed 26 Mb of
sequence not annotated in the hg19 reference sequence
and many other regions that were not included at all in
hg19; these results emphasized that the reference
genomic sequence is not yet complete. A Luminex
panel was used to assay protein levels of 51 cytokines
and showed increases in pro-inflammatory cytokines
during viral infections. Overall, they found marked
dynamic changes over time in multiple -omics assess-
ments, an important observation since most studies
only sample a single time point. They performed inte-

grated analyses of transcriptomics, proteomics, and
metabolomics. Some pathways were only detected
using one of the approaches; for example, the insulin
secretion pathway was only seen using proteomics.

Complex diseases are often heterogeneous syndromes
rather than discrete disease entities. For example,
stroke includes several key clinical subtypes, including
large vessel, cardioembolic, and lacunar. A recent
GWAS of ischemic stroke in 3,548 cases and 5,972
controls did not reveal novel genome-wide significant
signals when all ischemic strokes were considered
together (Bellenguez et al., 2012); however, a SNP in
HDAC9 was strongly associated with large vessel
stroke. This study showed significant heterogeneity in
association between stroke subtypes. Inclusion of com-
prehensive phenotyping using clinical and imaging
approaches will be essential to complement multiple
-omics profiling in the dissection of complex diseases.

Figure 2. Potential Approaches to Reclassify Complex Diseases in Network Medicine. Although the optimal approach
to integrate multiple types of biological and clinical information into a new classification for disease remains specu-
lative, we have outlined a potentially useful framework. After an appropriate study population is obtained, collection
of biological samples and comprehensive phenotyping will be required. Multiple -omics assessments will be per-
formed, including whole genome sequencing, genome-wide gene expression, proteomic analysis, and metabolomic
assessment. These data types will be integrated using network-based approaches to identify determinants of the com-
plex disease. In parallel, comprehensive phenotyping will be performed; machine learning (and other) approaches may
be used to define disease subtypes. In an iterative process, the disease determinants and disease subtypes will be
refined to create a pathophysiology-based disease classification.
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Further efforts to integrate genetics with multiple
-omics data types will likely lead to new disease classi-
fications that reflect underlying disease pathogenesis
(Loscalzo et al., 2007); such approaches may divide
complex diseases into biologically meaningful sub-
types, but they could also lead to merging of diseases
which have been classified separately based on specific
organ involvement. As shown in Figure 2, improved
phenotyping will be essential to this effort.
Pathobiology-based disease classification will also pro-
vide the opportunity for targeted treatment. Just as mul-
tiple genetic factors likely interact in a network context
to cause disease, treatment strategies which target mul-
tiple members of the disease network will likely be
required to treat complex diseases optimally.
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